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The supplement is organized as follows. Section S1 provides more simulations results to

compare Tn and T̃n. In Section S2, Proposition 2 is proved. The proof of Theorem 1 appears

in Section S3. Based on the asymptotic behavior of θ̂0 and B̂(q̂) under the local alternatives,

the proof of Theorem 5 is included in Section S4. As Theorem 2 is a special case of Theorem 5

when Cn = 0, its proof is omitted. In Section S5, we only sketch the proof of Theorem 1 as it

is similar to that of Theorem 5. Section S6 shows a sketch of the proof for Theorem 3.

S1 Simulation

The comparison between Tn and T̃n is another purpose of Study 1. The

results are reported in Tables 1.



Hira L. Koul, Chuanlong Xie and Lixing Zhu

Tables 1 about here

We find that the empirical power of T̃n is slightly higher than that of Tn,

but the size of T̃n also tends to be slightly larger, even when n = 200 and

p = 2. Although T̃n has bias, but each residual in T̃n is estimated by all

validation data which is more precise with smaller variance than that of Tn

derived by half validation dat. We can then conclude, based on this limited

simulation, the test T̃n is slightly more liberal than the bias-corrected test

Tn, but also slightly more powerful. These two tests are competitive.

S2 Proof of Proposition 2

The claim (1) has been proved in Lee and Sepanski (1995). We now prove

the claim (2). The estimator is θ̂0 = arg minθQn(θ) where

Qn(θ) =
1

n

(
Y −D(D̃

T

D̃)−1D̃
T

g(X̃β, γ)
)T

×
(
Y −D(D̃

T

D̃)−1D̃
T

g(X̃β, γ)
)
.

Here X̃ is the N×p matrix whose s-th row is x̃Ts , s = 1, · · · , N , Y is a n×1

vector, and g(X̃β, γ) represents N×1 vector [g(βTx̃1, γ), · · · , g(βTx̃N , γ)]T.

The matrices D and D̃ are design matrices according to g. More precisely,

D is the n× k matrix whose i-th row denoted by w̄T
i , is a vector consisting

of polynomials of wi, while D̃ is the corresponding matrix of validation
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data, whose s-th row ¯̃wT
s is a vector consisting of polynomials of w̃s. For

linear model, w̄i = wi and ¯̃ws = w̃s. For nonlinear model, we let w̄i( ¯̃ws) be

the vector consisting of a constant and the first two order polynomials of

wi(w̃s). Let W̄ is the vector consist of polynomials of W . It is easy to see

that Qn(θ) uniformly converges in probability to

Q(θ) =
{
E−1[W̄W̄ T]E[W̄Y ]− E−1[W̄W̄ T]E[W̄g(βTX, γ)]

}T
E[W̄W̄ T]

×
{
E−1[W̄W̄ T]E[W̄Y ]− E−1[W̄W̄ T]E[W̄g(βTX, γ)]

}
+{E[Y 2]− E[Y W̄ T]E−1[W̄W̄ T]E[W̄Y ]}

which achieves its minimum at θ0 = (β0, γ0). Thus we obtain the consis-

tency of θ̂0.

Next consider the asymptotic presentation of θ̂0−θ0. the The estimator

θ̂0 satisfies the first order condition: ∂Qn(θ̂0)/∂θ = 0. By Taylor expansion

and the mean value theorem, θ̂0 − θ0 can be decomposed into

{[∂2gT(X̃β̄, γ̄)

∂θ∂θT
D̃
]
(D̃

T

D̃)−1DT(Y −D(D̃
T

D̃)−1D̃
T

g(X̃β̄, γ̄))

−
[∂gT(X̃β̄, γ̄)

∂θ
D̃
]
(D̃

T

D̃)−1(DTD)(D̃
T

D̃)−1[
∂gT(X̃β̄, γ̄)

∂θ
D̃]
}−1

×
[∂gT(X̃β0, γ0)

∂θ
D̃
]
(D̃

T

D̃)−1DT(Y −D(D̃
T

D̃)−1D̃
T

g(X̃β0, γ0))
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where θ̄ = (β̄; γ̄) is a vector satisfying ‖θ̄ − θ‖ ≤ ‖θ̂0 − θ0‖. By the LLNs,

1

N

∂gT(X̃β, γ)

∂θ
D̃ =

1

N

N∑
s=1

∂g(βTx̃s, γ)

∂θ
w̄T

s →p E[
∂g(βTX, γ)

∂θ
W̄ T],

1

N

∂2gT(X̃β, γ)

∂θ∂θT
D̃ →p E[

∂2g(βTX, γ)

∂θ∂θT
W̄ ].

On the other hand,

1

n
DT(Y −D(D̃

T

D̃)−1D̃
T

g(X̃β, γ))

=
Cn
n

n∑
i=1

w̄iG(xi) +
1

n

n∑
i=1

w̄iεi +
1

n

n∑
i=1

w̄i(g(βTxi, γ)

−E−1[W̄W̄ T]E[W̄ Tg(βTX, γ)]w̄i)

−
(

1

n
DTD

)[
1

N
D̃

T

D̃

]−1
1

N

N∑
s=1

¯̃ws(g(βTx̃s, γ)

−E−1[W̄W̄ T]E[W̄ Tg(βTX, γ)] ¯̃ws)

= CnE[W̄G(x)] +Op(
1√
n

) +Op(
1√
N

).

