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The Supplementary Material consists of two parts. The first part contains the proof of Propo-

sition 2, Lemma 1, Theorem 1, Theorem 2 and Theorem 3 in the main text. The second part

contains the simulation results for the case of (s1, s2) = (⌈p/4⌉, ⌈q/4⌉) for Example 1–4 in

Section 4, and the Figure 1–3 for real data analysis in Section 5.

S1 Proofs

S1.1 Proof of Proposition 2

Recall that Lkk′ = Zk − Zk′ and

Vkk′ = vec(sign(Lkk′)sign(Lkk′)− E[sign(Lkk′)sign(Lkk′)]).
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For any a with ∥a∥ = 1, we see that

a⊤En = 2(n(n− 1))−1
∑

1≤k ̸=k′≤n

a⊤Vkk′ .

Note that E(Vkk′) = 0. For any t > 0 and any λ > 0, we have

P (
√
na⊤En > t) = P (a⊤En >

t√
n
)

= P (eλa
⊤En > eλt/

√
n)

≤ e−λtE(eλ
√
na⊤En).

By the assumption and the Lemma C of Serfling (2009) (see Page 200), as

0 < λ < 2−1t0n
1/2, it holds that

E(eλ
√
na⊤En) ≤ [E(e(2/n)λ

√
na⊤Vkk′ )]n/2 ≤ e2cλ

2

.

Then, it holds that P (
√
na⊤En > t) ≤ exp(−λt + 2cλ2). Minimizing the

right hand side over λ with the constraint λ > 0, we have

min
λ>0

(−λt+ 2cλ2) = −(8c)−1t2,

where the minimum value is arrived at λ = (4c)−1t, which is smaller than

2−1t0n
1/2 under the assumption t = o(n1/2). That is, P (

√
na⊤En > t) ≤
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e−(8c)−1t2 for any t > 0. This completes the proof.�

Next, we show the conditions in Proposition 2 hold if Zk is sign sub-

Gaussian.

Lemma S.1 Suppose that sign(Zk − Zk′) is sub-Gaussian with ∥sign(Zk −

Zk′)∥ψ2 < K < ∞ for some constant K > 0. Then the condition of Propo-

sition 2 holds, that is, E(exp(ta⊤Vkk′)) ≤ ect
2
for any 0 < t < t0, where

t0 > 0 and c > 0 are constants.

Proof. Let Y = sign(Zk − Zk′). Recall that Vkk′ = vec(Y Y T − E(Y Y T )).

Denote Ma ∈ Rpq×pq such that vec(Ma) = a. Let M̃a = (Ma + MT
a )/2

which is a symmetric matrix but may not be positive. Due to the fact that

∥Ma∥F = ∥a∥ = 1, it follows that ∥M̃a∥F ≤ 1. Without loss of generality, by

assuming that the first r eigenvalues of M̃a are positive and rest eigenvalues

are negative, we denote its eigenvalue decomposition as

M̃a =
r∑
i=1

λiuiu
T
i −

pq∑
i=r+1

λiuiu
T
i := U1Λ1U

T
1 − U2Λ2U

T
2 ,

where Λ = diag(λ1, · · · , λr) is a diagonal matrix are the positive eigenvalues,

and −Λ2 = diag(−λr+1, · · · ,−λpq) are the negative ones. In addition, U1 =

[u1, · · · , ur] and U2 = [ur+1, · · · , upq] are the eigenvectors associated with

positive and negative eigenvalues, respectively. Let A1 = Λ
1/2
1 UT

1 and A2 =
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Λ
1/2
2 UT

2 . Then M̃a = AT
1A1 − AT

2A2.

