SEMIPARAMETRIC REGRESSION MODEL FOR RECURRENT BACTERIAL INFECTIONS AFTER HEMATOPOIETIC STEM CELL TRANSPLANTATION

Chi Hyun Lee¹, Chiung-Yu Huang², Todd E. DeFor³, Claudio G. Brunstein³
Daniel J. Weisdorf³ and Xianghua Luo³

 $^1 University\ of\ Massachusetts,\ Amherst,$

²University of California, San Francisco and ³University of Minnesota

Supplementary Material

Web Appendix A. Proof under the Random Censoring Assumption

A.1. Regularity conditions

We assume the following regularity conditions:

- (C1) The true parameter $\boldsymbol{\beta}$ is in the interior of the parameter space \mathbb{R}^{2p} .
- (C2) **A** is a $p \times 1$ vector of covariates that is bounded.
- (C3) Σ is nonsingular.

A.2. Uniqueness and consistency of $\hat{\beta}$

We begin by reformulating the estimating functions (2.2) and (2.4) as

$$\mathbf{D}_{0}(\mathbf{b}_{0}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{b}_{0})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{0}}(t,s)}{\hat{G}_{0}(t \wedge L_{0})} \hat{F}_{0}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}_{0}) \hat{H}(\mathrm{d}\mathbf{a}_{2}),$$
(S.1)

$$\mathbf{D}_{1}^{*}(\mathbf{b}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{b}_{1})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{1}}(t,s)}{\hat{G}_{1}(t \wedge L_{1})} \hat{F}_{1}^{*}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}) \hat{H}(\mathrm{d}\mathbf{a}_{2}),$$
(S.2)

where \hat{F}_0 is the empirical estimator of the subdistribution function $F_0(t, s, \mathbf{a}_1; \mathbf{a}_2, \mathbf{b}_0) = \Pr[Z_{i0} \leq t, \exp\{(\mathbf{a}_2 - \mathbf{A}_i)^T \mathbf{b}_0\} X_i \leq s, \mathbf{A}_i \leq \mathbf{a}_1, \Delta_{i0} = 1], \ \hat{F}_1^*(t, s, \mathbf{a}_1; \mathbf{a}_2, \mathbf{b})$ is

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_{i}^{*}} \sum_{j=1}^{m_{i}^{*}} I\left[Z_{ij} \leq t, \exp\{(\mathbf{a}_{2} - \mathbf{A}_{i})^{T} \mathbf{b}_{0}\} X_{i} + \exp\{(\mathbf{a}_{2} - \mathbf{A}_{i})^{T} \mathbf{b}_{1}\} Y_{ij} \leq s, \right]$$

$$\mathbf{A}_{i} \leq \mathbf{a}_{1}, \Delta_{ij} = 1,$$

the weighted average version of the empirical estimator of $F_1(t, s, \mathbf{a}_1; \mathbf{a}_2, \mathbf{b}) = \Pr[Z_{ij} \leq t, \exp\{(\mathbf{a}_2 - \mathbf{A}_i)^T \mathbf{b}_0\} X_i + \exp\{(\mathbf{a}_2 - \mathbf{A}_i)^T \mathbf{b}_1\} Y_{ij} \leq s, \mathbf{A}_i \leq \mathbf{a}_1, \Delta_{ij} = 1]$ and \hat{H} is the empirical distribution function of $H(\mathbf{a}_2) = \Pr(\mathbf{A}_i \leq \mathbf{a}_2)$. The Kaplan-Meier estimators $\hat{G}_0(t)$ and $\hat{G}_1(t)$ can be expressed as continuous and compactly differentiable functions (Gill and Johansen, 1990). Empirical estimators \hat{F}_0 , \hat{F}_1^* , and \hat{H} are also continuous and compactly differentiable func-

tionals, and it follows that \mathbf{D}_0 and \mathbf{D}_1^* are continuous and compactly differentiable. Since estimating function (S.1) is monotone in \mathbf{b}_0 , the solution to $\mathbf{D}_0(\mathbf{b}_0) = 0$ is unique. Equation (S.2) is also monotone in \mathbf{b}_1 given \mathbf{b}_0 , and $\mathbf{D}_1^*\{(\hat{\boldsymbol{\beta}_0}^T, \mathbf{b}_1^T)^T\} = 0$ has a unique solution.