Hence

θ̂0 − θ0 =

{
E[
∂g(βT

0X, γ0)

∂θ
W̄ T]E−1[W̄W̄ T]E[

∂g(βT
0X, γ0)

∂θT
W̄ ]

}−1
×
{
E[
∂g(βT

0X, γ0)

∂θ
W̄ T]E−1[W̄W̄ T]

}
×
(
CnE[W̄G(x)] +Op(

1√
n

) +Op(
1√
N

)
.

This completes the proof of part (2) of Proposition 2. �
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S3 Proof of Theorem 4

Denote ζ = Cov(X,W )Σ−1W W . In the discretization step, we construct new

samples (ζi, I(yi ≤ t)). For each t, we estimate Λ(t) which spans SI(Y≤t)|ζ

by using SIR and denote the estimate by Λn(t). In the expectation step, we

estimate Λ = E[Λ(t)], which spans SY |ζ , by Λn,n = n−1
∑n

j=1 Λn(yj). Let

λ1 > λ2 > · · · > λq > λq+1 = 0 = · · · = λp be the descending sequence

of eigenvalues of the matrix Λ and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the descending

sequence of eigenvalues of the matrix Λn,n. Recall that the Dn was selected

as
√
n. Define the objective function as

G(l) =
n

2
×
∑l

i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2× n1/2 × l(l + 1)

2p
.

We shall prove that for any l > 1, P (G(1) > G(l))→ 1, i.e., P (q̂ = 1)→ 1.

G(1)−G(l) = n1/2 × l(l + 1)− 2

p
− n

2
×
∑l

i=2{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

If Λn,n − Λ = Op(Cn), then λ̂i − λi = Op(Cn). By the second order Taylor

Expansion, we have log(λ̂i+1)−λ̂i = −λ̂2i+op(λ̂2i ). Thus,
∑l

i=2{log(λ̂i+1)−

λ̂i} = Op(C
2
n) and

∑p
i=1{log(λ̂i + 1)− λ̂i} converge to a negative constant

in probability. Since nC2
n/n

1/2 → 0 and l(l + 1) > 2, P (G(1) > G(l))→ 1.

Now we check the condition of Λn,n−Λ = Op(Cn). First, we investigate

the convergence rate of Λn(t)− Λ(t) for any fixed t. We have

Λ(t) = Σ−1ζ Var(E[ζ|Ỹ (t)])p(1− p) = Σ−1X ΣWΣ−1X Var(E[ζ|Ỹ (t)])p(1− p).
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It is easy to see that

Var(E[ζ|Ỹ (t)]) = (u1 − u0)(u1 − u0)Tp(1− p)

where p = P (Y ≤ t) = E(I(Y ≤ t)), ui = E[ζ|Ỹ (t) = i], i = 0, 1. Further,

u1 − u0 can be rewritten as

u1 − u0 = {E[ζI(Y ≤ t)]− E[ζ]E[I(Y ≤ t)]} /(p(1− p)).

We can use the matrix

Λ(t) = Σ−1X ΣWΣ−1X [E{(ζ − E(ζ))I(Y ≤ t)}] [E{(ζ − E(ζ))I(Y ≤ t)}]T

to identify the central subspace we want. Denote m(t) = E[(ζ−E(ζ))I(Y ≤

t)]. The sample version of m(t) is m̂(t) = 1
n

∑n
i=1(ζi − ζ̄)I(yi ≤ t), where

ζi = Ĉov(X,W )Σ̂−1W wi and ζ̄ = (1/n)
∑n

i=1 ζi. Let Ya be the response under

the local alternative, then

m̂(t)−m(t) =
1

n

n∑
i=1

(ζi − ζ̄)I(yi ≤ t)− E{(ζ − E(ζ))I(Y ≤ t)}

=
1

n

n∑
i=1

(ζi − ζ̄)I(yi ≤ t)− E{(ζ − E(ζ))I(Ya ≤ t)}

+E{(ζ − E(ζ))I(Ya ≤ t)} − E{(ζ − E(ζ))I(Y ≤ t)}.

The convergence rate of the first term in the right hand side is Op(
√
n). For

simplicity, we assume E(ζ) = 0. The second term is

E[ζI(Ya ≤ t)]− E[ζI(Y ≤ t)] = E {ζ[P (Ya ≤ t|ζ)− P (Y ≤ t|ζ)]}
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Since ζ = ΣXΣ−1W W ,

P (Ya ≤ t|ζ)− P (Y ≤ t|ζ) = P (Ya ≤ t|W )− P (Y ≤ t|W )

= FY |W (t− CnE[G(BTX)|BTW ])− FY |W (t)

= −CnE[G(BTX)|BTW ]fY |W (t) +Op(C
2
n).

Thus, we have E{(ζ−E(ζ))I(Ya ≤ t)}−E{(ζ−E(ζ))I(Y ≤ t)} = Op(Cn).

Altogether, Λn(t) − Λ(t) = Op(Cn), for each t ∈ R. Finally, similar to the

proof for Theorem 3.2 of Li et al. (2008) the condition Λn,n − Λ = Op(Cn)

holds.

�

S4 Proof of Theorem 5

In this subsection, we first prove (ii) which is the large sample property of

Vn under the local alternatives and then give a sketch of the proof of (i).

For the local alternatives in (3.5), according to Theorem 4, q̂ = 1 with a

probability going to 1. Thus, we can only work on the event that q̂ = 1.

