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Abstract: Logistic linear mixed models are widely used in experimental designs and

genetic analyses of binary traits. Motivated by modern applications, we consider

the case of many groups of random effects, where each group corresponds to a

variance component. When the number of variance components is large, fitting a

logistic linear mixed model is challenging. Thus, we develop two efficient and stable

minorization–maximization (MM) algorithms for estimating variance components

based on a Laplace approximation of the logistic model. One of these leads to a

simple iterative soft-thresholding algorithm for variance component selection using

the maximum penalized approximated likelihood. We demonstrate the variance

component estimation and selection performance of our algorithms by means of

simulation studies and an analysis of real data.
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1. Introduction

The generalized linear mixed model (GLMM) is an extension of the gener-

alized linear model, incorporating random effects that account for heterogeneity

among responses (McCulloch and Neuhaus (2001); Stroup (2012)). The GLMM

is widely used in clustered, longitudinal, and panel data analyses (Zeger and

Karim (1991); Breslow and Clayton (1993)). The logistic linear mixed model is

a GLMM used for binary responses, and assumes

yj | ηj ∼ Bernoulli(µj)

µj =
1

{1 + exp(−ηj)}
,

(1.1)

for j = 1, . . . , n. Here, η = (η1, . . . , ηn)T takes the form

η = Xβ + Z1u1 + · · ·+ Zmum,
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where X and Z = (Z1, . . . , Zm) are known predictor matrices, β is the coefficient

vector for fixed effects, and ui ∼ N(0qi , σ
2
i Iqi) are independent random effects.

Because

η ∼ N(Xβ, σ21Z1Z
T
1 + · · ·+ σ2mZmZ

T
m),

we call σ21, . . . , σ
2
m variance components.

The logistic linear mixed model has been applied in agriculture, economet-

rics, biology, and genetics. Here, examples include using an analysis of variance

(ANOVA) for dichotomous responses (Anderson and Aitkin (1985); Quené and

Van den Bergh (2008)) and quantitative trait loci (QTL) mappings of binary

traits (Yi and Xu (1999); Che and Xu (2012)). In the ANOVA, Zi denotes each

factor or their interactions. In modern applications, the number of factors can

be large, and the number of interaction terms increases quadratically with the

number of factors. In QTL mapping, Zi corresponds to a gene region. The num-

ber of genes m is of order 102 ∼ 103 in a typical genetic study. In Section 4 and

5, we discuss these two applications in further detail, as well as presenting an

associated analysis using our proposed algorithms.

In general, direct maximization of the GLMM likelihood function is compu-

tationally intractable because it involves potentially high-dimensional integrals.

Thus, existing methods involve various forms of approximations. The first class

of methods uses numerical integration, such as Gaussian quadrature (Davidian

and Gallant (1992)) and adaptive Gaussian quadrature (AGQ) (Pinheiro and

Bates (1995)). These methods apply only to low-dimensional integrals, and thus

are limited to problems in which data form very small independent clusters. The

second type of method employs Laplace approximation (Wolfinger (1993); Shun

and McCullagh (1995)) or its variants, such as the penalized quasi-likelihood

(Breslow and Clayton (1993)) and the integrated nested Laplace approximation

(Rue, Martino and Chopin (2009)). The third class of methods uses Monte Carlo

methods to approximate either the original integral (Sung and Geyer (2007)) or

the E step of the EM algorithm (Booth and Hobert (1999)). Pinheiro and Bates

(1995) compare and discuss the penalized quasi-likelihood, the Laplace approx-

imation, importance sampling, Gaussian quadrature, and AGQ. They conclude

that the Laplace approximation and AGQ give the “best mix of efficiency and

accuracy.” Thus, we propose algorithms based on the Laplace approximation of

the log-likelihood function because AGQ is numerically infeasible for the ANOVA

and genetic applications we consider here.

Our primary interest is the estimation and selection of variance components.
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Several studies have proposed ways of selecting fixed effects in GLMMs (Groll

and Tutz (2014); Schelldorfer, Meier and Bühlmann (2014)). However, for the

selection of random effects, most procedures are developed in the framework of

linear mixed models (Bondell, Krishna and Ghosh (2010); Ahn, Zhang and Lu

(2012)) for quantitative responses. In contrast, few works discuss random ef-

fects selection in GLMMs. Ibrahim et al. (2011) develop a simultaneous fixed

and random effects selection procedure based on the smoothly clipped absolute

deviation (SCAD) and adaptive LASSO penalties using a Monte Carlo EM for

general mixed models. Cai and Dunson (2006) propose a method for random ef-

fect selection in GLMMs within a Bayesian framework using a stochastic search

MCMC algorithm. Pan and Huang (2014) propose using a backfitting algorithm

to select effective random effects based on a penalized quasi-likelihood function.