Due to the symmetric of Y Y T −E(Y Y T ), we can rewrite aTVkk′ as the

difference of two quadratic forms

aTVkk′ = ⟨M̃a, Y Y T − E(Y Y T )⟩

= Y TM̃aY − E(Y TM̃aY )

= [Y TAT
1A1Y − E(Y TAT

1A1Y )]− [Y TAT
2A2Y − E(Y TAT

2A2Y )]

=
(
∥A1Y ∥2 − E(∥A1Y ∥2)

)
−

(
∥A2Y ∥2 − E(∥A2Y ∥2)

)
:= B1 −B2. (S1.1)

ConsiderB1 first. Recall that Y is a sub-Gaussian variable. Then E(exp(αTY )) ≤

exp(∥Y ∥2ψ2
∥α∥2) for any vector α ∈ Rpq. Moreover, for any η ∈ Rpa, we

have ∥ηTA1∥2 ≤ ∥η∥2 by the fact that
∑
i

λ2
i = 1. Then, it follows that

E(exp(ηTA1Y )) ≤ exp(∥Y ∥2ψ2
∥ηTA1∥2) ≤ exp(∥Y ∥2ψ2

∥η∥2),

which implies that A1Y is sub-Gaussian and ∥A1Y ∥ψ2 ≤ ∥Y ∥ψ2 . By Lem-

ma 5.14 and Remark 5.18 of Vershynin (2015), we see that ∥A1Y ∥2 and,

consequently, ∥A1Y ∥2 − E(∥A1Y ∥2) are sub-Exponential variables with

∥∥∥A1Y ∥2 − E(∥A1Y ∥2)
∥∥
ψ1

≤ 2(∥A1Y ∥2)ψ1 ≤ 4∥A1Y ∥2ψ2
≤ 4∥Y ∥2ψ2

= 4K2.
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Therefore, by Lemma 5.15 of Vershynin (2015), for 0 < t < c1/(2∥[∥A1Y ∥2−

E(∥A1Y ∥2)]∥ψ1) := t0 with c1 > 0 being a constant, it holds that

E(exp(2tB1)) = E(exp{2t(∥A1Y ∥2 − E(∥A1Y ∥2))})

≤ exp
(
4t2

∥∥∥A1Y ∥2 − E(∥A1Y ∥2)
∥∥2

ψ1

)
≤ exp(t2 · 64K4). (S1.2)

Similarly, we have E{exp[2t(−B2)]} ≤ exp(t2 · 64K4). Then by Jensen’s

inequality, we have

E(exp(aTVkk′)) ≤
1

2
[E(exp(2tB1)) + E{exp[2t(−B2)]}] ≤ exp(t2 · 64K4).

Taking c = 64K4 in the inequality of Proposition 2, we complete the proof.

�

S1.2 Proof of Lemma 1

Recall the definition that X
(0)
ij,k = cij|Xij,k − ξij,0.5|, and the fact that ξij,0.5

and σij are the 0.5 quantile of the distribution ofXij,k andX
(0)
ij,k, respectively.

To simplify the argument, we introduce some notations first. For any ϵ > 0,

define ϕij,1 = P (Xij,k > ξij,0.5 + ϵ), ϕij,2 = P (Xij,k < ξij,0.5 − ϵ), and

ϕϵ = min
s=1,2,i∈[p],j∈[q]

|ϕij,s − 1/2|. Moreover, define θij,1 = P (X
(0)
ij,k > σij + ϵ),



6 L. Niu AND J. Zhao

θij,2 = P (X
(0)
ij,k < σij − ϵ), and θϵ = min

s=1,2,i∈[p],j∈[q]
|θij,s − 1/2|. We first

point out the following simple fact. Recalling that ξij,0.5 and σij are the

0.5 quantile of the distribution of Xij,k and X
(0)
ij,k, respectively, as ϵ → 0,

we have |ϕij,s − 1/2|/ϵ → fij(ξij,0.5) and |θij,s − 1/2|/ϵ → gij(σij). By the

assumption (A2), we see that as ϵ → 0, we have min{ϕϵ, θϵ} > c0ϵ.

Step 1. We show that sup
i,j

|Xmed
ij − ξij,0.5| = Op(

√
(log p+ log q)/n). It

holds that

P (Xmed
ij,k − ξij,0.5 > ϵ) = P (at least

n+ 1

2
of Xij,k’s exceeds ξij,0.5 + ϵ)

Then, we have, for ηij,k = I(Xij,k > ξij,0.5 + ϵ),

P (Xmed
ij,k − ξij,0.5 > ϵ) = P (

n∑
k=1

ηij,k > (n+ 1)/2)

= P (n−1

n∑
k=1

(ηij,k − ϕij,1) >
1

2
− ϕij,1 +

1

2n
)

≤ P (n−1

n∑
k=1

(ηij,k − ϕij,1) >
1

2
− ϕij,1)