Note that B̂(q̂) converges to B0 = ±β0/‖β0‖ in probability rather than the

p × q matrix B that is the dimension reduction base matrix of the central
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mean subspace. Recall the notations

η = g(βT

0X, γ0)− r(bT0W, θ0), ξ2(Z) = E[η2|Z],

∆(Z) = E[G(BTX)|Z]. (S4.1)

The variance of ε is σ2. Write Z as Z̃, when W is replaced by validation

data W̃ . Note Z = BT
0W = ±bT0W . The proof for the case B0 = −b0 is

similar to that for the case B0 = b0. Also in practise, we can change the sign

of B̂ to make sure B0 = b0. So, in the following proof, we only discuss the

case B0 = b0. To proceed further, we need some more notation as follows:

zi = BTwi, gi = g(βT

0 xi, γ0), ri = r(bTwi, θ),

ηi = gi − ri, ∆i = ∆(zi). (S4.2)

Write z̃s, g̃s, r̃s and η̃s for the entities in (S4.2) when wi is replaced by

validation data w̃s in there. When θ0 and B0 are respectively replaced by

their estimators θ̂0 and B̂(q̂) in the above definitions, write the respective ẑi,

ĝi, r̂i and η̂i for zi, gi, ri and ηi, and similarly write the respective ˆ̃zs, ˆ̃gs, ˆ̃rs

and ˆ̃ηs for z̃s, g̃s, r̃s and η̃s. In addition, let Gi = G(zi), where G is in (3.5).

Plug yi = gi +CnGi + εi into Vn, we obtain that Vn = Vn1 +Vn2 +Vn3 +Vn4,
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where

Vn1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ei + CnGi)(ej + CnGj),

Vn2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ei + CnGi)(rj − r̂j(2)),

Vn3 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ri − r̂i(1))(ej + CnGj),

Vn4 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ri − r̂i(1))(rj − r̂j(2)).

We now deal with Vni’s in the following steps.

Step S4.1. nh1/2Vn1 →D N(ν1, τ1), where

ν1 = E[∆(Z)2fZ(Z)], τ1 = 2

∫
K2(u)du

∫
(σ2 + ξ2(z))2f 2

Z(z)dz.

Proof: Write Vn1 as I1 + 2CnI2 + C2
nI3 where

I1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)eiej,

I2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)eiGj,

I3 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)GiGj.

Rewrite I1 = I1,1 + I1,2, where

I1,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiej,

I1,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))eiej.
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Note ei = yi−ri = εi+ηi where ηi is in (S4.2). Thus E[e2i |Zi] = σ2+ξ2(Zi).

Following Lemma 3.3a of Zheng (1996), we obtain nh1/2I1,1 →D N(0, τ1),

where

τ1 = 2

∫
(σ2 + ξ2(z))2f 2

Z(z)dz

∫
K2(u)du.

The Taylor expansion yields that I1,2 = I∗1,2(1 + op(1)) where

I∗1,2 =
(B̂ −B0)

T

h

1

n(n− 1)

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiej

×I(|zi − zj| ≤ h or |ẑi − ẑj| ≤ h).

Note

|(ẑi − ẑj)− (zi − zj)| ≤ ‖B̂ −B0‖max
i,j
‖wi − wj‖ = Op(Cn log n).

When n is large enough, |(ẑi− ẑj)− (zi− zj)| � h. Then we have, for large

n,

I(|zi − zj| ≤ h or |ẑi − ẑj| ≤ h) ≤ I(|zi − zj| ≤ 2h).

Thus E[(I∗1,2)
2] is bounded above by

1

n2h4
‖B̂ −B0‖2‖K ′‖2∞max

i,j
‖wi − wj‖2E

[
e2i e

2
jI(|zi − zj| ≤ 2h)

]
= Op(

log2 n

n3h7/2
) = op(1),

where K ′ denote the first order derivative of the kernel function K and

‖.‖∞ is the uniform norm. Then E[n2hI21,2] = O(log2 n/(nh5/2)) = o(1). By

Chebyshev’s inequality, we obtain nh1/2I1,2 is asymptotical negligible.
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Next, consider I2. Rewrite I2 = I2,1 + I2,2, where

I2,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiGj,

I2,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))eiGj.

To compute the first two moments, E[I2,1] = 0 and E[n2hC2
nI

2
2,1] = O(h1/2).

Thus, by Chebyshev’s inequality, nh1/2CnI2,1 = op(1). As to I2,2, by Taylor

expansion, I2,2 = I∗2,2(1 + op(1)) where

I∗2,2 =
B̂ −B
h

1

n(n− 1)

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiGj

×I(|zi − zj| ≤ h or |ẑi − ẑj| ≤ h).

Similar to I1,2, we obtain that E[n2hC2
nI2,2] ≤ O(log2 n/(nh2)). Then, by

Chebyshev’s inequality, nh1/2CnI2,2 = op(1). Combining the results of I2,1

and I2,2, we know that nh1/2CnI2 = op(1).

To finish the proof of this step, it suffices to show I3 →p ν1. Write I3

as I3,1 + I3,2 where

I3,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiGj,

I3,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))GiGj.

By the Law of Large Numbers, I3,1 →p ν1. In addition, by Taylor expansion

and the fact B̂ →p B0, it is easy to see I3,2 = op(1).

