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The Supplementary Material consists of two parts. The first part contains the proof of Propo-
sition 2, Lemma 1, Theorem 1, Theorem 2 and Theorem 3 in the main text. The second part
contains the simulation results for the case of (s1,s2) = ([p/4],[¢/4]) for Example 14 in

Section 4, and the Figure 1-3 for real data analysis in Section 5.

S1 Proofs

S1.1  Proof of Proposition 2

Recall that Ly = Z;, — Z) and

Virr = vec(sign( Ly )sign( Ly ) — Elsign( Ly )sign(Lgi)])-
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For any a with ||a]| = 1, we see that

a'E, =2nn-1)" > a V.

1<ks#k'<n

Note that E(Vir) = 0. For any ¢ > 0 and any A > 0, we have

P(yna'E,>t) = P(a'E, > %)

— P(e)\aTEn > ez\t/\/ﬁ)

< e—AtE(eA\/ﬁaTEn)

By the assumption and the Lemma C of Serfiing (2009) (see Page 200), as

0 < X< 27 %yn'/2, it holds that

E<€)\\/ﬁaTEn) < [E<€(2/n))\\/ﬁaTka/>]n/2 < 626)\2.

Then, it holds that P(y/na’ E, > t) < exp(—At + 2¢A\?). Minimizing the

right hand side over A with the constraint A > 0, we have

- 2y _ (g —142
rgg( At + 2¢)\7) (8¢)™ 7,

where the minimum value is arrived at A\ = (4c)~'t, which is smaller than

2714yn'/? under the assumption ¢ = o(n'/?). That is, P(y/na'E, > t) <
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e~ 397 for any t > 0. This completes the proof.l

Next, we show the conditions in Proposition 2 hold if Z; is sign sub-
Gaussian.
Lemma S.1 Suppose that sign(Z, — Zy) is sub-Gaussian with ||sign(Zy —
Zi)||lpy < K < 00 for some constant K > 0. Then the condition of Propo-
sition 2 holds, that is, E(exp(ta’ Vi)) < e for any 0 < t < to, where

to > 0 and ¢ > 0 are constants.

Proof. Let Y = sign(Zy, — Zi). Recall that Vi = vec(YYT — E(YYT)).
Denote M, € RPP*P1 such that vec(M,) = a. Let M, = (M, + MT)/2
which is a symmetric matrix but may not be positive. Due to the fact that
| Ma||r = ||la]| = 1, it follows that || Ma||» < 1. Without loss of generality, by
assuming that the first r eigenvalues of M, are positive and rest eigenvalues

are negative, we denote its eigenvalue decomposition as

r pq
Ma = Z /\zulu? — Z )\Zuzu? = UlAlUlT _ []2‘/\21']27“7
=1

1=r+1
where A = diag(Ay, - -+ , A\,) is a diagonal matrix are the positive eigenvalues,
and —Ay = diag(—A41, -+, —Ay) are the negative ones. In addition, Uy =
[y, -+ ,u,] and Uy = [uy41,- - , Uy, are the eigenvectors associated with

positive and negative eigenvalues, respectively. Let A; = Ai/ 2 Ul and Ay =
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AY?UT. Then M, = ATA, — AT A,
Due to the symmetric of YYT — E(YYT), we can rewrite a’ Vi as the

difference of two quadratic forms

alViw = (M, YYT —E(YYT))
= Y'M,Y — E(YTM,Y)
= [YTATA)Y —E(YTATA)Y)]) - [YTATA)Y — E(YTATALY))
= (IAY[P = E(JAY]7) = (14Y[1* = E([4Y]%)

= B1 —BQ. (S]']')