(i)

≤ exp(−2n(1/2− ϕij,1)
2)

≤ exp(−2nϕ2
ϵ) (S1.3)

where the inequality (i) is derived from the Hoeffding inequality. Similar-

ly, we have P (Xmed
ij,k < ξij,0.5 − ϵ) ≤ exp(−2n(1

2
− ϕij,2)

2) ≤ exp(−2n(1
2
−
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ϕij,2)
2) ≤ exp(−2nϕ2

ϵ). Combining them together, we have P (|Xmed
ij −

ξij,0.5| > ϵ) ≤ 2 exp(−2nϕ2
ϵ). For any δ > 0, we take ϵn =

√
C(log p+ log q)/n

for some C = C(δ) > 0 being large. Note that ϵn → 0 under our assump-

tion, as n → ∞, and recall that ϕϵn > c0ϵn. We have

P (|Xmed
ij − ξij,0.5| > ϵn) ≤ 2 exp(−2c20C(log(p) + log q)).

And consequently, it holds that

P ( max
i∈[p]j∈[q]

|Xmed
ij − ξij,0.5| > ϵn) ≤ 2pq exp(−2c20C(log(p) + log q))

≤ 2 exp(−(2c20C − 1)[log(p) + log q])

≤ δ. (S1.4)

Step 2. Let σ̃ij = cij·median{|Xij,k−ξij,0.5|, k ∈ [n]} = median{X(0)
ij,k, k ∈

[n]}, for i ∈ [p], j ∈ [q]. We show that sup
ij

|σ̃ij−σij| = Op(
√

(log p+ log q)/n).

The proof is similar to step 1. Let γk,ij = I(cij|Xk,ij−ξ0.5,ij| > σij+ϵ). Then

by the definition of σ̃ij, we have P (σ̃ij−σij > ϵ) = P

(
n−1

n∑
k=1

γij,k > (n+ 1)/2

)
.

Similar to the argument of Step 1, we have P (σ̃ij−σij > ϵ) ≤ 2 exp(−2nθ2ϵ ).

Similarly, we have P (σ̃ij < σij − ϵ) ≤ 2 exp(−2nθ2ϵ ). Combining them to-

gether, we prove the conclusion in Step 2, taking the same ϵn as in Step 1

and using the same argument, as n → ∞.
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Step 3. It is easy to check that for constants a1 ≤ a2 ≤ · · · ≤ an and

ai ≤ bi, 1 ≤ i ≤ n, it holds that median{a1, · · · , an} ≤ median{b1, · · · , bn}.

Then, for any (i, j) ∈ [p]× [q], we have

σ̂ij = median{cij|Xij,k −Xmed
ij |, k ∈ [n]}

≤ median{X(0)
ij,k, k ∈ [n]}+ |Xmed

ij − ξij,0.5|

= σ̃ij + |Xmed
ij − ξij,0.5|

Similarly, we have σ̃ij ≤ σ̂ij + |Xmed
ij − ξij,0.5|. Combined together, it follows

that

max
i,j

|σ̂ij − σ̃ij| ≤ max
i,j

|Xmed
ij − ξij,0.5|.

Consequently, we have

max
i,j

|σ̂ij−σij| ≤ max
i,j

|σ̂ij−σ̃ij|+max
i,j

|σ̃ij−σij| ≤ max
i,j

|Xmed
ij −ξij,0.5|+max

i,j
|σ̃ij−σij|.

The final concision is derived by combining the conclusion in Step 1 and 2.

This completes the proof. �

S1.3 Proof of Theorem 1

Step 1 We first show that ∥T (T̂ − T)∥op = Op(
√
(p2 + q2 + log n)/n).

Let ∆ = {(u, v) : u ∈ Sq2−1, v ∈ Sp2−1}. For any (u, v) ∈ ∆, define
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Mu ∈ Rq×q and Mv ∈ Rp×p such that vec(M⊤
u ) = u and vec(Mv) = v. For

any two matrices Q1 and Q2 with the same dimension, we define ⟨Q1, Q2⟩ =

trace(Q⊤
1 Q2). Note that ∥T (T̂−T)∥op = sup

(u,v)∈∆
u⊤T (T̂−T)v. In addition,

u⊤T (T̂ − T)v can be written as u⊤T (T̂ − T)v = ⟨T̂ − T,Mu ⊗ Mv⟩ =

⟨En, vec(Mu ⊗ Mv)⟩, where En = vec(T̂ − T) mentioned in Section 3.1.