However, the above-mentioned studies all examine clustered data with repeated

measurements on the subjects. They assume n independent subjects with obser-

vations (y1, X1, Z1) , . . . , (yn, Xn, Zn) and

E (yi | Xi, Zi, bi) = g (ηi) = g (Xiβ + Zibi) , (1.2)

where g(·) is some known link function, Xi and Zi are known matrices, and

bi ∼ Nq (0, D) is the random effect. Here, D is the unknown covariance matrix

shared by the subjects that is to be estimated by maximizing some penalized

likelihood. For example, Ibrahim et al. (2011) perform the penalization on the

Cholesky decomposition of D, denoted as Γ, such that each row of Γ is either

all not zero or all zero, and Pan and Huang (2014) penalize on positive elements

proportional to the standard deviation of the random effects bi. We propose an

algorithm for selecting random effects in which we shrink the variances of inef-

fective random effects toward zero based on the penalized likelihood defined in

Section 3.3. There are two key differences between our variance component se-

lection and those of previous works. First, model (1.2) is not the same as model

(1.1) that we address in this study, even though they can both deal with clus-

tered data and non-clustered data. Model (1.1) assumes that the random effects

ui ∼ N(0qi , σ
2
i Iqi) are independent. If we write model (1.1) in the framework of

model (1.2), then the covariance in model (1.1) is diagonal with some equality

constraints on the random effect variances, whereas the covarariance in model

(1.2) can be any covariance matrix. Second, model (1.2) selects individual ran-

dom effects, whereas model (1.1) is used to select groups of random effects, that

is, the random effects in each ui are either all selected or none are selected. To

the best of our knowledge, no studies investigate variance component selection
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using model (1.1).

Based on the minorization–maximization (MM) principle (Lange, Hunter

and Yang (2000)), we propose two novel algorithms for variance component es-

timation under two different parameterizations of logistic linear mixed models.

Then, we extend the algorithms to variance component selection by incorporat-

ing penalization. The first parameterization is efficient for estimating parameters

without penalty, whereas the second easily generalizes to penalized estimation.

Both algorithms are simple to implement and numerically stable. Our simulation

studies and real-data analysis demonstrate that the proposed algorithms outper-

form the commonly used tools and are scalable to high-dimensional problems.

2. Preliminaries

Throughout, we reserve Greek letters for parameters and indicate the current

iteration number by a superscript t.

2.1. The MM principle

The MM principle (Lange, Hunter and Yang (2000); Hunter and Lange

(2004)) for maximizing an objective function f(θ) involves two M-steps. The first

M-step minorizes the objective function f(θ) by a surrogate function g(θ | θ(t))
at the current iterate θ(t). Minorization is a combination of a tangent condition

f(θ(t)) = g(θ(t) | θ(t)) and a domination condition f(θ) ≥ g(θ | θ(t)), for θ 6= θ(t).

The second M-step is defined by the iterates:

θ(t+1) = arg max
θ

g(θ | θ(t)). (2.1)

Because

f(θ(t+1)) ≥ g(θ(t+1) | θ(t)) ≥ g(θ(t) | θ(t)) = f(θ(t)), (2.2)

the MM iterates satisfy the ascent property, which drives the objective function

uphill and makes the MM algorithm remarkably stable.

Our derivation of the MM algorithms for variance component estimation and

selection hinges on two minorizations.

2.2. Supporting hyperplane minorization

If f(θ) is convex and differentiable, then the supporting hyperplane

g(θ) = f(θ(t)) +∇f(θ(t))T (θ − θ(t)) (2.3)

is a minorization function of f(θ) at θ(t) (Hunter and Lange (2004)).

For symmetric matrices, we write A � B when B−A is positive semidefinite.
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A matrix-valued function f is said to be (matrix) convex if

f {λA+ (1− λ)B} � λf(A) + (1− λ)f(B),

for all A, B, and λ ∈ [0, 1]. Because the negative log determinant function

f(B) = − log detB is convex on the set of positive definite matrices (Boyd and

Vandenberghe (2004)) and the supporting hyperplane of f(B) is

g(B) = f(B(t)) +∇f(B(t))T (B −B(t))

= − log detB(t) − tr

{(
B(t)

)−1 (
B −B(t)

)}
,

the supporting hyperplane minorization described above yields the following in-

equality:

− log detB ≥ − log detB(t) − tr

{(
B(t)

)−1 (
B −B(t)

)}
. (2.4)

2.3. Quadratic minorization

If a convex function f(θ) is twice differentiable and there exists a matrix M

such that M � ∇2f(θ) for all θ, then

g(θ) = f(θ(t)) +∇f(θ(t))T (θ − θ(t)) +
1

2
(θ − θ(t))TM(θ − θ(t)) (2.5)

is a minorization function of f(θ) at θ(t) Hunter and Lange (2004).

3. Algorithms for Estimation

3.1. Model formulation 1

The likelihood for model (1.1) is

L(β, σ) =

∫
exp{h(u | β, σ2)} du, (3.1)

where σ = (σ1, . . . , σm)T , with σi ≥ 0 for i = 1, . . . ,m, σ2 =
(
σ21, . . . , σ

2
m

)T
, and

the complete log-likelihood is

h(u | β, σ2) =
∑
j

{yjηj − ln(1 + eηj )} − 1

2

m∑
i=1

(
qi lnσ2i +

‖ui‖22
σ2i

)

=
∑
j

{yjηj − ln(1 + eηj )} − 1

2

m∑
i=1

‖ui‖22
σ2i

+ terms without ui.