Note that \hat{G}_0 , \hat{G}_1 , \hat{F}_0 , \hat{F}_1^* , and \hat{H} are uniformly consistent estimators. The consistency of $\hat{\boldsymbol{\beta}}_0$ corresponding to the time from transplant to the first infection has been established by Huang (2002). Given that $\hat{\boldsymbol{\beta}}_0$ is consistent for $\boldsymbol{\beta}_0$, $\mathbf{D}_1^{*T}(\mathbf{b})(\mathbf{b}_1 - \boldsymbol{\beta}_1)$ converges almost surely and uniformly in \mathbf{b} to

$$\mathbb{E}\left[\mathbb{E}\left\{w(\mathbf{A}_i, \mathbf{A}_{i'}, \mathbf{b}_1)\mathbf{A}_{ii'}^T(\mathbf{b}_1 - \boldsymbol{\beta}_1)O_{L_1}\left[Z_{ii}^0, Z_{ii'i}^0\left\{(\boldsymbol{\beta}_0^T, \mathbf{b}_1^T)^T\right\}\right] \middle| \mathbf{A}_i, \mathbf{A}_{i'}\right\}\right], \quad (S.3)$$

which equals $E\left[E\{w(\mathbf{A}_i, \mathbf{A}_{i'}, \mathbf{b}_1)\mathbf{A}_{ii'}^T(\mathbf{b}_1 - \boldsymbol{\beta}_1)O_{L_1}[Z_{ij}^0, \exp(A_{ii'}^T\boldsymbol{\beta}_0)X_i^0 + \exp\{\mathbf{A}_{ii'}^T\boldsymbol{\beta}_1\}) + \exp\{\mathbf{A}_{ii'}^T\boldsymbol{\beta}_1\}Y_{ij}^0]|\mathbf{A}_i, \mathbf{A}_{i'}\}\right]$. Expression (S.3) is equal to 0 only when $\mathbf{b}_1 = \boldsymbol{\beta}_1$, which implies strong consistency of $\hat{\boldsymbol{\beta}}_1$ for $\boldsymbol{\beta}_1$. Thus, given the consistency of $\hat{\boldsymbol{\beta}}_0$, the consistency of the estimator $\hat{\boldsymbol{\beta}}$ follows.

A.3. Asymptotic normality of $D(\beta)$

Define $\mathbf{D}(\mathbf{b}) \equiv {\{\mathbf{D}_0^T(\mathbf{b}_0), \mathbf{D}_1^{*T}(\mathbf{b})\}^T}$. By the functional delta method and the influence function approach, $n^{1/2}\mathbf{D}(\boldsymbol{\beta})$ is asymptotically normal with mean zero and variance Ω . Following the proof in Huang (2002), we derive the sen-

(S.5)

sitivity curves of $n^{1/2}\mathbf{D}_0(\boldsymbol{\beta}_0)$ and $n^{1/2}\mathbf{D}_1^*(\boldsymbol{\beta})$ as follows, for i:

$$\xi_{i0}(\boldsymbol{\beta}_{0}) = n^{-3/2} \sum_{i'=1}^{n} w(\mathbf{A}_{i}, \mathbf{A}_{i'}, \boldsymbol{\beta}_{0}) \mathbf{A}_{ii'} \left[\frac{\Delta_{i0} O_{L_{0}} \{ Z_{i0}, Z_{ii'0}(\boldsymbol{\beta}_{0}) \}}{\hat{G}_{0}(Z_{i0} \wedge L_{0})} - \frac{\Delta_{i'0} O_{L_{0}} \{ Z_{i'0}, Z_{i'i0}(\boldsymbol{\beta}_{0}) \}}{\hat{G}_{0}(Z_{i'0} \wedge L_{0})} \right] + n^{-3/2} \int_{0}^{L_{0}} \frac{Q_{0}(t, \boldsymbol{\beta}_{0}) \hat{G}_{0}(t-)}{Y_{0}(t) \hat{G}_{0}(t)} d\hat{M}_{i0}(t),$$