Therefore, we have

∥T (T̂−T)∥op = sup
u,v∈∆

⟨En, vec(Mu ⊗Mv)⟩.

We first consider the probability of P (⟨En, vec(Mu⊗Mv)⟩ > t) for any fixed

(u, v) ∈ ∆. By the assumption (A1), we have for any fixed u ∈ Sq2−1, v ∈

Sp2−1

P

(
⟨En, vec(Mu ⊗Mv)⟩ >

t√
n

)
≤ C exp

(
− t2

K

)
.

Let N(Sd−1, ϵ) be the ϵ-net of the sphere Sd−1. For any u ∈ Sq2−1 and

v ∈ Sp2−1, we can find u1 ∈ N(Sq2−1, ϵ) and v1 ∈ N(Sp2−1, ϵ), such that

∥u − u1∥ < ϵ, ∥v − v1∥ < ϵ. By Lemma 5.2 in Vershynin (2015), we have

|N(Sd−1, ϵ)| ≤ (1 + 2
ϵ
)d. Combing with the definition of Mv and Mv1 , it is

easy to see that ∥Mv−Mv1∥F = ∥v− v1∥ ≤ ϵ. And it follows similarly that
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∥Mu −Mu1∥F = ∥u− u1∥ ≤ ϵ. Then it is easy to see that

∥vec(Mu ⊗Mv)− vec(Mu1 ⊗Mv1)∥

= ∥Mu ⊗Mv −Mu1 ⊗Mv1∥F

≤ ∥Mu ⊗ (Mv −Mv1)∥F + ∥(Mu −Mu1)⊗Mv1∥F ≤ 2ϵ,

where we use the fact that ∥Q1⊗Q2∥F = ∥Q1∥F∥Q2∥F for any two matrices

Q1 and Q2, and that ∥Mu∥F = ∥u∥ = 1 and ∥Mv1∥F = ∥v1∥ = 1, for any

u ∈ Sq2−1 and v1 ∈ Sp2−1. Therefore, {vec(Mu1⊗Mv1), u1 ∈ N(Sq2−1, ϵ), v ∈

N(Sp2−1, ϵ)} is the 2ϵ-cover of {vec(Mu ⊗ Mv) : (u, v) ∈ ∆}. And conse-

quently, similar to the argument of Tsiligkaridis and Hero (2013), by as-

sumption (A1), we have

P ( sup
u,v∈∆

⟨En, vec(Mu ⊗Mv)⟩ > t)

≤ P

(1− 2ϵ)−1 max
u∈N(Sq2−1,ϵ)

v∈N(Sp2−1,ϵ)

⟨En, vec(Mu ⊗Mv)⟩ > t


≤

(
1 +

2

ϵ

)p2+q2

sup
u,v∈∆

P

(
⟨En, vec(Mu ⊗Mv)⟩ >

t(1− 2ϵ)√
n

)
≤

(
1 +

2

ϵ

)p2+q2

exp

(
− [t(1− 2ϵ)]2

K

)
. (S1.5)

Set t = C
√

p2 + q2 + log n with C2 > K(log(1 + 2ϵ−1) + 1)/(1− 2ϵ). Con-
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sequently, it follows that

P

(
sup
u,v∈∆

⟨En, vec(Mu ⊗Mv)⟩ > C
√

(p2 + q2 + log n)/n

)
≤ n−1 exp(−(p2+q2)) → 0.