Direct optimization of the likelihood defined in (3.1) is computationally chal-

lenging because of the integral. The Laplace approximation to the likelihood

L(β, σ) is obtained by replacing h(u | β, σ2) by its second-order Taylor expan-
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sion at the conditional maximum. Given the current iterate (β, σ), let u∗ be the

maximizer of h and η∗ = Xβ + Zu∗, where Z = (Z1, Z2, . . . , Zm). Then, the

approximated log-likelihood is

LLA(β, σ) = h(u∗ | β, σ2)− 1

2
ln det∇2

{
−h(u∗ | β, σ2)

}
=
∑
j

{
yjη

∗
j − ln

(
1 + eη

∗
j

)}
− 1

2

m∑
i=1

qi lnσ2i −
1

2

m∑
i=1

‖u∗i ‖22
σ2i

−1

2
ln det

{
ZTW ∗Z + blkdiag(σ−2

1 Iq1 , . . . , σ
−2
m Iqm)

}
=
∑
j

{
yjη

∗
j − ln

(
1 + eη

∗
j

)}
− 1

2

m∑
i=1

‖u∗i ‖22
σ2i

(3.2)

−1

2
ln det

(
W ∗−1 +

∑
i

σ2i ZiZ
T
i

)
− 1

2
ln detW ∗

+ terms without β, σ2,

where W ∗ = diag(w∗) is a diagonal matrix with entries

w∗
j = p∗j (1− p∗j ) =

eη
∗
j(

1 + eη
∗
j

)2 and p∗j =
eη

∗
j(

1 + eη
∗
j

) .
Detailed derivations of the approximated log-likelihood (3.2) are provided in the

Supplementary Material S1. The MM algorithm cycles through updates of u, β

and σ2, as follows:

1. To maximize h(u | β, σ2), the gradient and Hessian are

∇uh = ZT (y − p)−

σ−2
1 u1

...

σ−2
m um


∇2
uh = −

{
ZTWZ + blkdiag(σ−2

1 Iq1 , . . . , σ
−2
m Iqm)

}
,

respectively, where p = (p1, . . . , pn)T with pj = eηj/(1 + eηj ), and W =

diag(w1, . . . , wn) with wj = pj(1 − pj). Because each wj is upper-bounded

by 0.25, it follows that

∇2
uh � −

{
0.25ZTZ + blkdiag(σ−2

1 Iq1 , . . . , σ
−2
m Iqm)

}
.

Thus, we can construct a quadratic minorization function at u(l) using (2.5),

and maximizing the quadratic surrogate gives the MM update

u(l+1) =
{

0.25ZTZ + blkdiag(σ−2
1 Iq1 , . . . , σ

−2
m Iqm)

}−1∇uh(u(l)) + u(l). (3.3)
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To find the maximizer u∗ given β and σ2, we iterate the MM update (3.3)

until convergence. Note that the indicated matrix inverse in (3.3) only needs

to be performed once and remains constant through the iterations.

2. Updating β given σ2 and u∗ is a regular logistic regression with offset Zu∗.

We invoke a similar MM update to that described above

β(t+1) = β(t) +
(
0.25XTX

)−1
XT (y − p∗). (3.4)

Again, the matrix inverse
(
0.25XTX

)−1
only needs to be performed once.

3. To update σ2 given β and u∗, the minorization (2.4) leads to the surrogate

function

g(σ2 | σ2(t)) = c(t) − 1

2

m∑
i=1

‖u∗i ‖22
σ2i

−1

2

m∑
i=1

σ2i tr


(∑

i

σ
2(t)
i ZiZ

T
i +W ∗−1

)−1

ZiZ
T
i

 , (3.5)

where c(t) is a constant irrelevant to the optimization. The maximization of

g(σ2 | σ2(t)) with respect to σ2 yields the explicit MM update

σ
2(t+1)
i =

 ‖u∗i ‖22
tr
{
ZTi (

∑
i σ

2(t)
i ZiZTi +W ∗−1)−1Zi

}
1/2

.

When q � n, the Woodbury formula facilitates the inversion(∑
i

σ
(t)2
i ZiZ

T
i +W ∗−1

)−1

= W ∗ −W ∗Z(σ){Iq + Z(σ)TW ∗Z(σ)}−1Z(σ)TW ∗,

where Z(σ) = (σ1Z1, . . . , σmZm). Because the iterate is derived based on the

MM principle, it possesses the ascent property

LLA(σ(t+1) | β, u∗) ≥ LLA(σ(t) | β, u∗). (3.6)

A detailed proof is presented in the Supplementary Material S3.

As in the penalized iteratively reweighted least squares (PIRLS) algorithm

described in Bates et al. (2015), parameter estimates are determined for a fixed-

weights matrix W ∗, and then the weights are updated to the current estimates

and the process is repeated. The resulting algorithm is extremely simple to imple-

ment. Algorithm 1 summarizes the MM algorithm for the parameter estimation
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Input : y, X, Z1, . . . , Zm
Output: MLE β̂, σ̂2

1 , . . . , σ̂
2
m

Initialize β(0), σ
(0)
i > 0, i = 1, . . . ,m ;

repeat
u∗ ← arg maxu h(u | σ2(t), β(t)) ;

p∗ ← 1/
{

1 + exp
(
−Xβ(t) − Zu∗

)}
;

β(t+1) ← β(t) +
(
0.25XTX

)−1
XT (y − p∗) ;

p∗ ← 1/
{

1 + exp
(
−Xβ(t+1) − Zu∗

)}
;

W ∗ ← diag {p∗(1− p∗)} ;

σ
2(t+1)
i ←

 ‖u∗i ‖22
tr
{
ZTi (

∑
i σ

2(t)
i ZiZTi +W ∗−1)−1Zi

}
1/2

, i = 1, . . . ,m ;

until objective value converges;

Algorithm 1: MMLA1 – an MM algorithm to maximize the Laplace approxima-
tion of the likelihood for model (1.1).

of the logistic linear mixed model (1.1). Each iteration involves a one-step update

of β and σ2. Several additional steps updating β and σ2 give similar results, in

practice.