Consider By first. Recall that Y is a sub-Gaussian variable. Then E(exp(a’Y)) <
exp(||Y[|7, lee]|?) for any vector a € RPI. Moreover, for any n € R, we

have ||nT A;]|? < ||n]|? by the fact that > A? = 1. Then, it follows that
E(exp(n' A1Y)) < exp([[Y][7, 0" Aul*) < exp([Y 3, In11%),

which implies that A;Y is sub-Gaussian and ||A1Y ||y, < [|Y]|y,- By Lem-
ma 5.14 and Remark 5.18 of Vershynin (201H), we see that ||A;Y]|* and,

consequently, [|A,Y||*> — E(||A1Y||?) are sub-Exponential variables with

A |2 = EQLAY P, < 2014Y ), < AIAY]E, < 4Y]3, = 452,
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Therefore, by Lemma 5.15 of Vershynin (2015), for 0 < ¢ < ¢;/(2]|[|| 41 Y ||*—

E(|AiY |)]|lg,) := to with ¢; > 0 being a constant, it holds that

E(exp(2tB1)) = E(exp{2t(|A:Y|* — E([|AY[*))})

IN

exp (462|142 = E(QAY D)3,

< exp(t?- 64K™"). (S1.2)

Similarly, we have E{exp[2t(—Bs)]} < exp(t? - 64K?*). Then by Jensen’s

inequality, we have

E(exp(a’ Vi) < = [E(exp(2tB1)) + E{exp[2t(—By)]}] < exp(t? - 64K*).

DO | —

Taking ¢ = 64K in the inequality of Proposition 2, we complete the proof.

S1.2 Proof of Lemma 1

Recall the definition that X ©)

ik = CZ]|X” k — 5ij,0.5|7 and the fact that fij,0.5

and o;; are the 0.5 quantile of the distribution of X;; ; and x0

i k, respectively.

To simplify the argument, we introduce some notations first. For any ¢ > 0,
define ¢i;1 = P(Xiyr > &ijos +€), b2 = P(Xijx < &ijos — €), and

¢ = S 1216[1) e |¢ij.s — 1/2|. Moreover, define 6;;, = P(X(Ok > 04 + €),
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0ij2 = P(Xi(% < 055 —€), and 0, = min 0;;,s — 1/2]. We first

s=1,2,i€[p].j€lq]

point out the following simple fact. Recalling that ;o5 and o;; are the

0.5 quantile of the distribution of Xj;; and x0©

i k, respectively, as € — 0,

we have ’¢ij,s — 1/2|/€ — fij(gij,(]ﬁ) and ’91‘3'73 — 1/2|/6 — gij(o_ij)- By the

assumption (A2), we see that as e — 0, we have min{¢., .} > ce.

Step 1. We show that sup | X7 — &; 05| = Op(y/(logp + log q) /n). 1t
2%

holds that

1
P(Xmed &ijos > €) = P(at least n

)
o of X;;1’s exceeds &5 + €)

Then, we have, for Nijk = I<Xij,k > 6@’]’,0.5 -+ E),

P(Xlrjnzd gij’oﬁ > 6) = P(Z Nijk > (n+ 1)/2)
k=1

n

I N R U

= P(n ;(nw,k Gija) > 9 Pij1 + Qn)

< P(n! ;(Thj,k — ¢ij1) > 57 Pij.1)

(@) 2

< exp(—2n(1/2 — ¢ij1)?)

< exp(—2n¢?) (51.3)

where the inequality (7) is derived from the Hoeffding inequality. Similar-

ly, we have P(X7' < 05 — €) < exp(—2n(5 — ¢ij2)?) < exp(—2n(5 —
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$ij2)?) < exp(—2n¢?). Combining them together, we have P(|X7' —

&ijos| > €) < 2exp(—2n¢?). Forany d > 0, we take ¢, = 1/C(logp + log q)/n
for some C' = C'(9) > 0 being large. Note that €, — 0 under our assump-

tion, as n — oo, and recall that ¢. > cpe,. We have

P(|X{?ed — &ijos] > €n) < 2exp(—2¢5C (log(p) + log q)).