$$\xi_{i1}^{*}(\boldsymbol{\beta}) = n^{-3/2} \sum_{i'=1}^{n} w(\mathbf{A}_{i}, \mathbf{A}_{i'}, \boldsymbol{\beta}_{1}) \mathbf{A}_{ii'} \left[\frac{1}{m_{i}^{*}} \sum_{j=1}^{m_{i}^{*}} \frac{\Delta_{ij} O_{L_{1}} \{ Z_{ij}, Z_{ii'j}(\boldsymbol{\beta}) \}}{\hat{G}_{1}(Z_{ij} \wedge L_{1})} - \frac{1}{m_{i'}^{*}} \sum_{l=1}^{m_{i'}^{*}} \frac{\Delta_{i'l} O_{L_{1}} \{ Z_{i'l}, Z_{i'il}(\boldsymbol{\beta}) \}}{\hat{G}_{1}(Z_{i'l} \wedge L_{1})} \right] + n^{-3/2} \int_{0}^{L_{1}} \frac{Q_{1}^{*}(t, \boldsymbol{\beta}) \hat{G}_{1}(t-)}{Y_{1}^{*}(t) \hat{G}_{1}(t)} d\hat{M}_{i1}^{*}(t),$$

in which,

$$Q_0(t, \boldsymbol{\beta}_0) = \sum_{i=1}^n \sum_{i'=1}^n w(\mathbf{A}_i, \mathbf{A}_{i'}, \boldsymbol{\beta}_0) \mathbf{A}_{ii'} \left[\frac{\Delta_{i0} O_{L_0} \{ Z_{i0}, Z_{ii'0}(\boldsymbol{\beta}_0) \}}{\hat{G}_0(Z_{i0} \wedge L_0)} I(Z_{i0} > t) \right],$$

$$Q_1^*(t, \boldsymbol{\beta}) = \sum_{i=1}^n \sum_{i'=1}^n w(\mathbf{A}_i, \mathbf{A}_{i'}, \boldsymbol{\beta}_1) \mathbf{A}_{ii'} \left[\frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \frac{\Delta_{ij} O_{L_1} \{ Z_{ij}, Z_{ii'j}(\boldsymbol{\beta}) \}}{\hat{G}_1(Z_{ij} \wedge L_1)} I(Z_{ij} > t) \right],$$

$$Y_0(t) = \sum_{i=1}^n I(Z_{i0} \ge t), \ \hat{M}_{i0}(t) = I(Z_{i0} \le t, \Delta_{i0} = 0) - \int_0^t I(Z_{i0} \ge s) d\hat{\Lambda}_0(s),$$

$$Y_1^*(t) = \sum_{i=1}^n \frac{1}{m_i^*} \sum_{j=1}^{m_i^*} I(Z_{ij} \ge t), \text{ and}$$

$$\hat{M}_{i1}^*(t) = \frac{1}{m_i^*} \sum_{j=1}^{m_i^*} I(Z_{ij} \le t, \Delta_{ij} = 0) - \int_0^t \frac{1}{m_i^*} \sum_{j=1}^{m_i^*} I(Z_{ij} \ge s) d\hat{\Lambda}_1(s),$$

and $\hat{\Lambda}_k$ is the Nelson-Aalen estimator corresponding to \hat{G}_k for k=0,1. Note that the last terms on the right-hand side of equations (S.4) and (S.5) are derived based on the martingale representation of $\hat{G}_0(t)$ and $\hat{G}_1(t)$. The variance Ω can be estimated by $\hat{\Omega} = \sum_{i=1}^n \{\xi_{i0}^T(\hat{\beta}_0), \xi_{i1}^{*T}(\hat{\beta})\}^T \{\xi_{i0}^T(\hat{\beta}_0), \xi_{i1}^{*T}(\hat{\beta})\}$, which is shown to be a consistent estimator by the Glivenko-Cantelli theorem of Pollard (1984).

A.4. Asymptotic linearity of D(b) at $b = \beta$

For \mathbf{b}_0 and \mathbf{b} converging to $\boldsymbol{\beta}_0$ and $\boldsymbol{\beta}$, we can show that $\mathbf{D}_0(\mathbf{b}_0) = \tilde{\mathbf{D}}_0(\mathbf{b}_0) + o_p(||\mathbf{b}_0 - \boldsymbol{\beta}_0|| + n^{-1/2})$ and $\mathbf{D}_1^*(\mathbf{b}) = \tilde{\mathbf{D}}_1^*(\mathbf{b}) + o_p(||\mathbf{b} - \boldsymbol{\beta}|| + n^{-1/2})$, respectively, where