3.2. Model formulation 2

In the Laplace-approximated log-likelihood (3.2), we have σi in the denom-

inator. Thus, it cannot be combined with the penalized estimation, which will

shrink some of the σis to zero. Therefore, we consider another reparameterization

of model (1.1) by assuming that η takes the form

η = Xβ + σ1Z1u1 + · · ·+ σmZmum, (3.7)

where ui ∼ N(0qi , Iqi) are independent. Let u = (uT1 , . . . , u
T
m)T ∈ Rq be the

concatenated random effects and Z = (Z1, . . . , Zm) ∈ Rn×q, q =
∑m

i=1 qi. Then,

η = Xβ + ZDu, where D = blkdiag (σ1Iq1 , . . . , σmIqm) and the complete log-

likelihood is

h(u | β, σ) =
∑
j

{yjηj − ln(1 + eηj )} − 1

2
‖u‖22 + terms without u.

Given the current iterate (β, σ), let u∗ be the maximizer of h and η∗ = Xβ +

ZDu∗. Then the approximated log-likelihood is

LLA(β, σ)

= h(u∗ | β, σ)− 1

2
ln det∇2{−h(u∗ | β, σ)}
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=
∑
j

{
yjη

∗
j − ln

(
1 + eη

∗
j

)}
− 1

2
‖u∗‖22 −

1

2
ln det

(
DTZTW ∗ZD + Iq

)
=
∑
j

{
yjη

∗
j − ln

(
1 + eη

∗
j

)}
− 1

2
‖u∗‖22 −

1

2
ln det

(
W ∗−1 +

∑
i

σ2i ZiZ
T
i

)

−1

2
ln detW ∗ + terms without β, σ2. (3.8)

Detailed derivations of the above approximated log-likelihood can be found in the

Supplementary Material S2. Maximizing h(u | β, σ) follows similar MM updates

to those in (3.3). Given σ2 and β, u∗ can be found through the MM iterates

u(l+1) = u(l) +
{

0.25(ZD)TZD + Iq
}−1∇uh(u(l) | β, σ2)

until convergence, where ∇uh(u(l) | β, σ2) = DTZT (y − p) − u(l). Updating β

given u∗ and σ2 is the same as the update in (3.4).

Updating σ2 given β and u∗ depends on three minorizations, which differ

from the first reparameterization. Quadratic minorization implies that

−1T ln
(
1 + eη

∗) ≥ −p(t)T (η∗ − η∗(t))− 1

8
‖η∗ − η∗(t)‖22 + c(t)

= −p(t)TZDu∗ − 1

8
‖Z(D −D(t))u∗‖22 + c(t), (3.9)

where c(t) is an irrelevant constant, p(t) is a vector with the jth element equal

to eη
∗(t)
j /(1 + eη

∗(t)
j ), and η

∗(t)
j is the jth element of η∗(t) = Xβ + ZD(t)u∗. The

Cauchy inequality implies that

−‖Z(D −D(t))u∗‖22 = −

∥∥∥∥∥
m∑
i=1

Ziu
∗
i (σi − σ

(t)
i )

∥∥∥∥∥
2

2

≥ −


n∑
j=1

m∑
i=1

(Ziu
∗
i )

2
j


m∑
i=1

(σi − σ(t)i )2, (3.10)

where (Ziu
∗
i )j is the jth element of vector Ziµ

∗
i . Combining (3.9), (3.10), and

(2.4) gives the overall minorization function

g(σ | σ(t)) =

m∑
i=1

σi

(
y − p(t)

)T
Ziu

∗
i −

1

8


n∑
j=1

m∑
i=1

(Ziu
∗
i )

2
j


m∑
i=1

(σi − σ(t)i )2

−1

2

m∑
i=1

σ2i tr


(∑

i

σ
2(t)
i ZiZ

T
i +W ∗−1

)−1

ZiZ
T
i

+ c(t), (3.11)

where σi are nicely separated and only involve quadratic terms. The maximiza-
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Input : y, X, Z1, . . . , Zm
Output: MLE β̂, σ̂2

1 , . . . , σ̂
2
m

Initialize β(0), σ
(0)
i > 0, i = 1, . . . ,m ;

repeat

D(t) = diag
(
σ
(t)
1 1q1 , . . . , σ

(t)
m 1qm

)
;

u∗ ← arg maxu h(u | σ2(t), β(t)) ;

p(t) ← 1/
{

1 + exp
(
−Xβ(t) − ZD(t)u∗

)}
;

β(t+1) ← β(t) +
(
0.25XTX

)−1
XT (y − p(t)) ;

p(t) ← 1/
{

1 + exp
(
−Xβ(t+1) − ZD(t)u∗

)}
;

W ∗ ← diag
{
p(t)(1− p(t))

}
;

σ
2(t+1)
i ←

max

0,

(
y − p(t)

)T
Ziu

∗
i + 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

}
σ
(t)
i

tr

{(∑
i σ

2(t)
i ZiZTi +W ∗−1

)−1

ZiZTi

}
+ 1/4

{∑n
j=1

∑m
i=1(Ziu∗i )

2
j

}
 ,

i = 1, . . . ,m ;

until objective value converges;

Algorithm 2: MMLA2 – an MM algorithm to maximize the Laplace approxima-
tion of the likelihood for model (3.7).

tion of g(σ | σ(t)) results in the following update:

σ
(t+1)
i =

(
y − p(t)

)T
Ziu

∗
i + 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

}
σ
(t)
i

tr

{(∑
i σ

2(t)
i ZiZTi +W ∗−1

)−1
ZiZTi

}
+ 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

} .
(3.12)

To account for the non-negative constraint of σ, at each iteration, we set σ
(t+1)
i =

max(0, σ
(t+1)
i ). Algorithm 2 summarizes the MM algorithm for model formula-

tion 2 defined in (3.7).