And consequently, it holds that

p (Z,E%?g[q] | X7 — o5l > €n) < 2pgexp(—2¢5C(log(p) + log q))

< 2exp(—(2¢2C — 1)[log(p) + log q))

IN

s. (S1.4)

Step 2. Let 5'2'3' = cz-j-median{|Xij’k—§ij7o_5|, ke [n]} = median{Xi(j%, ke

[n]}, fori € [p], j € [g]. We show that sup [5;—0y;] = O,(+y/(logp + log q) /n).
ij
The proof is similar to step 1. Let vx;; = I(¢ij| Xk.ij—&o.5.45 > 0i+€). Then
by the definition of ¢;;, we have P(G;;—0;; > €) = P (n_l kzn: Yijk > (n+ 1)/2) :
-1
Similar to the argument of Step 1, we have P(5;;—0;; > €) < 2 exp(—2n6?).
Similarly, we have P(5;; < 0;; — €) < 2exp(—2n6?). Combining them to-

gether, we prove the conclusion in Step 2, taking the same €, as in Step 1

and using the same argument, as n — oo.
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Step 3. It is easy to check that for constants a; < ay, < --- < a, and
a; < b;, 1 <i <mn, it holds that median{ay,--- ,a,} < median{by,--- ,b,}.

Then, for any (i, 7) € [p] X [¢], we have

6ij = median{cij|Xij,k — X{?ed’7k S [n]}

IN

median{Xi(ﬁL, ke n} + X2 = &ijos)

= o045+ |X¢?ed — &ij.05]

Similarly, we have 7;; < 6,5 + |X,Z;”3d —&ij05|. Combined together, it follows
that

nax |6ij — Gij| < H}%X ‘X;?ed —&ijo5)-

)

Consequently, we have
A A ~ ~ med ~
max 0ij—0ij| < H%E}X|Uij—0ij|+11}§¥x|0z’j—0z‘j| < HZ!EJL.X|X¢]- —§ij,0.5|+fl}€}x|0z‘j—0z‘j :

The final concision is derived by combining the conclusion in Step 1 and 2.

This completes the proof. l

S1.3 Proof of Theorem 1

Step 1 We first show that ||[7(T — T)|lop = Op(v/(P® + ¢ + logn)/n).

Let A = {(u,v) : u € S v € "'}, For any (u,v) € A, define
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M, € R4 and M, € RP*? such that vec(M,") = u and vec(M,) = v. For
any two matrices (01 and Qo with the same dimension, we define (Q1, Q2) =

trace(Q] Qs). Note that ||[7(T—T)|, = sup u'7T(T—T)v. In addition,
(u,v)EA

~

u"T(T — T)v can be written as " 7(T — T)v = (T — T, M, ® M,) =
(E,,vec(M, ® M,)), where E, = vec(T — T) mentioned in Section 3.1.
Therefore, we have

||’T(T —T)||op = sup (E,, vec(M, @ M,)).

u,EA

We first consider the probability of P({E,,, vec(M,® M,)) > t) for any fixed
(u,v) € A. By the assumption (A1), we have for any fixed u € S~ ! v €
sp*-t

t2

P ((En,VeC(Mu ® M,)) > %) = e (_?) |

Let N(S% 1 ¢) be the e-net of the sphere S* . For any u € S*! and
v e S we can find u; € N(ST1,¢) and vy € N(S”~!,¢), such that
lu —ui1|| <€, ||[v —vi|| < e. By Lemma 5.2 in Vershynin (2015), we have
IN(S* 1, €e)| < (1+2)% Combing with the definition of M, and M,,, it is

easy to see that | M, — M,, ||r = |[v —v1]| < e. And it follows similarly that
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| My, — My, ||r = ||lu —ui]| < e. Then it is easy to see that

|lvec(M, @ M,) — vec(M,, ® M,,)||

= HMu ® My — My, ® Mm”F

IA

HMu ® (Mv - Mv1)HF + H(Mu - Mm) ® Mv1HF < 2,

where we use the fact that ||Q1 ®Qs||r = ||Q1]|r||Q2||F for any two matrices
Q1 and @, and that |M,||r = ||u]| = 1 and || M,,||r = ||v1|| = 1, for any
uwe ST and v; € SP°~1. Therefore, {vec(M,, @ M,,),u; € N(ST 1, €),v €
N(SP”~1 €)} is the 2e-cover of {vec(M, ® M,) : (u,v) € A}. And conse-
quently, similar to the argument of [['siligkaridis and Herd (2013), by as-
sumption (A1), we have