$$\tilde{\mathbf{D}}_{0}(\mathbf{b}_{0}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\boldsymbol{\beta}_{0})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{0}}(t,s)}{\hat{G}_{0}(t \wedge L_{0})} \hat{F}_{0}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}_{0}) \hat{H}(\mathrm{d}\mathbf{a}_{2})$$

$$\tilde{\mathbf{D}}_{1}^{*}(\mathbf{b}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\boldsymbol{\beta}_{1})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{1}}(t,s)}{\hat{G}_{1}(t \wedge L_{1})} \hat{F}_{1}^{*}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}) \hat{H}(\mathrm{d}\mathbf{a}_{2}).$$

Since there exist points in **b** where $\tilde{\mathbf{D}}(\mathbf{b}) = {\{\tilde{\mathbf{D}}_0^T(\mathbf{b}_0), \tilde{\mathbf{D}}_1^{*T}(\mathbf{b})\}^T}$ is nondiffer-

entiable, the first-order Taylor expansion cannot be directly used. Instead, we use the generalized law of mean (Huang, 2000). Let Σ be the limit of the left and right partial derivative of $\tilde{\mathbf{D}}(\mathbf{b})$. For \mathbf{b} converging to $\boldsymbol{\beta}$, we obtain that

$$\mathbf{D}(\mathbf{b}) = \tilde{\mathbf{D}}(\mathbf{b}) + o_p(||\mathbf{b} - \boldsymbol{\beta}|| + n^{-1/2})$$
$$= \mathbf{D}(\boldsymbol{\beta}) + \Sigma(\mathbf{b} - \boldsymbol{\beta}) + o_p(||\mathbf{b} - \boldsymbol{\beta}|| + n^{-1/2}).$$

Thus, $\mathbf{D}(\mathbf{b})$ is asymptotically linear at $\mathbf{b} = \boldsymbol{\beta}$.

A.5. Asymptotic normality of $\hat{\beta}$

It follows that $n^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$ is asymptotically normal with mean zero and variance $\Sigma^{-1}\Omega(\Sigma^{-1})^T$, which can be consistently estimated by $\hat{\Sigma}^{-1}\hat{\Omega}(\hat{\Sigma}^{-1})^T$, where $\hat{\Sigma} = \partial \tilde{\mathbf{D}}(\hat{\boldsymbol{\beta}})/\partial \mathbf{b}$ is consistent for Σ .

A.6. Efficiency of $\hat{\beta}$

To examine the efficiency gain of using the proposed method over Huang's method, we rewrite the estimating function in an empirical average form as follows,

$$\mathbf{D}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \phi(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, \mathbf{A}_i; \boldsymbol{\beta}) + o_p(n^{-1/2}),$$

where $\boldsymbol{\phi}(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, \mathbf{A}_i; \boldsymbol{\beta}) = \{\boldsymbol{\phi}_0^T(X_i, \Delta_{i0}, \mathbf{A}_i; \boldsymbol{\beta}_0), \boldsymbol{\phi}_1^T(X_i, Y_{ij}, \Delta_{ij}, \mathbf{A}_i; \boldsymbol{\beta})\}^T$

in which

$$\phi_0(X_i, \Delta_{i0}, \mathbf{A}_i; \boldsymbol{\beta}_0) = \int_{t,s,\mathbf{a}_1,\mathbf{a}_2} w(\mathbf{a}_1, \mathbf{a}_2, \boldsymbol{\beta}_0) (\mathbf{a}_2 - \mathbf{a}_1) \frac{O_{L_0}(t,s)}{G_0(t \wedge L_0)}$$

$$\times F_0(\mathrm{d}t, \mathrm{d}s, \mathrm{d}\mathbf{a}_1; \mathbf{a}_2, \boldsymbol{\beta}_0) H(\mathrm{d}\mathbf{a}_2)$$

$$\phi_1(X_i, Y_{ij}, \Delta_{ij}, \mathbf{A}_i; \boldsymbol{\beta}) = \int_{t,s,\mathbf{a}_1,\mathbf{a}_2} w(\mathbf{a}_1, \mathbf{a}_2, \boldsymbol{\beta}_1) (\mathbf{a}_2 - \mathbf{a}_1) \frac{O_{L_1}(t,s)}{G_1(t \wedge L_1)}$$

$$\times F_1(\mathrm{d}t, \mathrm{d}s, \mathrm{d}\mathbf{a}_1; \mathbf{a}_2, \boldsymbol{\beta}) H(\mathrm{d}\mathbf{a}_2).$$

