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Supplementary Material

Section 2

For each spatial location of wind speed after removing the trend, we test
significances of skewness and kurtosis over time (Bai and Ngj, |2005)). The
p-values of a significance test for skewness and kurtosis in many spatial
locations are smaller than 0.05 as in Figure [Ifa) and (b). This indicates a
rejection of the Gaussianity null in favor of the non-Gaussian distribution
at the usual 5% level. Thus, the first two moments are not sufficient for
temporal dependence at least in the modeling of monthly wind speed, and

we need to consider the skewness and kurtosis as well.
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Figure 1: p-values of a significance test for (a) skewness (equals to 0) and (b) kurtosis
(equals to 3) over time for one selected ensemble member.

For Gaussianity, the Lilliefors and Jarque-Bera tests are used for test-

ing a null hypothesis that the data comes from the normal distribution

(Lilliefors, 1967} [Jarque and Beral, [1987). For these tests (Figure [2)), there

are 15,347 (39.77%) and 23,923 (61.99%) out of 38,592 points where p-
value < 0.05, respectively. Many locations show clear evidence of signifi-

cance for non-Gaussian assumption.

test (b) p—value for Jarque-Bera normality test
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Figure 2: p-values for (a) Lilliefors and (b) Jarque-Bera normality tests.



A Stochastic Generator of Global Monthly Wind Energy

Section 3.2

Figure |3| shows the p-values for the significance of the first temporal lag of
the cross-correlation between innovations one lag apart. Figure [l maps the
estimates of the first three autoregressive coefficients from one randomly
selected ensemble member. Figure |5 shows the corresponding p-value for
the significance. Figure [6] shows the p-values for the significance of the

esitmated g and h in the Tukey random field.
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Figure 3: (a) p-values of the first temporal lag of the cross-correlation for the innovations
between locations that are one longitudinal lag apart. (b) Plot of the selected order for
the TGH-AR(p).
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Figure 4: Plot of the first three estimated autoregressive parameters, (a) Ale’en, (b)

79 73
¢7. 4., and (c) @7 , , from one ensemble member.
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(a) p-value for ], (b) p-value for ¢}, (c) p-value for ¢},
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Figure 5: p-values of the first three autoregressive parameters, (a) qSle’gn, (b) o7
and (c) ¢% . , from one ensemble member.
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Figure 6: p-values of the Tukey g-and-h transformation parameters, (a) g(Lm,¢,) and
(b) h(Lm, £y,), from one ensemble member.
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Section 3.4
@, can be written in the following form
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Figure [7] shows the

the ten sequential time

parameter estimate for step 3 in the model across

subsamples consisting of the different decades con-

sidered. Figure |8 shows similar results for the two-band parameters.
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Figure 7: Parameter estimates of (a) (, and (b) nz,,

represented by 10 different colors. Boxplots of estimates

latitudes at each sub-sample.
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Figure 8: Parameter estimates of (a) ar,, and (b) br,, for 10 sequential sub-samples.
Boxplots of estimates of (c¢) ar, and (d) by, across latitudes at each sub-sample.
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Section 4

For the comparison with our model (T), with a model with no spatial
dependence (I), we first focus on a single simulation for May 2020, see
Figure 0] While the marginal values simulated by I are still physically
coherent (i.e., there are lower winds generally over land), the lack of spatial
dependence creates maps which are clearly unphysical, as apparent from
the panel (b).
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Figure 9: Maps of one realization of wind speeds from (a) T and (b) I runs

For the comparison of T with a model with Gaussian dependence (G),
in Figure we showed the empirical estimates of skewness and kurtosis
(over time) for one LENS run in panels (a-b) (same as in Figure 1 (e-f)
in the main manuscript), compared with the same estimates according to
a simulation from the T model (c-d) and G model (e-f). It is apparent
that the G model is able to capture neither third nor fourth moment of

the distribution, while the T model captures the magnitude and spatial
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variability.
(a) Skewness from one LENS run (b) Kurtosis from one LENS run
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(c) Skewness from one T run (d) Kurtosis from one T run
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(e) Skewness from one G run (f) Kurtosis from one G run
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Figure 10: The empirical skewness and kurtosis of residuals after subtracting the trend
from one LENS, T, and G runs, respectively. Only for the locations where p-values of a
significance test are less than 0.05.