3.3. MM algorithm for maximizing the penalized approximated like

lihood

For the variance component selection, we consider the penalization approach

using a lasso penalty.

Because the minorization function of σ derived in the second model formu-

lation is a quadratic function of σ, it meshes well with the penalized estimation.

Other penalties such as the adaptive lasso (Zou (2006)) and SCAD (Fan and Li

(2001)) lead to similar algorithms.
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The lasso-penalized approximated log-likelihood is

− LLA(β, σ) + λ

m∑
i=1

|σi|. (3.13)

Finding u∗ to maximize h(u | β, σ) and updating β follow the same steps de-

scribed in algorithm 2. The only difference lies in the update of σ given u∗ and

β in (3.12), which now becomes

σ
(t+1)
i = arg min

σi

σ2i

1

2
tr


(∑

i

σ
2(t)
i ZiZ

T
i +W ∗−1

)−1

ZiZ
T
i

+
1

8


n∑
j=1

m∑
i=1

(Ziu
∗
i )

2
j




− σi

(y − p(t))T Ziu∗i +
1

4


n∑
j=1

m∑
i=1

(Ziu
∗
i )

2
j

σ
(t)
i

+ λ|σi| (3.14)

= ST (zi, γi) ,

where

ST (z, γ) = arg min
x

1

2
(x− z)2 + γ|x| = sng(z) (|z| − γ)+ (3.15)

is the soft-thresholding operator, and

zi =

(
y − p(t)

)T
Ziu

∗
i + 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

}
σ
(t)
i

tr
{

(
∑

i σ
2(t)
i ZiZTi +W ∗−1)−1ZiZTi

}
+ 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

} ,
γi =

λ

tr
{

(
∑

i σ
2(t)
i ZiZTi +W ∗−1)−1ZiZTi

}
+ 1/4

{∑n
j=1

∑m
i=1(Ziu

∗
i )

2
j

} .
3.4. Choice of regularization parameter

The best λ can be selected over a grid using the Akaike information criterion

(AIC), the Bayesian information criterion (BIC), or cross-validation. Here, we

consider the AIC and BIC. Because it is difficult to evaluate the log-likelihood

function, we replace it by its Laplace approximation. Specifically, we use

BIC(λ) = −2LLA(β̂, σ̂2) + log(n)× df(λ)

AIC(λ) = −2LLA(β̂, σ̂2) + 2× df(λ),

where df(λ) is the number of non-zeros in σ̂2(λ). In the following simulation

studies, we compare the AIC and BIC on variance component selection.
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4. Simulation Studies

4.1. Random effects ANOVA

In this section, we compare the estimation error and runtime of the MM

algorithms (MMLA1 and MMLA2) to three different implementations: (1) the

glmer() function in the popular lme4 package in R (Bates et al. (2015)); (2)

the glmm() function in the glmm package in R (Knudson (2016)); and (3) the

stan glmer() function in the rstanarm package in R (Stan Development Team

(2016)). glmer() fits a generalized linear mixed-effects model and the default

(nAGQ=1) uses a Laplace approximation to approximate the original log-likelihood.

glmm() calculates and maximizes the Monte Carlo likelihood approximation

(MCLA) (Geyer (1990)) to find Monte Carlo maximum likelihood estimates

(MCMLEs) (Sung and Geyer (2007)) for the fixed effects and the variance com-

ponents. The rstanarm package is an R interface to the Stan C++ library for

Bayesian estimations. stan glmer() adds independent prior distributions to the

regression coefficients, as well as priors on the covariance matrices of the group-

specific parameters. Then, it performs a Bayesian inference via MCMC.

We simulate data from the following two-way ANOVA model with crossed

random effects:

P (yijk = 1) =
1

(exp(−ηijk))
ηijk = x1β1 + x2β2 + x3β3 + αi + γj + (αγ)ij ,

i = 1, . . . , 5, j = 1, . . . , 5, k = 1, . . . c,

where αi ∼ N(0, σ2α), γj ∼ N(0, σ2γ) and (αγ)ij ∼ N(0, σ2αγ) are jointly in-

dependent. Here i indexes the levels in factor 1, j indexes the levels in fac-

tor 2, and k indexes observations in the (i, j)-combination. This corresponds

to m = 3 variance components. Table 1 displays the results when there are

a = b = 5 levels for each factor, the number of observations c in each combi-

nation of factor levels varies from 2 to 200, and the true parameter values are

(β1, β2, β3, σ
2
α, σ

2
γ , σ

2
αγ) = (0.6, 1.0,−1.0, 0.5, 0.9, 0.3). For each scenario, we sim-

ulate 50 replicates. The sample size is n = abc for each replicate. Therefore, the

largest model in Table 1 involves a covariance matrix of size 5,000 × 5,000. For

c = 100 and 200, we omit the results of glmm and rstanarm because they take

too much time when the sample size increases (the simulation takes more than a

week to complete).