For simplicity of notation, we denote $\phi_{ij}(\boldsymbol{\beta}) = \phi(X_i, Y_{ij}, \Delta_{i0}, \Delta_{ij}, \mathbf{A}_i; \boldsymbol{\beta})$. The asymptotic variance of $n^{1/2}\mathbf{D}(\boldsymbol{\beta})$ is

$$\Omega = \mathrm{E}\left\{\boldsymbol{\phi}_{ij}(\boldsymbol{\beta})^{\otimes 2}\right\} - \mathrm{E}\left[\frac{1}{m_i^*}\sum_{j=1}^{m_i^*}\left\{\boldsymbol{\phi}_{ij}(\boldsymbol{\beta}) - \frac{1}{m_i^*}\sum_{j=1}^{m_i^*}\boldsymbol{\phi}_{ij}(\boldsymbol{\beta})\right\}^{\otimes 2}\right].$$

We note that the asymptotic variance of $n^{1/2}(\bar{\boldsymbol{\beta}} - \boldsymbol{\beta})$ is $\Sigma^{-1} \mathrm{E}\{\boldsymbol{\phi}_{ij}(\boldsymbol{\beta})^{\otimes 2}\}(\Sigma^{-1})^T$, which is greater or equal to the asymptotic variance of $n^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$, $\Sigma^{-1}\Omega\Sigma^{-1}$. The proposed estimator $\hat{\boldsymbol{\beta}}$ is more efficient than the estimator $\bar{\boldsymbol{\beta}}$ from Huang's method when there exists $m_i^* \geq 2$ for any subject $i, i = 1, \ldots, n$.

Web Appendix B. Proof under the Conditional Independent Censoring Assumption

Here we only provide detailed proofs of the asymptotic properties for $\tilde{\boldsymbol{\beta}}$

under the conditional independent censoring assumption when the covariate-specific Kaplan–Meier estimator is used for the estimation of $G(t \mid \mathbf{A})$. Similar techniques can be used for establishing the asymptotic properties when a semi-parametric regression model is used. For the arguments below, we need the regularity conditions (C1) and (C2) in Web Appendix A.1 and an additional condition, namely,

(C4) Σ^c is nonsingular.

B.1. Uniqueness and consistency of $\tilde{\beta}$

We rewrite the estimating functions (2.5) and (2.6) as

$$\mathbf{D}_0^c(\mathbf{b}_0) = \int_{t,s,\mathbf{a}_1,\mathbf{a}_2} w(\mathbf{a}_1,\mathbf{a}_2,\mathbf{b}_0)(\mathbf{a}_2 - \mathbf{a}_1) \frac{O_{L_0}(t,s)}{\hat{G}_0(t\mid\mathbf{a}_1)} \hat{F}_0(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_1;\mathbf{a}_2,\mathbf{b}_0) \hat{H}(\mathrm{d}\mathbf{a}_2),$$
(S.6)

$$\mathbf{D}_{1}^{c*}(\mathbf{b}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{b}_{1})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{1}}(t,s)}{\hat{G}_{1}(t\mid\mathbf{a}_{1})} \hat{F}_{1}^{*}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}) \hat{H}(\mathrm{d}\mathbf{a}_{2}).$$
(S.7)

The covariate-specific Kaplan–Meier estimators $\hat{G}_0(t \mid \mathbf{A})$ and $\hat{G}_1(t \mid \mathbf{A})$ are continuous and compactly differentiable as well as \hat{F}_0 , \hat{F}_1^* , and \hat{H} . Thus, it follows that \mathbf{D}_0^c and \mathbf{D}_1^{c*} are continuous and compactly differentiable functionals. Due to the monotonicity of the estimating functions (S.6) in \mathbf{b}_0 and (S.7) in \mathbf{b}_1 given \mathbf{b}_0 , the solutions to $D_0^c(\mathbf{b}_0) = 0$ and $D_1^{c*}(\mathbf{b}) = 0$ are unique.

Given the uniform consistency of the Kaplan–Meier estimators and that of the empirical functions, the consistency of $\tilde{\beta}_0$ and $\tilde{\beta}_1$ can be shown in a manner similar to that in Web Appendix A.2.