Figure [11] shows a comparison in terms of the fitted contrast variances

in a region including South Africa.
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Figure 11: Squared distances of the fitted contrast variances from the empirical con-
trast variances between two models, ARL and TGH-AR, near Indian ocean: (a)
{Aew;m,n - A?ufzi;h,np - {Aew;m,n - A;Fﬁ?@anR ? and (b) {AnS;m,n - Aﬁgrl:z,n}z -
{Angimmn — ATGHZARY2. Black dots indicate the locations where the surface altitude is

larger than 1,000 m.

Section 5
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Figure 12: Global maps of (a) the mean from 40 SG runs and (b) one SG run based on
the Tukey g-and-h case.

We can measure image quality by computing the structural similarity

index (SSIM, (Wang et al) 2004)). Figure [L3|(a) gives a representation

of the computed SSIMs, from Jan 2006 to Dec 2100, for an average of

reproduced wind speed across 40 runs based on the Tukey g-and-h and
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Gaussian cases using the reference of average wind speed across the 40
LENS runs. In Figure [13(b), we show computed SSIMs for one selected,
reproduced wind speed based on different cases using the reference of one
selected wind speed from the non-traing set of the remaing 35 LENS runs.
In terms of structural similarity, the Tukey g-and-h case has slightly larger
values and is more similar to the LENS runs than the Gaussian case. These
results are in agreement with the temporal patterns in Figure[I6, All LENS
and SG runs show similar values of wind speed near the Gulf of Aden as

time evolves.

(a) ‘ ) ‘ (b)

Structural Similarity Index
o
@

Structural Similarity Index

Tukey Gaussian Tukey Gaussian

Figure 13: Structural similarity index between the 40 LENS runs and SG runs based
on the Tukey g-and-h and Gaussian cases. (a) SSIMs for average from 40 runs and (b)
SSIMs for one selected run.

We then compare the empirical skewness and kurtosis from 40 LENS
runs with those from each model’s 40 SG runs. Figure|l4|{represents averages
of skewness and kurtosis across longitudes and runs from each model. We

find that the skewness values obtained from the Tukey g-and-h model are
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Figure 14: Averages of (a) skewness and (b) kurtosis across longitudes and runs from
each model runs (40 LENS runs and 40 SG runs from each model were used). For (b),

trimmed mean excluding 10% of outliers.

similar to the empirical values from the climate model than the Gaussian

model, while, for several latitudes, it indicates larger kurtosis values than

the empirical skewness. Although the empirical kurtosis values are better

matched by the Tukey g-and-h case at latitudes 30 ~ 60°N, we observe that

the kurtosis values are much larger than the empirical values near several

locations, such as western Europe, western China, Central America, and

West Africa.
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Figure 15: Averages of kurtosis across runs
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Figure 16: Wind speeds near the Gulf of Aden, from Jan 2006 to Jan 2021, from the
traing set of LENS (blue lines) and five SG runs (red lines, offset by 2ms=1).

Figure 17| shows a comparison with T and I as in the previous Section,

same location and months as in Figure 4. The T model clearly follows more

closely the ideal 45 degrees line.

(a) QQ plot of T and I versus LENS in Mar 2020 (b) QQ plot of T and I versusDLENS in Seﬁtember 2020
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Figure 17: QQ-plots between the WPD values from the LENS runs versus T and I runs
in (a) March and (b) September 2020.
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Figure 18: An example of the GUI for the generation of surrogate runs.
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