P( sup (E,,vec(M, ® M,)) > t)

u,VEA

< Pl (1-20)"" max (B, vec(M,® M,)) >t
uGN(qufl,e)
vEN(SP° 1,6

2\7 7 #H1— 26))
< 1+ - sup P (E,,vec(M, ® M,)) > ——=
( E) u,vepA (< ( )> \/ﬁ

o (12) e (02, s

Set t = C'v/p? + ¢ + logn with C? > K (log(1 + 2¢71) +1)/(1 — 2¢). Con-
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sequently, it follows that

P ( sup (E,, vec(M, ® M,)) > C\/(p2 + ¢2 + log n)/n) < ntexp(—(p*+4?)) — 0.

u,VEA

Step 2 We consider the ||7(R7) — T(R)||,p.- This proof is similar to
the Theorem 3.2 of Han_and Tin (2017). We omit the similar part and only
state the parts that are different. Similar to Han_and Lii (2017), we have
TR —T(R) = T(E)+T(E,), where Ey = (Fy 1), By = (Fa i) € RPO*7

are defined as, for j # k,

~ ™ T o~ - 1 . T ™ A
By = COS(ETjk)g(Tjk—Tjk% Eagr = —3 sz(ETjk)(g)Q(Tjk—Tjk)27

and the diagonal elements of E; and E, are zero. For given a > 0 being
small, define Q, = {31 < k # j < pq,|Ea x| > 7*log(pg/c)/n}. Han and
Lini (2017) showed that P(Q,) < o?. Conditioning on Q¢ for any u € S~

and any v € SP"1, it follows that

[u T(E2)v| < Z1“33,‘,A;<;HU|!2Hvll2 < v/ (pg)*(7* log(pa/ax) /).

Therefore, with probability 1 — a2, || T(Es)|lep < pgr?log(pg/a)/n.

Moreover, let ' = (Fj) € RP*P? with Fj, = 7 cos(5T;;), and note
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that T = (T,;) is the Kendell’s 7 correlation matrix. Then

Ei=Fo(T-T),

and consequently 7(E;) = T(F) o T(T — T), where "0” denotes the
Hadamard product. In addition, similar to the argument of Han and T.iu

(2017), for any matrix Q € R”** and any v € S, v € S, we can

show that
T i
[u (QoT(F))v] < - [[Qllop- (S1.6)
Consequently,
2
~ ~ T ~
ITCEep = max [ (T(F) o T(T = T))o| < [ T(T = T)lop

Combining together, we have with probability 1 —a? —n~!exp(—(p*+¢?)),

ITR) = T®R)llop < [T EDlop + 1T (E2)llop

24+ g2+ logn m21lo «
Cl\/p qn gn , pq 7z‘i(pq/)

Y

for some constant C'; > 0. This completes the proof. B
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S1.4 Proof of Theorem 2

Step 1. We first establish the bound | T(X7) — T(Z)||ep = Op(cw(lo)).

Recalling that 3= DRTD, we have

IT(E) =Ty = IIT(DR™D) = T(DRD)],
< |IT(DRD) = T(DRD)||op + | T(DRD) = T(DRD)||op

= N llop + [172]lop; (S1.7)

where J; and J; are defined accordingly.
Consider ||.J;||,p first. Letting A = {(u,v) : u € "', v € '} and

F=R" — R, we have

||J1||0p: sup UTJl?J: sup uTT(ﬁFﬁ)v
(u,w)EA (u,v)EA

Recall that D@ is the vector of diagonal elements of D. Then DFD =

F o DWDWT and T(DFD) = T(F) o T(D@WD@T). Therefore,

A

u T(DFD)v = (T(F), T(D'Y DT )o(u@v")) < ||D|5u(T(F),u@v") = || DI, T(F)o.