Hence the proof of Step S4.1 is finished. �



Hira L. Koul, Chuanlong Xie and Lixing Zhu

Step S4.2. nh1/2Vn2 →D N (ν2, 2λ
−1τ2) , where

ν2 = −E{∆(Z)E[
∂g(βT

0 x̃s, γ0)

∂θ
|Z]fZ(Z)}H(θ0),

τ2 =

∫
K2(u)du

∫
(σ2 + ξ2(z))ξ2(z)f 2

Z(z)dz, (S4.3)

and H(θ0) is defined in Proposition 2.

Proof: Rewrite Vn2 as

Vn2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)ei(rj − r̂j(2)) (S4.4)

+
Cn

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)Gi(rj − r̂j(2))

=: Vn2,1 + CnVn2,2, say.

First, deal with the term Vn2,1. It can be decomposed as

Vn2,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)ei(rj − r̂j(2))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))ei(rj − r̂j(2)).

Recalling the definition of the estimator of r(2)(b
T
0w, θ0) in (2.2), we have

rj − r̂j(2) =
2

N

N∑
s=N/2+1

Mv(b̂
T

0wj − b̂T0 w̃s)(rj − ˆ̃gs)

×(
2

N

N∑
s=N/2+1

Mv(b̂
T

0wj − b̂T0 w̃s))−1, (S4.5)

where ˆ̃gs is defined in (S4.2). In order to analyze rj − r̂j(2) further, we need
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the following entities. Let

f̄N(2)(x, b) =
2

N

N∑
s=N/2+1

Mv(x− bTw̃s), (S4.6)

Q1(2)(x, b) =
2

N

N∑
s=N/2+1

Mv(x− bTw̃s)(rj − r̃s), (S4.7)

Q2(2)(x, b) =
2

N

N∑
s=N/2+1

Mv(x− bTw̃s)(r̃s − g̃s),

Q3(2)(x, b) =
2

N

N∑
s=N/2+1

Mv(x− bTw̃s)(g̃s − ˆ̃gs).

Note zi = BT
0wi = bT0wi. The kernel function Mv(b̂

T
0wj − b̂T0 w̃s) in the

numerator of (S4.5) can be rewritten as

Mv(zj − z̃s) + [Mv(b̂
T

0wj − b̂T0 w̃s)−Mv(zj − z̃s)],

and the denominator can be decomposed as

1

f̄N(2)(zj, b0)
+ [

1

f̄N(2)(b̂T0wj, b̂0)
− 1

f̄N(2)(zj, b0)
].

Further, write

rj − ˆ̃gs = [rj − r̃s] + [r̃s − g̃s] + [g̃s − ˆ̃gs].

Combining the above decompositions into (S4.5), rj − r̂j(2) can be decom-

posed into 12 terms, and then Vn2,1 can be decomposed into 24 terms. We

only consider the following three terms that make non-negligible contribu-

tion. The remaining terms can be shown to be asymptotically negligible,
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in probability. Accordingly, consider

I4 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ1(2)(zj, b0)f̄
−1
N(2)(zj, b0),

I5 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ2(2)(zj, b0)f̄
−1
N(2)(zj, b0),

I6 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ3(2)(zj, b0)f̄
−1
N(2)(zj, b0)

where f̄N(2) is defined in (S4.6), and Q1(2), Q2(2), Q3(2) are in (S4.7).

We first prove that nh1/2I4 = op(1). Rewrite I4 = n−1
∑n

j=1 I41(zj) ×

I42(zj, b0), where

I41(zj) =
1

(n− 1)

n∑
i 6=j

Kh(zi − zj)ei, I42(zj, b0) =
Q1(2)(zj, b0)

f̄N(2)(zj, b0)
.

Thus, the application of Cauchy - Schwarz inequality yields that |I4| ≤√
(1/n)

∑n
j=1 I

2
41(zj)×

√
(1/n)

∑n
j=1 I

2
42(zj, b0). We only need to bound the

conditional expectations E[I241(zj)] and E[I242(zj, b0)] when zj is given. For

I41(zj),

E[I241(zj)] =
1

(n− 1)2
E[(

n∑
i 6=j

Kh(zi − zj)ei)2]

=
1

(n− 1)h2
E[K2(

zi − zj
h

)e2i ] = O(
1

nh
).

For I42, we can obtain that given zj,

|I42(zj, b0)| ≤
∣∣∣∣Q1(2)(zj, b0)

fZ(zj)

∣∣∣∣ sup
zj

∣∣∣∣ fZ(zj)

f̄N(2)(zj, b0)

∣∣∣∣ ,
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where fZ is the density of Z. Since

sup
zj

|f̄N(2)(zj, b0)− fZ(zj)| = op(1), sup
zj

∣∣∣∣ f̄N(2)(zj, b0)

fZ(zj)
− 1

∣∣∣∣ = op(1),

and fZ is uniformly bounded below, we only need to bound Q2
1(2)(zj, b0) in

the numerators. By Conditions (f),(r) and (M),

E[Q2
1(2)(zj, b0)] =

N(N − 2)

N2v2
E[M(

zj − z̃s
v

)(rj − r̃s)M(
zj − z̃s′

v
)(rj − r̃s′ )]

+
2

Nv2
E[M2(

zj − z̃s
v

)(rj − r̃s)2]

≤ C1v
4 +N−1C2v,

where C1 and C2 are two constants. Thus E[I242(zj, b0)] is bounded above

by C1v
4 + C2v/N , in probability. Summarizing the results of E[I241] and

E[I242], we have E[n2hI24 ] ≤ nh1/2Op(
1
nh

(v4 + v
N

)) = op(1).

