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Web Appendix A. Proof under the Random Censoring Assumption
A.1. Regularity conditions

We assume the following regularity conditions:
(C1) The true parameter 8 is in the interior of the parameter space R,
(C2) A is ap x 1 vector of covariates that is bounded.
(C3) X is nonsingular.

A.2. Uniqueness and consistency of ,B
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We begin by reformulating the estimating functions (2.2) and (2.4) as

Or,(t,s) - .
Do(bo) = /t’s’al’a2 w(al, g, bo)(ag — al)%ﬁb(dt,ds, dal; g, bo)H(dag),
(S.1)

OL (t 8) ~ ~
D’ (b :/ w(ay, as, by)(ag — a;)——"——F(dt,ds,da; ay, b) H(day),
()= [l byl —an) R dssday; g, b))
(S.2)

where F} is the empirical estimator of the subdistribution function Fy(t, s, as;

as,by) = Pr[Z;y < t,exp{(as — A;)Tbo} X; < s,A; < a;, Ay = 1], Ff(t,S,als

as, b) is
11 & ., .
n Z m; Z I[Zi <t exp{(ay — Ai)" bo} X; + exp{(a; — A;)" b, }V; <,
i=1 't =1

Ai S a17Aij = 1})

the weighted average version of the empirical estimator of Fi(¢,s,a;; ag,b) =
Pr[Z;; < t,exp{(as—A;) b} X;+exp{(az — A;)"b;}V;; < s,A; < a;, Ay =1]
and H is the empirical distribution function of H(ay) = Pr(A; < a,). The
Kaplan-Meier estimators Go(t) and Gy(t) can be expressed as continuous and
compactly differentiable functions (Gill and Johansen| 1990). Empirical esti-

mators Fo, Fl*, and H are also continuous and compactly differentiable func-
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tionals, and it follows that Dy and Dj are continuous and compactly differ-
entiable. Since estimating function is monotone in by, the solution to
Dy(by) = 0 is unique. Equation (S.2) is also monotone in b; given by, and
D’{{(ﬁAOT, bT)T} = 0 has a unique solution.

Note that @0, @1, FO, Fl* , and H are uniformly consistent estimators.
The consistency of ,BO corresponding to the time from transplant to the first
infection has been established by Huang| (2002)). Given that ﬁo is consistent for

Bo, DiT(b)(b; — B;) converges almost surely and uniformly in b to

E [E{w(A;, Ay, b1)A] (b — B1)Oy, 120, Zgn A ( 0-b)TH AL A}, (S.3)

which equals E [E{w(A;, Ay, b1)AL (by — 81)0r, (2, exp(AL Bo) X? + exp{AT,
(by — B1)} exp(ALB1) Y| Ai, Ay }]. Expression is equal to 0 only when
b; = B, which implies strong consistency of Bl for B1. Thus, given the consis-
tency of ,BO, the consistency of the estimator B follows.
A.3. Asymptotic normality of D(3)

Define D(b) = {D{ (by), D;7(b)}”. By the functional delta method and
the influence function approach, n'/2D(B) is asymptotically normal with mean

zero and variance 2. Following the proof in Huang (2002)), we derive the sen-
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sitivity curves of n'/2Dg(By) and n'/2D3(B) as follows, for i

; _ —3/2 & Ai,AZ‘/, A 1OOL0{Z20a zz’O(ﬁO)}
§in(Bo) =n ;w( Bo) Go( Zio A Lo)
AigOro{Zino, Zirio(Bo) } _3/2/ Qotﬁo)A oft— ) AT (1)
Go( Zio N Ly) (t)Go(t) o
(S.4)
: YR 1o 850,25, Zivy(B)}
4 — 3/2 Ai,AZ‘/, Aii’ JjY'L J '3
S S 2 Y7 vy
1 8O {Zi, ZoaB)Y | | [P QiEBIC () o
_ . + - dM} (),
My zz:; G1(Zi A Ln) } T G il
(S.5)
in which,
AiwOro{ Zio, Ziio(Bo) }
t AZ7A1’ i’ 1(Z; t)|,
,Bo) = ;;w Bo)A Go( Zio A Lo) (Zio > )]
* ¢ 1 Ay OLl{ ijs Ziv (,3)}
l,p)= Ay Ay, Br)Air | — ’ ALt I(Zij;>1)|,
Qi.9)= 33 w(a A ) mz Bz, > >]
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Yo(t) = >0y I(Ziop > 1), Mio(t) =1(Zip <t,0p=0) — fg](Zio > S)d[\o(s)7