B.2. Asymptotic normality of $D^c(\beta)$

Let $\mathbf{D}^c(\mathbf{b}) \equiv {\{\mathbf{D}_0^{cT}(\mathbf{b}_0), \mathbf{D}_1^{c*T}(\mathbf{b})\}^T}$. By the functional delta method and the influence function approach, we show that $n^{1/2}\mathbf{D}^c(\boldsymbol{\beta})$ is asymptotically normal with mean zero and variance Ω^c . The proof is in the same line as Web Appendix A.3. For i, we derive

$$\psi_{i0}(\boldsymbol{\beta}_{0}) = n^{-3/2} \sum_{i'=1}^{n} w(\mathbf{A}_{i}, \mathbf{A}_{i'}, \boldsymbol{\beta}_{0}) \mathbf{A}_{ii'} \left[\frac{\Delta_{i0} O_{L_{0}} \{ Z_{i0}, Z_{ii'0}(\boldsymbol{\beta}_{0}) \}}{\hat{G}_{0}(Z_{i0} \wedge L_{0} \mid \mathbf{A}_{i})} - \frac{\Delta_{i'0} O_{L_{0}} \{ Z_{i'0}, Z_{i'i0}(\boldsymbol{\beta}_{0}) \}}{\hat{G}_{0}(Z_{i'0} \wedge L_{0} \mid \mathbf{A}_{i'})} \right] + n^{-3/2} \int_{0}^{L_{0}} \frac{Q_{0}^{c}(t, \boldsymbol{\beta}_{0}) \hat{G}_{0}(t - \mid \mathbf{A}_{i})}{Y_{0}(t) \hat{G}_{0}(t \mid \mathbf{A}_{i})} d\hat{M}_{i0}^{c}(t),$$
(S.8)

$$\psi_{i1}^{*}(\boldsymbol{\beta}) = n^{-3/2} \sum_{i'=1}^{n} w(\mathbf{A}_{i}, \mathbf{A}_{i'}, \boldsymbol{\beta}_{1}) \mathbf{A}_{ii'} \left[\frac{1}{m_{i}^{*}} \sum_{j=1}^{m_{i}^{*}} \frac{\Delta_{ij} O_{L_{1}} \{ Z_{ij}, Z_{ii'j}(\boldsymbol{\beta}) \}}{\hat{G}_{1}(Z_{ij} \wedge L_{1} \mid \mathbf{A}_{i})} \right] - \frac{1}{m_{i'}^{*}} \sum_{l=1}^{m_{i'}^{*}} \frac{\Delta_{i'l} O_{L_{1}} \{ Z_{i'l}, Z_{i'il}(\boldsymbol{\beta}) \}}{\hat{G}_{1}(Z_{i'l} \wedge L_{1} \mid \mathbf{A}_{i'})} \right] + n^{-3/2} \int_{0}^{L_{1}} \frac{Q_{1}^{c*}(t, \boldsymbol{\beta}) \hat{G}_{1}(t - \mid \mathbf{A}_{i})}{Y_{1}^{*}(t) \hat{G}_{1}(t \mid \mathbf{A}_{i})} d\hat{M}_{i1}^{c*}(t),$$
(S.9)

in which,

$$Q_0^c(t, \boldsymbol{\beta}_0) = \sum_{i=1}^n \sum_{i'=1}^n w(\mathbf{A}_i, \mathbf{A}_{i'}, \boldsymbol{\beta}_0) \mathbf{A}_{ii'} \left[\frac{\Delta_{i0} O_{L_0} \{ Z_{i0}, Z_{ii'0}(\boldsymbol{\beta}_0) \}}{\hat{G}_0(Z_{i0} \wedge L_0 \mid \mathbf{A}_i)} I(Z_{i0} > t) \right],$$

$$Q_1^{c*}(t, \boldsymbol{\beta}) = \sum_{i=1}^n \sum_{i'=1}^n w(\mathbf{A}_i, \mathbf{A}_{i'}, \boldsymbol{\beta}_1) \mathbf{A}_{ii'} \left[\frac{1}{m_i^*} \sum_{j=1}^{m_i^*} \frac{\Delta_{ij} O_{L_1} \{ Z_{ij}, Z_{ii'j}(\boldsymbol{\beta}) \}}{\hat{G}_1(Z_{ij} \wedge L_1 \mid \mathbf{A}_i)} I(Z_{ij} > t) \right],$$