Consider I5. Rewrite it as I5 = I51 + I52, where

I51 = E[I5|η̃s, z̃s, zi, ei], I52 = (I5 − E[I5|η̃s, z̃s, zi, ei]).

Note zj = BT
0wj = bT0wj. Thus,

I51 =
2

nN

n∑
i=1

N∑
s=N/2+1

eiη̃s

∫
1

h
K(

zi − zj
h

)
1

v
M(

zj − z̃s
v

)dzj

=
2

nN

n∑
i=1

N∑
s=N/2+1

eiη̃s

∫
1

h
K(

zi − z̃s − uv
h

)
1

v
M(u)d(z̃s + uv).

Further,∫
1

h
K(

zi − z̃s − uv
h

)M(u)du =
1

h
K(

zi − z̃s
h

) +
1

h
K

′′
(
zi − z̃s
h

)
u2v2

h2
.
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Thus, I51 = 2
nN

∑n
i=1

∑N
s=N/2+1 eiη̃sKh(zi− z̃s)(1+op(1)). By Central Limit

Theorem we have√
nN

2
h1/2I5,1 →D N(0,

∫
K2(u)du

∫
(σ2 + ξ2(z))ξ2(z)f 2

Z(z)dz),

where σ2 is the variance of ε and ξ2(Z) is defined in (S4.1). By some

elementary calculations, we can derive that E[(I52)
2] = Op(1/(n

2NhvN)).

Chebyshev’s inequality yields that nh1/2I52 = op(1). Hence

nh1/2I5 →D N
(

0, 2λ−1
∫
K2(u)du

∫
(σ2 + ξ2(z))ξ2(z)f 2

Z(z)dz
)
.

Now consider I6. Recall the definition of Q3(2) in (S4.7) and the def-

inition of g̃ below (S4.2). Taylor expansion of the function g̃ yields that

I6 = I∗6 (θ0 − θ̂0)(1 + op(1)), where

I∗6 =
2

Nn(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)ei
f̄N(2)(zj, b0)

N∑
s=N/2+1

Mv(zj − z̃s)
∂g(βT

0 x̃s, γ0)

∂θ

=:
1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)eiI62(zj, b0), say.

It is easy to see that for any given zj, I62(zj, b0) →p E[
∂g(βT

0 x̃,γ0)

∂θ
|zj] by

noticing that x̃ has the same distribution as that of x. By Lemma 2 of Guo

et al. (2016),

1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)eiE[
∂g(βT

0 x̃, γ0)

∂θ
|zj] = Op(

1√
n

).

Similarly, as in the proof for I4, we can also derive that as N →∞,

sup
z
|I62(z, b0)− E[

∂g(βT
0 x̃, γ0)

∂θ
|z]| ≤ O(v2 + log(N)/

√
Nv)
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and then

1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)ei(I62(zj, b0)− E[
∂g(βT

0 x̃, γ0)

∂θ
|zj]) = op(

1√
n

).

Hence nh1/2I6 = op(1). Combining the above results for I4, I5 and I6 with

the fact that the remaining 21 terms tend to zero, in probability, we obtain

that nh1/2Vn2,1 →D N(0, 2λ−1τ2), where τ2 is in (S4.3).

Next, consider the second term Vn2,2 of the decomposition (S4.4). Rewrite

Vn2,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Gi(rj − r̂j(2))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))Gi(rj − r̂j(2)).

Similarly as the decomposition in (S4.5), Vn2,2 can also be decomposed into

24 terms. Again, we only give the detail about how to treat the three

leading terms. Again, the remaining 21 terms tend to zero, in probability.

The three leading terms are:

I7 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ1(2)(zj, b0)/f̄N(2)(zj, b0),

I8 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(zj, b0)/f̄N(2)(zj, b0),

I9 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ3(2)(zj, b0)/f̄N(2)(zj, b0),

where Q1(2), Q2(2), Q3(2) and f̄N(2) are defined in (S4.7) and (S4.6). Recall

that Cn = n−1/2h−1/4 and E[Q2
1(2)(zj, b0)] ≤ C1v

4 + C2v/N given zj, which
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was proved when we handled I4. By the Cauchy–Schwarz inequality,

|nh1/2CnI7| ≤ Op

(
n1/2h1/4

√
C1v4 + C2v/N

)
= op(1).

To deal with I8, decompose I8 = I81 + I82, with

I81 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(zj, b0)/fZ(zj),

I82 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(zj, b0)[
1

f̄N(2)(zj, b0)
− 1

fZ(zj)
],

where fZ is the density of Z. By some elementary calculations, one can

verify that E[I281] = Op(1/N). This implies nh1/2CnI81 = op(1). Next,

consider I82. By the Cauchy–Schwarz inequality, I282 is bounded above by

a product of
∑n

j=1 I
2
821(zj)/n and

∑n
j=1 I

2
822(zj)/n, where

I821(zj) =
1

n

∑
i 6=j

Kh(zi − zj)Gi,

I822(zj) = Q2(2)(zj, b0)[
1

f̄N(2)(zj, b0)
− 1

fZ(zj)
].