Step 2 We consider the ∥T (R̂τ ) − T (R)∥op. This proof is similar to

the Theorem 3.2 of Han and Liu (2017). We omit the similar part and only

state the parts that are different. Similar to Han and Liu (2017), we have

T (R̂τ )−T (R) = T (Ẽ1)+T (Ẽ2), where Ẽ1 = (Ẽ1,jk), Ẽ2 = (Ẽ2,jk) ∈ Rpq×pq

are defined as, for j ̸= k,

Ẽ1,jk = cos(
π

2
Tjk)

π

2
(T̂jk−Tjk), Ẽ2,jk = −1

2
sin2(

π

2
Tjk)(

π

2
)2(T̂jk−Tjk)

2,

and the diagonal elements of Ẽ1 and Ẽ2 are zero. For given α > 0 being

small, define Ωα = {∃1 ≤ k ̸= j ≤ pq, |E2,jk| > π2 log(pq/α)/n}. Han and

Liu (2017) showed that P (Ωα) ≤ α2. Conditioning on Ωc
α, for any u ∈ Sq2−1

and any v ∈ Sp2−1, it follows that

|u⊤T (Ẽ2)v| ≤
√∑

j,k

Ẽ2
2,jk∥u∥

2∥v∥2 ≤
√

(pq)2(π2 log(pq/α)/n)2.

Therefore, with probability 1− α2, ∥T (Ẽ2)∥op ≤ pqπ2 log(pq/α)/n.

Moreover, let F = (Fjk) ∈ Rpq×pq with Fjk = π
2
cos(π

2
Tjk), and note
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that T̂ = (T̂jk) is the Kendell’s τ correlation matrix. Then

Ẽ1 = F ◦ (T̂−T),

and consequently T (Ẽ1) = T (F ) ◦ T (T̂ − T), where ”◦” denotes the

Hadamard product. In addition, similar to the argument of Han and Liu

(2017), for any matrix Q ∈ Rq2×p2 and any u ∈ Sq2−1, v ∈ Sp2−1, we can

show that

|u⊤(Q ◦ T (F ))v| ≤ π2

2
∥Q∥op. (S1.6)

Consequently,

∥T (Ẽ1)∥op = max
u∈Sq2−1,v∈Sp2−1

|u⊤(T (F ) ◦ T (T̂−T))v| ≤ π2

2
∥T (T̂−T)∥op

Combining together, we have with probability 1−α2−n−1 exp(−(p2+q2)),

∥T (Rτ )− T (R)∥op ≤ ∥T (Ẽ1)∥op + ∥T (Ẽ2)∥op

≤ C1

√
p2 + q2 + log n

n
+

pqπ2 log(pq/α)

n
,

for some constant C1 > 0. This completes the proof. �
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S1.4 Proof of Theorem 2

Step 1. We first establish the bound ∥T (Σ̂τ )− T (Σ)∥op = Op(ω
(0)
n ).

Recalling that Σ̂τ = D̂R̂τD̂, we have

∥T (Σ̂τ )− T (Σ)∥op = ∥T (D̂R̂τD̂)− T (DRD)∥op

≤ ∥T (D̂R̂τD̂)− T (D̂RD̂)∥op + ∥T (D̂RD̂)− T (DRD)∥op

:= ∥J1∥op + ∥J2∥op, (S1.7)

where J1 and J2 are defined accordingly.

Consider ∥J1∥op first. Letting ∆ = {(u, v) : u ∈ Sq2−1, v ∈ Sp2−1} and

F = R̂τ −R, we have

∥J1∥op = sup
(u,v)∈∆

u⊤J1v = sup
(u,v)∈∆

u⊤T (D̂FD̂)v.

Recall that D(d) is the vector of diagonal elements of D. Then D̂FD̂ =

F ◦ D̂(d)D̂(d)⊤ and T (D̂FD̂) = T (F) ◦ T (D̂(d)D̂(d)⊤). Therefore,

u⊤T (D̂FD̂)v = ⟨T (F), T (D̂(d)D̂(d)⊤)◦(u⊗v⊤)⟩ ≤ ∥D̂∥2max⟨T (F), u⊗v⊤⟩ = ∥D̂∥2maxu
⊤T (F)v.

In addition, by Lemma 1, we have ∥D̂∥2max = ∥D∥2max+Op

(
ω
(2)
n

)
. Therefore,
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combining with Theorem 1, we have

∥J1∥op ≤ ∥D̂∥2max∥T (F)∥op = ∥T (R̂τ )−T (R)∥op(∥D∥2max+Op(ω
(2)
n )) = Op(ω

(1)
n ∥D∥2max).

Now we consider ∥J2∥op. It is easy to see that

J2 = T (D̂RD̂)− T (DRD)

= T ((D̂ −D)RD) + T (DR(D̂ −D)) + T ((D̂ −D)R(D̂ −D))

:= J21 + J22 + J23.