We observe the following. The results of the two MM algorithms (MMLA1

and MMLA2) are very similar, but MMLA2 takes longer to converge than MMLA1
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Table 1. Comparison of the MM algorithms with two different parameterizations
(MMLA1 and MMLA2) and the glmer() function (with nAGQ=1) in the lme4 package,
rstanarm package, and glmm package. Standard errors are given in parentheses. The
results for rstanarm and glmm with c = 100, 200 are not reported because the simulation
takes more than a week to complete.

c Method runtime β1(0.6) β2(1.0) β3(−1.0) σ2
α(0.5) σ2

γ(0.9) σ2
αγ(0.3)

2 MMLA1
0.19

(0.55) 0.68(0.51) 1.08(0.43) −0.92(0.51) 0.52(0.91)
1.03

(1.55)
0.22

(0.37)

MMLA2
0.14

(0.12) 0.68(0.51) 1.08(0.43) −0.92(0.51) 0.52(0.91)
1.04

(1.56)
0.22

(0.37)

lme4
0.46

(0.37) 2.83(7.22) 3.52(7.39) −2.42(4.04) 187(753)
108

(580)
558

(2,049)

rstanarm
8.15

(0.49) 0.91(0.69) 1.42(0.45) −1.20(0.58) 1.38(1.32)
2.14

(2.23)
2.60

(1.86)

glmm
23.95

(45.66) 0.64(0.53) 0.91(0.55) −0.76(0.59) 1.54(3.13)
0.03

(0.07)
0.06

(0.14)

8 MMLA1
0.10

(0.03) 0.55(0.21) 0.96(0.24) −0.98(0.20) 0.36(0.33)
0.96

(0.94)
0.34

(0.34)

MMLA2
0.17

(0.08) 0.55(0.21) 0.96(0.24) −0.98(0.20) 0.36(0.33)
0.96

(0.94)
0.34

(0.34)

lme4
0.37

(0.10) 0.60(0.23) 1.04(0.27) −1.07(0.22) 0.42(0.38)
1.15

(1.13)
0.47

(0.48)

rstanarm
21.85
(1.15) 0.61(0.24) 1.05(0.27) −1.09(0.22) 0.68(0.44)

1.48
(1.20)

0.72
(0.53)

glmm
224.53

(492.52) 0.46(0.17) 0.82(0.24) −0.85(0.17) 0.78(1.50)
0.02

(0.03)
0.04

(0.08)

50 MMLA1
0.19

(0.10) 0.58(0.07) 1.01(0.08) −1.00(0.08) 0.52(0.43)
0.96

(0.81)
0.31

(0.16)

MMLA2
1.65

(0.52) 0.58(0.07) 1.01(0.08) −1.00(0.08) 0.52(0.43)
0.94

(0.72)
0.31

(0.16)

lme4
0.92

(0.12) 0.59(0.07) 1.03(0.08) −1.02(0.09) 0.54(0.45)
1.01

(0.86)
0.32

(0.17)

rstanarm
198.38
(26.88) 0.59(0.07) 1.04(0.08) −1.02(0.09) 0.82(0.58)

1.37
(0.92)

0.42
(0.21)

glmm
3,613.26

(2,272.85) 0.48(0.09) 0.86(0.12) −0.84(0.12) 0.88(1.39)
0.04

(0.06)
0.04

(0.07)

100 MMLA1
0.58

(0.18) 0.61(0.06) 1.01(0.06) −1.00(0.06) 0.65(0.46)
0.94

(0.61)
0.30

(0.11)

MMLA2
4.28

(0.78) 0.61(0.06) 1.01(0.06) −1.00(0.06) 0.67(0.44)
0.91

(0.54)
0.30

(0.11)

lme4
1.49

(0.18) 0.62(0.06) 1.02(0.06) −1.01(0.06) 0.67(0.47)
0.97

(0.63)
0.31

(0.12)
rstanarm — — — — — — —

glmm — — — — — — —

200 MMLA1
0.98

(0.16) 0.60(0.04) 0.99(0.04) −0.99(0.04) 0.45(0.33)
0.92

(0.62)
0.29

(0.12)

MMLA2
13.49
(3.42) 0.60(0.04) 0.99(0.04) −0.99(0.04) 0.50(0.33)

0.91
(0.51)

0.29
(0.12)

lme4
2.76

(0.33) 0.60(0.04) 1.00(0.04) −1.00(0.04) 0.46(0.33)
0.94

(0.63)
0.30

(0.13)
rstanarm — — — — — — —

glmm — — — — — — —
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does, especially when the number of groups c is large. This is expected because

the surrogate function derived in MMLA2 involves two additional layers of mi-

norizations, which result in slower convergence. The glmer() function failed to

converge in many replicates when c = 2 and produced much worse estimates than

those of the MM algorithms. For other values of c, glmer() delivered estimates

comparable to those of the MM algorithm, but was three to four times slower

than MMLA1. glmm() and stan glmer() are much slower because they involve

sampling and their estimation performance is not good. The core algorithm in

glmer() is coded in C and extensively utilizes sparse linear algebra. Our MM

algorithms are implemented in the high-level Julia language and ignore sparsity

structures. Although it is difficult to draw conclusions based on implementa-

tions in different languages, this example clearly demonstrates the efficiency and

scalability of the MM algorithms for GLMM estimation.