Now we bound E[I2821(zj)] and E[I2822(zj)]. Clearly, conditional on zj,

E[I2821(zj)] = O(1), which in turn implies that E
{∑n

j=1 I
2
821(zj)/n

}
= O(1).

Next, note that

1

n

n∑
j=1

I2822(zj) ≤
1

n

n∑
j=1

Q2
2(2)(zj, b0) sup

z
| 1

f̄N(2)(z, b0)
− 1

fZ(z)
|2

≤ Op(v
2 + logN/

√
Nv)

1

n

n∑
j=1

Q2
2(2)(zj, b0).

The second inequality is from the fact that fZ is bounded below and

supz |f̄N(2)(z, b0) − fZ(z)| = Op(v
2 + logN/

√
Nv). By E[(r̃s − g̃s)|z̃s] = 0,
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E[Q2
2(2)(zj, b0)] ≤ O(1/(Nv)) given zj which implies

E
{ n∑
j=1

Q2
2(2)(zj, b0)/n

}
≤ O(1/(Nv)).

Thus
∑n

j=1 I
2
822(zj)/n is bounded above byOp(1/Nv)Op(v

2 + logN/
√
Nv) =

op(1/(nh
1/2Cn)2). Combining these results, we obtain that

∣∣nh1/2CnI82∣∣ ≤ nh1/2Cnop(1/(nh
1/2Cn)) = op(1).

The above results about I81 and I82 in turn yield that nh1/2CnI8 = op(1).

Now we analyze I9. Recall the definitions that Gi = G(BTxi) and

∆i = E[G(BTX)|Z = zi]. Write I9 = I91 + I92, where

I91 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(zj, b0)/f̄N(2)(zj, b0)

I92 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)(Gi −∆i)Q3(2)(zj, b0)/f̄N(2)(zj, b0).

For I92, E[Gi − ∆i|Zi] = 0. Thus, nh1/2I92 = op(1), at the same rate as

I6. So nh1/2CnI92 = op(1). Next, we deal with I91. Similar to I8, rewrite

I91 = I911 + I912, where

I911 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(zj, b0)/fZ(zj),

I912 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(zj, b0)

×[
1

f̄N(2)(zj, b0)
− 1

fZ(zj, b0)
].

Similar to I82, we have nh1/2I912 = op(1), because E[Q2
3(2)(zj, b0)] = Op(C

2
n).
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Next, consider I911. Write E[I911|zi, z̃s, x̃s] = I∗911(1 + op(1)) where

I∗911 =
2

nN

n∑
i=1

N∑
s=N/2+1

Kh(zi − z̃s)∆i(g̃s − ˆ̃gs).

By the first order Taylor expansion,

I∗911 =
2

nN

n∑
i=1

N∑
s=N/2+1

Kh(zi − z̃s)∆i
∂g(βT

0 x̃s, γ0)

∂θ
(θ0 − θ̂0)(1 + op(1))

Combining the result of Proposition 2(2),

nh1/2CnI
∗
911 →p ν2 = −E{∆(Z)E[

∂g(βT
0 x̃s,γ0)

∂θ
|Z]fZ(Z)}H(θ0).

By computing the second moment of I911− I∗911 and using the Chebyshev’s

inequality, one can verify nh1/2Cn(I911− I∗911) = op(1). Hence nh1/2CnI9 →

ν2. These results about I7, I8 and I9 imply that nh1/2CnVn2,2 →p ν2. Hence

Step S4.2 is finished. �

Step S4.3. nh1/2Vn3 →D N (ν2, 2λ
−1τ2) , where ν2 and τ2 are as in (S4.3).

Proof: The proof is similar to that pertaining to Vn2 in STEP S4.2. The

only difference is that instead of the representation (S4.5) we now use

ri − r̂i(1) =
2

N

N/2∑
t=1

Mv(b̂
T

0wi − b̂T0 w̃t)(ri − ˆ̃gt)

× 2

N

N/2∑
t=1

Mv(b̂
T

0wi − b̂T0 w̃t). (S4.8)

Further the definitions in (S4.6) and (S4.7) are changed into

f̄N(1)(x, b) =
2

N

N/2∑
t=1

Mv(x− bTw̃t),
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and

Q1(1)(zi, b) =
2

N

N/2∑
t=1

Mv(b
Twi − bTw̃t)(ri − r̃t),

Q2(1)(zi, b) =
2

N

N/2∑
t=1

Mv(b
Twi − bTw̃t)(r̃t − g̃t),

Q3(1)(zi, b) =
2

N

N/2∑
t=1

Mv(b
Twi − bTw̃t)(g̃t − ˆ̃gt).

We omit the details here. �

Step S4.4. nh1/2Vn4 →D N(ν3, 2λ
−2τ3), where

ν3 = HT(θ0)E{E[
∂g(βT

0 x̃s, γ0)

∂θ
|Z]E[

∂g(βT
0 x̃s, γ0)

∂θT
|Z]fZ(Z)}H(θ0),

τ3 = 2

∫
K2(u)du

∫
(ξ2(z))2f 2

Z(z)dz. (S4.9)

and H(θ0) is defined in Proposition 2.

Proof: By the same decompositions in (S4.5) and (S4.8), Vn4 can be de-

composed to 9 dominant terms, and seven of those are of order op(1/(nh
1/2)).