Applying the same argument as that of J1 on each term in J2, we get

∥J2∥op ≤ 2∥T (R)∥op∥D∥max∥D̂ −D∥max + ∥T (R)∥op∥D̂ −D∥2max.

Combining together and noting the definition of ω
(0)
n , we have

∥T (Σ̂τ )− T (Σ)∥op = Op(ω
(1)
n ∥D∥2max + ω(2)

n ∥T (R)∥op∥D∥max) = Op(ω
(0)
n ).

Step 2. We prove the final conclusion. By the proof similar to that of

the Theorem 2 of Tsiligkaridis and Hero (2013), as λ > 2∥T (Σ̂τ )−T (Σ)∥op,
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we have

∥Σ̂τ
T − T (Σ)∥2F ≤ inf

G∈Rq2×p2

{
∥G− T (Σ)∥2F +

(1 +
√
2)2

4
λ2rank(G)

}

Combining with results in Step 1 on the operator norm of ∥T (Σ̂τ )−T (Σ)∥op,

it follows that, as λ > Cω
(0)
n for some constant C > 0, with probability

tending to 1,

∥Σ̂τ
T − T (Σ)∥2F ≤ inf

G∈Rq2×p2

rank(G)≤r

∥G− T (Σ)∥2F + r(ω(0)
n )2.

The finally conclusion is derived by noting that ∥Σ̂τ
LR − Σ∥2F = ∥Σ̂τ

T −

T (Σ)∥2F . �

S1.5 Proof of Theorem 3

Denote Ĥ = T (Σ̂), H = T (Σ). Note that the V̂A is the eigenvector associ-

ated with the largest eigenvalue of ĤĤ⊤. Recall the bound on ∥T (Σ̂τ ) −

T (Σ)∥op in Step 1 of Theorem 2. Note that ∥H∥op = ∥Σ∥F when r = 1,

and that ∥Ĥ∥op ≤ ∥Ĥ −H∥op + ∥H∥op. Then we have

∥ĤĤ⊤ −HH⊤∥op ≤ ∥ĤĤ⊤ − ĤH⊤∥op + ∥ĤH⊤ −HH⊤∥op

≤ (∥H∥op + ∥Ĥ −H∥op)∥Ĥ −H∥op + ∥Ĥ −H∥op∥H∥op.
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Consequently, we have

∥ĤĤ⊤ −HH⊤∥op = Op(ω
(0)
n ∥H∥op) = Op(ω

(0)
n ∥Σ∥F ).

Note that γ2 = ∥Σ∥2F is the unique nonzero eigenvalue of HH⊤. By the

Theorem 2 of Yu et al., (2014), we have

∥V̂A − cVA∥ ≤ 23/2γ−2∥ĤĤ⊤ −HH⊤∥op = Op(ω
(0)
n /∥Σ∥F ).

The conclusion on V̂B can be derived similarly. The conclusions on Â, B̂

can be derived by noting that ∥V̂A− cVA∥ = ∥Â− cA∥F and ∥V̂B− c′VB∥ =

∥B̂ − c′B∥F .

We consider ∥Σ̂τ
(rk=1)−Σ∥2F . Note that ∥VA∥ = ∥V̂A∥ = ∥VB∥ = ∥V̂B∥ =

1. It is easy to see that ∥V̂AV̂ ⊤
B − VAV

⊤
B ∥F = Op(ω

(0)
n /∥Σ∥F ). Noting that

γ̂ and γ are the largest eigenvalue of T (Σ̂τ ) and T (Σ), respectively, then

we have

|γ − γ̂| ≤ ∥T (Σ̂τ )− T (Σ)∥op = Op(ω
(0)
n ).