$$\hat{M}_{i0}^{c}(t) = I(Z_{i0} \le t, \Delta_{i0} = 0) - \int_{0}^{t} I(Z_{i0} \ge s) d\hat{\Lambda}_{0}(s \mid \mathbf{A}_{i}),$$

$$\hat{M}_{i1}^{c*}(t) = \frac{1}{m_{i}^{*}} \sum_{j=1}^{m_{i}^{*}} I(Z_{ij} \le t, \Delta_{ij} = 0) - \int_{0}^{t} \frac{1}{m_{i}^{*}} \sum_{j=1}^{m_{i}^{*}} I(Z_{ij} \ge s) d\hat{\Lambda}_{1}(s \mid \mathbf{A}_{i})$$

and $\hat{\Lambda}_k(t \mid \mathbf{A})$ is the Nelson-Aalen estimator corresponding to $\hat{G}_k(t \mid \mathbf{A})$ for k = 0, 1. The last terms on the right-hand side of equations (S.8) and (S.9) result from the large sample properties of $\hat{G}_0(t \mid \mathbf{A})$ and $\hat{G}_1(t \mid \mathbf{A})$. The variance Ω^c can be consistently estimated by $\hat{\Omega}^c = \sum_{i=1}^n \{\psi_{i0}^T(\tilde{\boldsymbol{\beta}}_0), \psi_{i1}^{*T}(\tilde{\boldsymbol{\beta}})\}^T \{\psi_{i0}^T(\tilde{\boldsymbol{\beta}}_0), \psi_{i1}^{*T}(\tilde{\boldsymbol{\beta}})\}$.

B.3. Asymptotic linearity of $D^c(b)$ at $b = \beta$

We define

$$\tilde{\mathbf{D}}_{0}^{c}(\mathbf{b}_{0}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\boldsymbol{\beta}_{0})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{0}}(t,s)}{\hat{G}_{0}(t\mid\mathbf{a}_{1})} \hat{F}_{0}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}_{0}) \hat{H}(\mathrm{d}\mathbf{a}_{2})$$

$$\tilde{\mathbf{D}}_{1}^{c*}(\mathbf{b}) = \int_{t,s,\mathbf{a}_{1},\mathbf{a}_{2}} w(\mathbf{a}_{1},\mathbf{a}_{2},\boldsymbol{\beta}_{1})(\mathbf{a}_{2} - \mathbf{a}_{1}) \frac{O_{L_{1}}(t,s)}{\hat{G}_{1}(t\mid\mathbf{a}_{1})} \hat{F}_{1}^{*}(\mathrm{d}t,\mathrm{d}s,\mathrm{d}\mathbf{a}_{1};\mathbf{a}_{2},\mathbf{b}) \hat{H}(\mathrm{d}\mathbf{a}_{2}).$$

Let Σ^c be the limit of the left and right partial derivative of $\tilde{\mathbf{D}}^c(\mathbf{b})$. We can prove the linearity of $\mathbf{D}^c(\mathbf{b})$ in a similar way as Web Appendix A.4. Thus, we omit the details and present the main result. By the generalized law of mean, for \mathbf{b} converging to $\boldsymbol{\beta}$, we obtain that

$$\mathbf{D}^{c}(\mathbf{b}) = \mathbf{D}^{c}(\boldsymbol{\beta}) + \Sigma^{c}(\mathbf{b} - \boldsymbol{\beta}) + o_{p}(||\mathbf{b} - \boldsymbol{\beta}|| + n^{-1/2}).$$

Thus, $\mathbf{D}^{c}(\mathbf{b})$ is asymptotically linear at $\mathbf{b} = \boldsymbol{\beta}$.

B.4. Asymptotic normality of $\tilde{\beta}$

The asymptotic normality and linearity of $\mathbf{D}^{c}(\boldsymbol{\beta})$ yield that $n^{1/2}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})$ is asymptotically normal with mean zero and variance $(\Sigma^{c})^{-1}\Omega^{c}\{(\Sigma^{c})^{-1}\}^{T}$, which can be consistently estimated by $(\hat{\Sigma}^{c})^{-1}\hat{\Omega}^{c}\{(\hat{\Sigma}^{c})^{-1}\}^{T}$, where $\hat{\Sigma}^{c} = \partial \tilde{\mathbf{D}}^{c}(\tilde{\boldsymbol{\beta}})/\partial \mathbf{b}$ is a consistent estimator of Σ^{c} .