max

In addition, by Lemma 1, we have || D], = ||ID]|2.+O0, (wy(lz)> . Therefore,
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combining with Theorem 1, we have

191llop < I DI T(B)lep = I TRT) =T (R lop (12210 +Op(wP)) = Op(w P D)

max max

Now we consider ||J2||op. It is easy to see that

J, = T(DRD)—T(DRD)

A

= T((D~ D)RD) + T(DR(D — D)) + T((D ~ D)R(D ~ D))

= Jog + Jag + Jos.

Applying the same argument as that of J; on each term in J,, we get

1 2llep < 2 T(R)llop | Dllswaxl| 2 = Dllsna + 1T (R)llop| D = D

Combining together and noting the definition of wflo), we have

||T(2T) - T(E)HOP = Op(wg)“D”rQnax + wa(f)HT(R)HOPHDHmaX) = Op(“}g]))'

Step 2. We prove the final conclusion. By the proof similar to that of

the Theorem 2 of [Isiligkaridis and Herd (2013), as A > 2[|[T(Z7) =T (=) lops
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we have

%7 - T(®)F < in {IIG —T(D)IIE+ MA2raﬂk(G)}

GERe? xp? 4

Combining with results in Step 1 on the operator norm of || 7(27) =T () ops
it follows that, as A > Cw® for some constant C' > 0, with probability
tending to 1,

IS5 TR < inf |G- T(S)3 + (@)

GERI™XP
rank(G)<r

The finally conclusion is derived by noting that ||X7, — 2|2 = |27 —

T(Z)[7 =

S1.5 Proof of Theorem 3

Denote H = T(X), H = T(X). Note that the Vj is the eigenvector associ-
ated with the largest eigenvalue of HH . Recall the bound on | T(X7) —
T(X2)||op in Step 1 of Theorem 2. Note that ||H||,, = ||X||r when r = 1,

and that |H||op < [|[H — H|lop + || H||op- Then we have

HI:—“T:IT _HHTHOP < ||H]:IT _ﬁHT||Op+ HI:—IHT _HHTHOP

< (Hllop + 1 H = Hllop)IH = Hllop + |1 = Hllop| H |-
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Consequently, we have
||]:I]:IT - HHT”Op = Op(w7(L0)||H||0p) = Op(wq(zo)HZ”F)-

Note that v = ||X||% is the unique nonzero eigenvalue of HH'. By the

Theorem 2 of Yu et al., (2014), we have
IVa—eVall S 2*2y 2| HHT — HH [|op = Op(w? /| 2] ).

The conclusion on Vg can be derived similarly. The conclusions on A B
can be derived by noting that ||V —cVa|| = ||A — cAl|p and ||Vz — ¢ Vi =
1B - ¢Bllp.

We consider |37, _, =S|} Note that [|Val| = [Vall = [Va] = Vsl =
1. It is easy to see that |[VaVg — VuV3|lr = Op(wﬁlo)/HEHF). Noting that
4 and ~ are the largest eigenvalue of T(f)T) and T (X), respectively, then
we have

=A< NTE) = T(2)lop = Op(w).

Combining together, we have

14VaVe —AVaVi lr < AIVaVe = VaVg e + |y = A1 [[VaVa | = Op(w),



S2. SOME SIMULATION RESULTS FOR SECTION 4 AND FIGURES IN
SECTION 517

where we use the fact that v = |2z and ||[V4VZ||r = 1. The final con-
clusion is derived by noting that HZA)(TTk:l) — 3|2 = ZVaVE - T(D)|% =

15VaVg —4VaVy3 ||%. This completes the proof. W

S2 Some simulation results for Section 4 and figures

in Section 5

We present the simulation results on s; = [p/4],se = [¢/4] for Example

1-4, and the Figure 1-3 in the real data analysis.