We investigate the other two terms as follows:

I10 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(1)(zi, b0)Q2(2)(zj, b0)

×f̄−1N(1)(zi, b0)f̄
−1
N(2)(zj, b0),

I11 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q3(1)(zi, b0)Q3(2)(zj, b0)

×f̄−1N(1)(zi, b0)f̄
−1
N(2)(zj, b0).
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Similar to the proof of I5, we have Nh1/2I10 →D N(0, 2τ3), where τ3 is

defined in (S4.9). Similarly as I91, I11 can be rewritten as

I11 =
4

N2

N/2∑
t=1

N∑
s=N/2+1

Kh(z̃t − z̃s)(g̃s − ˆ̃gs)(g̃t − ˆ̃gt)(1 + op(1))

= (θ0 − θ̂0)T

 4

N2

N/2∑
s=1

N∑
t=N/2+1

Kh(z̃t − z̃s)
∂g(βT

0 x̃s, γ0)

∂θ
g′
∂g(βT

0 x̃t, γ0)

∂θT


×(θ0 − θ̂0).

By the Law of Large Numbers and Proposition 2, nh1/2I11 converges to ν3

in probability. Hence Step S4.4 is completed. �

Altogether, Steps S4.1– S4.4 conclude the proof of (ii) in Theorem 5.

Next, we give a sketch of the proof of (i), which describes the asymptotic

power performance of the test under the global alternative with fixed Cn ≡

C. Let

θ̃ = (β̃; γ̃) = arg min
θ
E
{
Y − W̄E−1[W̄W̄ T]E[W̄g(βTX, γ)]

}2
which is different from the true parameter θ0. Here W̄ is a vector consisting

of polynomials of W . In this case, Z = BTW and b̃ = β̃/‖β̃‖. Then, for

fixed Cn ≡ C,

E[Y − r(b̃TW, θ̃)|Z] = E[CG(BTX) + r(bTW, θ0)− r(b̃TW, θ̃)|Z] := ∆̃(Z).

We can obtain that Vn tends to a positive constant E[∆̃2(Z)fZ(Z)] in prob-

ability. Similarly, we can also prove that τ̂ converges to a positive constant.
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We then have that Vn/τ̂ converges in probability to a positive constant.

That is, the test statistic nh1/2Vn goes to infinity at the rate of order nh1/2.

The proof is finished. �

S5 Proof of Theorem 1

As the arguments used for proving Theorem 5 with Cn = 0, the results

‖B̂ − B‖ = Op(1/
√
n) and β̂0 − β = Op(1/

√
n) are applicable for proving

this theorem, we then omit most of the details, but focus on the bias term.

The terms f̄N(j), Qk(j), k = 1, 2, 3 and j = 1, 2 in the proof of Theorem 5

are replaced by

f̄N(x, b) =
1

N

N∑
s=1

Mv(x− bTw̃s), (S5.1)

and

Q1(x, b) =
1

N

N∑
s=1

Mv(x− bTw̃s)(ri − r̃s), (S5.2)

Q2(x, b) =
1

N

N∑
s=1

Mv(x− bTw̃s)(r̃s − g̃s),

Q3(x, b) =
1

N

N∑
s=1

Mv(x− bTw̃s)(g̃s − ˆ̃gs).

Using the same decomposition as in the proof of Step S4.4, we also have a

term similar to I10 with the conditional expectation as

I10 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(zi, b0)Q2(zj, b0)
1

f̄N(zi, b0)f̄N(zj, b0)
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and

E[I10|η̃s, z̃s, η̃t, z̃t] =
1

N2

N∑
s=1

N∑
t=1

1

h
K(

z̃s − z̃t
h

)η̃sη̃t(1 + op(1)).

Separate the summands with s 6= t and s = t to write the leading term in

the above expression as the sum of the following two terms.

I∗101 =
1

N2

N∑
s=1

N∑
t6=s

1

h
K(

z̃s − z̃t
h

)η̃sη̃t, I∗102 =
1

N2

N∑
s=1

1

h
K(0)η̃2s .

Since K is symmetric, I∗101 can be written as an U-statistic with the kernel

Hn((z̃s, η̃s), (z̃t, η̃t)) =
1

h
K(

z̃s − z̃t
h

)η̃sη̃t.

Further,

E[Hn((z̃s, η̃s), (z̃t, η̃t))|(z̃s, η̃s)] =
1

h
η̃sE{K(

z̃s − z̃t
h

)× E[η̃t|z̃t]} = 0.

Thus the U-statistic I∗101 is degenerate. By Central Limit Theorem for

degenerate U-statistic (see, Hall (1984)),

Nh1/2I∗101 →D N(0, 2

∫
K2(u)du

∫
(ξ2(z))2f 2

Z(z)dz).

Hence nh1/2I∗101 →D N(0, λ−2τ3), where τ3 is defined in (S4.9). Further, the

fact that NhEI∗102 = K(0)E[ξ2(Z)] implies that nh1/2EI∗102 → ∞, which

results in the asymptotic bias in Ṽn. �
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S6 Proof of Theorem 3

When N/n → 0, θ̂0 and B̂(q̂) are
√
N consistent estimates of θ0 and B,

respectively. Again as the decompositions used in the proof of Theorem 5

are applicable for proving this theorem, we give only a sketch of the proof

of (i) here. Put Cn = 0 in the proof of Theorem 5. We only consider I1,

Vn2,1, and I10. As (Nv1/2)/(nh1/2) → 0, Nv1/2I1,1 in Step S4.1 is op(1). In

addition, Nh2 → ∞ leads to Nv1/2I1,2 = op(1). Thus Nv1/2I1 = op(1).