Web Table S1. Summary of baseline characteristics

Table S1: Summary of patient- and transplant-related characteristics.

	No. Patients (%) / Median (Range)		
Variables	All Patients	Children (Age < 18)	Adults (Age > 18)
N	516	155	361
Age at TX	36.9 (0.5 - 71.4)	$9.4\ (0.5-17.9)$	47.4 (18.1-71.4)
Gender	,	,	,
Male	304 (59)	100 (65)	204 (57)
Female	212 (41)	55 (35)	157 (43)
Diagnosis	,	` '	,
ALL	131 (25)	67 (43)	64 (18)
AML	217(42)	63 (41)	154 (43)
$_{\mathrm{CML}}$	19 (4)	1 (1)	18 (5)
Hodgkin's Lymphoma	7 (1)	1 (1)	6 (2)
Multiple Myeloma	1 (0)	0 (0)	1 (0)
Myelodysplastic Syndrome	45 (9)	9 (6)	36 (10)
Myeloproliferative Neoplasm	10 (2)	0 (0)	10 (3)
Neuroblastoma	1 (0)	1 (1)	0 (0)
Non-Hodgkin's Lymphoma	59 (11)	6 (4)	53 (15)
Other Leukemia	21 (4)	7 (5)	14 (4)
Other Malignancy	5(1)	0 (0)	5(1)
CMV Serostatus	. ,	. ,	. ,
Positive	301 (58)	100 (65)	201 (56)
Negative	215 (41)	55 (35)	160 (44)
Type of Transplant	, ,	. ,	` ,
Double Cord	374(72)	60 (39)	314 (87)
Single Cord	142 (28)	95 (61)	47 (13)
Conditioning Regimen	, ,	. ,	, ,
Myeloablative	281 (54)	150 (97)	131 (36)
Non-Myeloablative w ATG	67 (13)	0 (0)	67 (19)
Non-Myeloablative wo ATG	168 (33)	5 (3)	163 (45)
HLA Locus Matching Score	, ,		, ,
4/6	262(51)	44 (28)	218 (60)
5/6	202 (39)	86 (55)	116 (32)
6/6	52 (10)	25 (16)	27 (7)
GVHD Prophylaxis	, ,	• •	, ,
CSA/MMF/MTX	449 (87)	104 (67)	344 (95)
Other	67 (13)	51 (33)	16 (4)
CD34+ graft infused ($\times 10^6/\text{kg}$)	$0.49 \ (0.06 - 27.53)$	$0.58 \ (0.06 - 8.42)$	$0.47 \ (0.07 - 27.53)$
Low	130 (25)	35 (23)	95 (26)
High	386 (75)	120 (77)	266 (74)
TNC dose infused ($\times 10^8/\text{kg}$)	$0.38 \ (0.11 - 4.89)$	$0.48 \ (0.15 - 2.27)$	$0.36 \ (0.11 - 4.89)$
Low	139 (27)	29 (19)	110 (30)
High	377 (73)	126 (81)	251(70)

Abbreviations: TX=transplant; ALL=acute lymphoblastic leukemia; AML=acute myeloblastic leukemia; CML=chronic myeloid leukemia; CMV=cytomegalovirus; ATG=anti-thymocyte globulin; HLA=human leukocyte antigen; GVHD=graft-versushost disease; CSA=cyclosporin; MMF=mychophenolate mofetil; MTX=methotrexate; TNC=total nucleated cell; High: dose $> 1^{\rm st}$ quartile; low: dose $\le 1^{\rm st}$ quartile.

References

Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view towards application in survival analysis. Ann. Statist. 18, 1501-1555.

Huang, Y. (2000). Two-sample multistate accelerated sojourn times model. J. Amer. Statist. Assoc. 95, 619-627.

Huang, Y. (2002). Censored regression with the multistate accelerated sojourn times model. J. Roy. Stat. Soc. Ser. B 64, 17-29.

Pollard, D. (1984). Convergence of Stochastic Processes. New York: Springer.