Table S1: Simulation results for Example 1 and 2 with s; = [p/4], s2 = [¢/4]

Example 1

P 50=0 06,=10 6,=20 & =50
ErrT® 00241 0.0261 00314 00441  0.0025

Err3®™ 00101 00168 00331 01135  0.0032

Erry 00201  0.0212 0.0258 0.0351  0.0021

(100,15,15)  Err$™™  0.0077 0.0137  0.0268 0.0876  0.0026
Errd® 0.0045 0.0048  0.0057  0.0077  0.0005

Err$™  0.0017  0.0031  0.0058 0.0186  0.0009

Errl® 00150 0.0166 0.0177  0.0227  0.0008

Err$3®™ 00070 0.0097  0.0145 0.0424  0.0014

Erry 0.0106 00119 00126 0.0158  0.0006

(100,25,25)  Err$™™  0.0046 0.0068 0.0103 0.0282  0.0012
ErrS? 00018 0.0019 0.0021  0.0025  0.0001

Err$™™ 00007 0.0010  0.0017  0.0045  0.0005

Example 2
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Table S2: Simulation results for Example 3 and 4 with s; = [p/4], s2 = [¢/4]

" Example 3

P 50=0 0o=10 06, =20 0y =50
ErrT 02393 02493 02803 04370  0.0895

Err$3®™ 00881 0.1456  0.2677 1.2288  0.4531

Errd™ 01801 01925 0.2142 03589  0.0620

(100,15,15)  Err$™™ 00714 01118  0.2287 1.1345  0.3941
ErrS? 00496  0.0521  0.0579  0.0883  0.0245

Err$™™ 00188 0.0275  0.0542 02254  0.1209

Err7® 01457 01523 0.1642 02389  0.0563

Err3®™ 00537 0.0723  0.1688  0.7289  0.2908

Err 00956  0.1007  0.1076  0.1780  0.0338

(100,25,25)  Err$™™  0.0365 0.0500 0.1510  0.6947  0.2278
Errl®™ 00205 0.0216  0.0238  0.0335  0.0099

Err$e™  0.0081  0.0099  0.0190  0.0764 0.0675

Example 4

Figure 1: Robust covariance matrix with estimated 7 obtained by our proposal. There
are seven tissues: Cerebrum, Hippocampus, Kidney, Lung, Muscle, Thymus and Spinal
cord, which associate with the diagonal blocks from the lower left corner to the upper
right corner, respectively. There are weak correlation between tissues Hippocampus and
Thymus in male, and clear correlation between tissues Cerebrum and Thymus in female.

/ Spinal cord Spinal cord
o Thymus Thymus

Muscle Muscle
‘Lung Lung
Kidney Kidney
Hippo Hippo
Cerebrum / Cerebrum
o, @’-@ ‘,%//}@ ) %/bd,& 6%00 4;%& CQ%" !{PO/ )é’?% %})r?/
> OOJ‘O, % .O,o'

(a) male with # =5 (b) female with 7 =5
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Figure 2: Non-robust covariance matrix estimation with estimated 7. This is the estima-
tor of [I'siligkaridis and Herd (2013). There are clear dependency among Lung, Muscle
and Thymus in male data and almost no correlation among different tissues for female
data.

Spinal cord

.~ |Spinal cord
Thymus Thymus
Muscle Muscle
Lung Lung
Kidney Kidney
Hippo Hippo
Cerebrum Cerebrum
%ﬁ/oo /5}'0 é@/o
v O*cy
(a) male with # =4 (b) female with # =6

Figure 3: Non-robust covariance matrix estimation with fixed » = 1. This is the estimator
of (2017). There are clear dependency between Thymus and Lung in male
data and almost no correlation among different tissues for female data.

‘ Spinal cord .+ Spinal cord
s Thymus ; Thymus
Muscle Muscle
Lung Lung
Kidney Kidney
Hippo L1 X Hippo
Cerebrum Cerebrum
Q 7
% %, %, 9 %%, %, 2
6, (4] ,}?.P & 174 0)( 73 7
}b/,) ¢ % g o
(2 v
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