For Vn2,1, following the proof of Step S4.2, we obtain that Nv1/2I4 = op(1),

Nv1/2I5 = op(1), Nv1/2I6 = op(1). These imply that Nv1/2Vn2 = op(1).

Recalling the notation in (S4.1), (S4.2), (S5.1) and (S5.2), I10 can be written

as

I10 =
1

n(n− 1)N2

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(zi, b0)Q2(zj, b0)
1

f̄N(zi, b0)f̄N(zj, b0)
.

Again define its conditional expectation as

I∗10 = E[I10|z̃s, η̃s, z̃t, η̃t]

=
1

N2

N∑
s=1

N∑
t=1

η̃sη̃t

∫ ∫
1

h
K(

zi − zj
h

)
1

v
M(

zi − z̃s
v

)
1

v
M(

zj − z̃t
v

)dzidzj.

Thus, ∫ ∫
1

h
K(

zi − zj
h

)
1

v
M(

zi − z̃s
v

)
1

v
M(

zj − zt
v

)dzidzj

=

∫ ∫
1

h
K(u)

1

v
M(

hu+ zj − z̃s
v

)
1

v
M(

zj − z̃t
v

)d(zj + uh)dzj
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=

∫
1

v
M(

zj − z̃s
v

)
1

v
M(

zj − z̃t
v

)dzj

+

∫
1

v
M ′′(

zj − z̃s
v

)
h2

v2
1

v
M(

zj − z̃t
v

)dzj.

Then we have I∗10 = (I101 + I102)(1 + op(1)) where

I101 =
1

N2

N∑
s=1

N∑
t6=s

η̃sη̃t

∫
1

v
M(

zj − z̃s
v

)
1

v
M(

zj − z̃t
v

)dzj,

I102 =
1

N2

N∑
s=1

η̃2s

∫
1

v
M(

zj − z̃s
v

)
1

v
M(

zj − z̃s
v

)dzj.

Rewrite I101 as

2
N∑
s=2

N∑
t<s

η̃sη̃t
1

N2

∫
1

v
M(

zj − z̃s
v

)
1

v
M(

zj − z̃t
v

)dzj.

By Theorem 1 of Hall (1984), Nv1/2I101 →D N(0, τ̃), where

τ̃ = 2

∫ (∫
M(u)M(u+ v)du)2dv

∫
(ξ2(z)

)2
f 2
Z(z)dz,

We also have in probability

NvI102 →p E[

∫
1

v
M(

zj − z̃s
v

)M(
zj − z̃s
v

)dzj η̃
2
s ] =

∫
M2(u)duE[ξ2(z)].

ThenWe have Nv1/2{I∗10 − ν} →D N(0, τ̃). We can further prove that

E[(I10 − I∗10)2] = Op(
1

N2nv
) = op(

1

N2v
).

Hence Nv1/2{I10−ν} →D N(0, τ̃). This completes the proof of Theorem 3.
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Table 1: Empirical sizes and powers of T̃n of H0 vs. H1k, k = 1, 2, 3 in Study 1.

a p=2 p=8 p=2 p=8

λ = 4 Σ = Σ1 Σ = Σ1 Σ = Σ2 Σ = Σ2

H11 n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

T̃n 0 0.0485 0.0520 0.0440 0.0525 0.0440 0.0510 0.0485 0.0460

0.1 0.0645 0.0760 0.0505 0.0865 0.0790 0.1300 0.1070 0.1615

0.2 0.1130 0.2335 0.1230 0.2210 0.2010 0.4135 0.2720 0.6240

0.3 0.2530 0.5205 0.2245 0.4975 0.4110 0.7900 0.5845 0.9500

0.4 0.4365 0.8055 0.3800 0.7980 0.6945 0.9720 0.8125 0.9930

0.5 0.6475 0.9495 0.5715 0.9360 0.8545 0.9995 0.9280 1.0000

H12 n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

T̃n 0 0.0445 0.0490 0.0500 0.0515 0.0555 0.0480 0.0475 0.0410

0.1 0.0705 0.0825 0.0625 0.0790 0.0635 0.0855 0.0695 0.0820

0.2 0.1375 0.2280 0.1130 0.2245 0.1425 0.2235 0.1055 0.1880

0.3 0.2805 0.4830 0.2280 0.4630 0.2545 0.4335 0.1995 0.3615

0.4 0.4415 0.7750 0.3700 0.7410 0.4165 0.7050 0.3120 0.6335

0.5 0.6315 0.9250 0.5875 0.9165 0.5705 0.8935 0.4650 0.8275

H13 n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

T̃n 0 0.0455 0.0530 0.0585 0.0455 0.0475 0.0565 0.0500 0.0485

0.1 0.0605 0.0910 0.0665 0.0805 0.0765 0.0965 0.0590 0.0725

0.2 0.1360 0.2420 0.1100 0.2240 0.1100 0.1980 0.0880 0.1570

0.3 0.2680 0.4595 0.2090 0.4440 0.2120 0.4065 0.1335 0.2905

0.4 0.3750 0.6920 0.3365 0.6405 0.3375 0.6135 0.1910 0.4665

0.5 0.5520 0.8730 0.4400 0.8375 0.4605 0.7775 0.2685 0.5910
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