4.2. Genetic example

In this section, we use a genetic example to demonstrate the performance of

the variable selection using our algorithm derived in Section 3.3. Consider the

QTL mapping example introduced in Section 1:

g(µ) = Xβ +Gγ,

where G is an n× k genotype matrix for k variants of interest, g(µ) = logit (µ),

β are fixed effects, and γ are random genetic effects with γ ∼ Normal
(
0, σ2Ik

)
.

The response y is an n × 1 vector of binary trait measurements with mean µ.

One way to identify important genes is to test the null hypothesis σ2 = 0 for

each region separately, and then to adjust for multiple testing (Lee et al. (2014)).

Here, we consider the joint model for all regions rather than using marginal tests:

g(µ) = Xβ + s
−1/2
1 G1γ1 + · · ·+ s−1/2

m Gmγm, (4.1)

where γi ∼ N(0, σ2i I) and we select the variance components σ2i via the penaliza-

tion (3.13). Here, si is the number of variants in region i, and the weights s
−1/2
i

put all variance components on the same scale.

In this simulation study, we use the genetic data from the COPDGene exome

sequencing study (Regan et al. (2011)), which has 399 subjects and genotype

information of 16,610 genes. The covariate matrix X contains intercept, age,

sex, and the top three principal components in the mean effects. We consider

four experimental settings for sparse random effects. In all of the examples, we set

β = (0.1,−1.0, 0.8,−0.3,−1.2, 1.5) and randomly select m genes Gi, i = 1, . . . ,m,

from the COPD data.
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• Setting 1: σ2 =
(
5.0, 7.5, 10.0, 0Tm−3

)T
, with m varying from 5, 10, 20, 100

• Setting 2: σ2 =
(
10, 15, 20, 0Tm−3

)T
, with m varying from 5, 10, 20, 100

• Setting 3: σ2 =
(
5, 6, 7, 8, 9, 10, 0Tm−6

)T
, with m varying from 10, 20, 40,

100

• Setting 4: σ2 =
(
10, 12, 14, 16, 18, 20, 0Tm−6

)T
, with m varying from 10, 20,

40, 100

We use the mean squared error (MSE) = ‖β̂−β‖2 to evaluate the performance

of the fixed effect estimation. Four measures are used to assess the variable

selection performance: the number of truly non-zero variance components that

are selected as non-zero variance components (denoted as “True Positive”), the

number of truly zero variance components that are selected as non-zero variance

components (denoted as “False Positive”), the frequency of exactly selecting

the correct variance components (denoted by “Exact”), and the frequency of

over-selecting variance components (denoted by “Over”). In each experimental

setting, 100 data sets are simulated from the model, and we report the average

performance over the 100 runs for both the AIC and the BIC. Tables 2, 3, 4, and

5 summarize the results for the above four settings. We can see that our proposed

method for variable selection does a good job in identifying the significant random

effects. For example, under Setting 1 and Setting 2 for different m, our method

based on both the AIC and the BIC can identify the truly significant random

effects 97% - 99% of the time, with the AIC more prone to over-selection than

is the BIC. Setting 3 and Setting 4 are more challenging because they involve

a larger number of random effects. However, our method can still identify the

non-zero random effect 96% of the time under m = 10 when using the AIC.

5. Real-Data Analysis

In this real-data analysis, we again use the data from the COPDGene ex-

ome sequencing study described in the previous simulated genetic example. The

binary trait indicates whether or not an individual smokes (denoted as smoke).

There are 399 individuals with 646,125 genetic variants in 16,610 genes. The co-

variates include age, sex, and the top three principal components. Because the

number of genes is too large, we first screen the 16,610 genes down to 200 genes

according to their marginal p-values from the Sequence Kernel Association Test

(SKAT). Then, we perform a penalized estimation of the 200 variance compo-

nents in the joint model (4.1). This is similar to the sure independence screening
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Table 2. Estimation and selection results for Setting 1.

Variance components selection
m Criteria MSE (β) True Positive (3) False Positive (0) Exact Over
5 AIC 0.31(0.20) 2.98 0.33 66% 32%

BIC 0.31(0.20) 2.98 0.15 84% 14%

10 AIC 0.27(0.17) 2.96 1.14 26% 70%
BIC 0.29(0.18) 2.93 0.61 50% 44%

20 AIC 0.26(0.16) 2.96 2.01 11% 86%
BIC 0.29(0.17) 2.87 1.25 17% 72%

100 AIC 0.30(0.18) 2.74 2.95 4% 71%
BIC 0.38(0.21) 2.50 0.57 27% 24%

Table 3. Estimation and selection results for Setting 2.

Variance components selection
m Criteria MSE (β) True Positive (3) False Positive (0) Exact Over
5 AIC 0.37(0.22) 2.99 0.40 63% 36%

BIC 0.38(0.22) 2.99 0.22 79% 20%

10 AIC 0.33(0.20) 2.98 1.17 28% 70%
BIC 0.36(0.21) 2.98 0.68 44% 54%

20 AIC 0.34(0.22) 2.98 1.60 25% 74%
BIC 0.38(0.24) 2.95 0.85 39% 58%

100 AIC 0.37(0.19) 2.83 3.31 3% 80%
BIC 0.48(0.22) 2.68 0.61 38% 30%

Table 4. Estimation and selection results for Setting 3.