Combining together, we have

∥γ̂V̂AV̂ ⊤
B − γVAV

⊤
B ∥F ≤ γ∥V̂AV̂ ⊤

B − VAV
⊤
B ∥F + |γ − γ̂| · ∥V̂AV̂ ⊤

B ∥F = Op(ω
(0)
n ),



S2. SOME SIMULATION RESULTS FOR SECTION 4 AND FIGURES IN
SECTION 517

where we use the fact that γ = ∥Σ∥F and ∥V̂AV̂ ⊤
B ∥F = 1. The final con-

clusion is derived by noting that ∥Σ̂τ
(rk=1) −Σ∥2F = ∥γ̂V̂AV̂ ⊤

B − T (Σ)∥2F =

∥γ̂V̂AV̂ ⊤
B − γVAV

⊤
B ∥2F . This completes the proof. �

S2 Some simulation results for Section 4 and figures

in Section 5

We present the simulation results on s1 = ⌈p/4⌉, s2 = ⌈q/4⌉ for Example

1–4, and the Figure 1–3 in the real data analysis.

Table S1: Simulation results for Example 1 and 2 with s1 = ⌈p/4⌉, s2 = ⌈q/4⌉

n, p, q
Example 1

Example 2
δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50

Err
(rob)
F 0.0241 0.0261 0.0314 0.0441 0.0025

Err
(sam)
F 0.0101 0.0168 0.0331 0.1135 0.0032

Err
(rob)
2 0.0201 0.0212 0.0258 0.0351 0.0021

(100,15,15) Err
(sam)
2 0.0077 0.0137 0.0268 0.0876 0.0026

Err
(rob)
∞ 0.0045 0.0048 0.0057 0.0077 0.0005

Err
(sam)
∞ 0.0017 0.0031 0.0058 0.0186 0.0009

Err
(rob)
F 0.0150 0.0166 0.0177 0.0227 0.0008

Err
(sam)
F 0.0070 0.0097 0.0145 0.0424 0.0014

Err
(rob)
2 0.0106 0.0119 0.0126 0.0158 0.0006

(100,25,25) Err
(sam)
2 0.0046 0.0068 0.0103 0.0282 0.0012

Err
(rob)
∞ 0.0018 0.0019 0.0021 0.0025 0.0001

Err
(sam)
∞ 0.0007 0.0010 0.0017 0.0045 0.0005
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Table S2: Simulation results for Example 3 and 4 with s1 = ⌈p/4⌉, s2 = ⌈q/4⌉

n, p, q
Example 3

Example 4
δ0 = 0 δ0 = 10 δ0 = 20 δ0 = 50

Err
(rob)
F 0.2393 0.2493 0.2803 0.4370 0.0895

Err
(sam)
F 0.0881 0.1456 0.2677 1.2288 0.4531

Err
(rob)
2 0.1801 0.1925 0.2142 0.3589 0.0620

(100,15,15) Err
(sam)
F 0.0714 0.1118 0.2287 1.1345 0.3941

Err
(rob)
∞ 0.0496 0.0521 0.0579 0.0883 0.0245

Err
(sam)
∞ 0.0188 0.0275 0.0542 0.2254 0.1209

Err
(rob)
F 0.1457 0.1523 0.1642 0.2389 0.0563

Err
(sam)
F 0.0537 0.0723 0.1688 0.7289 0.2908

Err
(rob)
2 0.0956 0.1007 0.1076 0.1780 0.0338

(100,25,25) Err
(sam)
2 0.0365 0.0500 0.1510 0.6947 0.2278

Err
(rob)
∞ 0.0205 0.0216 0.0238 0.0335 0.0099

Err
(sam)
∞ 0.0081 0.0099 0.0190 0.0764 0.0675

Figure 1: Robust covariance matrix with estimated r̂ obtained by our proposal. There
are seven tissues: Cerebrum, Hippocampus, Kidney, Lung, Muscle, Thymus and Spinal
cord, which associate with the diagonal blocks from the lower left corner to the upper
right corner, respectively. There are weak correlation between tissues Hippocampus and
Thymus in male, and clear correlation between tissues Cerebrum and Thymus in female.

(a) male with r̂ = 5 (b) female with r̂ = 5
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Figure 2: Non-robust covariance matrix estimation with estimated r̂. This is the estima-
tor of Tsiligkaridis and Hero (2013). There are clear dependency among Lung, Muscle
and Thymus in male data and almost no correlation among different tissues for female
data.

(a) male with r̂ = 4 (b) female with r̂ = 6

Figure 3: Non-robust covariance matrix estimation with fixed r = 1. This is the estimator
of Leng and Pan (2017). There are clear dependency between Thymus and Lung in male
data and almost no correlation among different tissues for female data.

(a) male (b) female
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