Variance components selection
m Criteria MSE (β) True Positive (6) False Positive (0) Exact Over
10 AIC 0.78(0.30) 5.96 0.84 34% 62%

BIC 0.83(0.32) 5.66 0.33 54% 25%

20 AIC 0.73(0.27) 5.88 1.49 15% 73%
BIC 0.82(0.32) 5.56 0.48 41% 32%

40 AIC 1.04(0.33) 5.68 1.96 15% 57%
BIC 1.17(0.37) 4.96 0.74 29% 27%

100 AIC 0.85(0.34) 5.40 2.54 2% 48%
BIC 0.98(0.38) 4.82 0.63 12% 14%
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Table 5. Estimation and selection results for Setting 4.

Variance components selection
m Criteria MSE (β) True Positive (6) False Positive (0) Exact Over
10 AIC 1.06(0.32) 5.97 0.85 32% 65%

BIC 1.09(0.32) 5.91 0.56 45% 47%

20 AIC 1.02(0.34) 5.96 1.36 15% 81%
BIC 1.07(0.34) 5.92 0.70 38% 54%

40 AIC 1.44(0.39) 5.74 1.82 13% 62%
BIC 1.51(0.40) 5.54 0.85 29% 39%

100 AIC 1.18(0.42) 5.72 2.10 6% 68%
BIC 1.29(0.43) 5.29 0.71 21% 22%

Table 6. Top five genes selected by (1) the lasso penalized variance component model
(3.13) with the AIC (PLVC-AIC) and (2) SKAT in an association study of 200 genes
and the binary trait smoke.

PLVC-AIC SKAT

No. Gene
Marginal
p-value # Variants Gene

Marginal
p-value # Variants

1 AFAP1L2 6.0× 10−4 18 KIAA1377 5.7× 10−4 14
2 RREB1 6.0× 10−4 18 RREB1 6.0× 10−4 18
3 KIAA1377 5.7× 10−4 14 AFAP1L2 6.0× 10−4 18
4 PSG5 3.7× 10−3 11 KARS 6.1× 10−4 15
5 TDRD1 1.2× 10−3 14 PZP 1.0× 10−3 21

Table 7. Five-fold cross-validation performance on prediction accuracy with the top five
genes selected by PLVC-AIC and SKAT added to the model in an association study of
200 genes and the complex trait smoke.

Prediction accuracy
No. of genes entered into model PLVC-AIC SKAT

1 79.4%(6.2%) 78.2%(4.6%)
2 79.9%(6.0%) 77.9%(2.9%)
3 80.7%(4.1%) 80.7%(4.1%)
4 81.7%(2.3%) 80.7%(5.4%)
5 81.4%(3.4%) 78.7%(5.8%)

strategy for selecting mean effects (Fan and Lv (2008)). The AIC selects 16

genes, whereas the BIC selects only one gene “AFAP1L2”. Table 6 lists the top

five genes selected using the AIC (PLVC-AIC) and SKAT. We find that the top

three genes selected using the two methods are the same, but in a different order.

To compare the selection performance between SKAT and PLVC-AIC, we eval-



1602 HU ET AL.

−

−

−

−
−

−

Figure 1. Log-likelihood evaluation with the top five genes selected by PLVC-AIC and
SKAT added to the model in an association study of 200 genes and the complex trait
smoke.

uate the log-likelihood of model (4.1) using the top five genes listed in Table 6,

inputted to the model individually. To evaluate the log-likelihood, we use the R

package bernor, which implements the Monte Carlo approximation method de-

scribed in Sung and Geyer (2007). From Figure 1, we find that the log-likelihood

with genes selected by PLVC-AIC is above that of SKAT, indicating that genes

selected by PLVC-AIC explain more variability in the model.

In addition, we compare the prediction performance between the top five

genes selected by PLVC-AIC and SKAT. We evaluate the prediction performance

using model (4.1) by including the genotype matrix Gi of the corresponding se-

lected genes, similarly to the approach adopted in Wu et al. (2011). For example,

if the genotype matrix of the top k genes selected is Gh1
, Gh2

, . . . , Ghk
, then the

predictive model becomes

g(µ) = Xβ + s
−1/2
h1

Gh1
γ1 + · · ·+ s

−1/2
hk

Ghk
γk = X∗β∗,

where X∗ = (X, s
−1/2
h1

Gh1
, . . . , s

−1/2
hk

Ghk
) and β∗ =

(
βT , γT1 , . . . , γ

T
k

)
. This is

the ordinary logistic regression model that can be used for predictions. Table

7 summarizes the prediction performance using five-fold cross validation as the

top five genes selected by both methods are inputted to model (4.1), one by one.

We find that, on average, the model with genes selected by PLVC-AIC performs

slightly better than SKAT in terms of prediction. The penalization approach

for selecting variance components warrants further theoretical study. This real-
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data analysis demonstrates that the proposed simple MM algorithm scales to

high-dimensional problems.

6. Discussion

This paper discusses two MM algorithms for variance component estimation

and selection using the logistic linear mixed model. The algorithms are simple

to implement and scale to models with a large number of variance components.

Other extensions are possible. Here, we only consider binary responses. Ex-

tending the algorithm MMLA1 to Poisson count data is straightforward, with

an almost identical derivation. Several studies have examined the selection of

fixed effects using GLMMs. Here, we focus only on the selection of random ef-

fects. Our algorithms can be extended easily to select fixed and random effects

simultaneously. We leave these topics to future research.

Supplementary Materials

The supplementary material includes detailed derivations of (3.2), and (3.8),

and a technical proof of the ascent property in (3.6).
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