n 1 mf
Yi(t) :Zm*Zuz > 1), and
i=1 =1
. 1o
M (t) = ,‘FZ[(Z <t,Ay=0)— / ZIZ > s)dA(s)
v oj=1 z

and Ay, is the Nelson-Aalen estimator corresponding to Gy, for k = 0,1. Note
that the last terms on the right-hand side of equations (S.4) and ( are de-
rived based on the martingale representation of Go(t) and Gy (t). The variance
Q can be estimated by Q = S {€L(8,), &7 (B)YT{EL(B,), €T (B)}, which is
shown to be a consistent estimator by the Glivenko-Cantelli theorem of |Pollard
(1984).
A.4. Asymptotic linearity of D(b) at b=

For by and b converging to B¢ and B, we can show that Dy(bg) = f)o(bo) +
op(|[bo — Bol| +n71/2) and Dj(b) = Di(b) + 0,(|[b — B|| +n7"/2), respectively,

where

~ OL (t,S) % ]
D0<b0) = / w(al, 32,,80)(32 — al)AO—Fo(dt, ds,dal; ag, bo)H(dag)
t,s,a1,a2 Go(t /\ LO)
- Op,(t,s) - .
Dji(b :/ w(ay, ag, a; —a;)—————F](dt,ds,da;;a;,b)H(day).
(D)= [ wlananBla - an) g A dssdays ) H e

Since there exist points in b where D(b) = {D¥(b,), D*”(b)}” is nondiffer-
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entiable, the first-order Taylor expansion cannot be directly used. Instead, we
use the generalized law of mean (Huang, 2000). Let X be the limit of the left

and right partial derivative of D(b). For b converging to 8, we obtain that

D(b) = D(b) + o,(|lb — Bl +n~"?)

D(B) + (b — B) + oy(|[b = Bl +n7"/?).

Thus, D(b) is asymptotically linear at b = 3.
A.5. Asymptotic normality of ﬂ

It follows that n/2(8 — B) is asymptotically normal with mean zero and
variance ©'Q(21)T, which can be consistently estimated by S-1Q(S1)7,
where 3 = 0D(B)/0b is consistent for 3.
A.6. Efficiency of B

To examine the efficiency gain of using the proposed method over Huang’s
method, we rewrite the estimating function in an empirical average form as

follows,

1 1 & )
D(8) = - Z ey Z¢(Xz‘, Y, Dio, Aij, As B) + 0, (n™?),
i=1 tog=1

where ¢<Xi; Y;j, Ao, Aij7 Az'Q,B) = {¢g(Xi7 Ao, Ai;ﬂ0)7¢1T(Xz’7 Y;j, Aij7 Aj; ﬁ)}T
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in which

OLO (t, 8)

B0 (X;, Nio, Ai; Bo) = / w(ay, az, Bo)(az — al)Go(t A L)

t,s,ay,az
X Fo(dt, dS, dal; ag,ﬂ(])H(dag)

OLl (t7 8)

&1(X,, Y55, A, Ay B) = / w(ar, as, B1)(as — al)Gl(t A Ly)

t,s,a1,a2

X Fy (dt, dS, dal; ag,,B)H(dag).

For simplicity of notation, we denote ¢;;(8) = ¢(Xi, Yi;, Aio, Aij, As; B). The

asymptotic variance of n'/2D(B) is

. i ®2
2 1 — 1
0 =E{$,(8)**} - E = ; i;(B) — - ;%(ﬁ)

We note that the asymptotic variance of n'/2(8 — B) is L'E{¢;;(8)%*} (X~ 1)7,
which is greater or equal to the asymptotic variance of n1/2(,3 —B), tox-t
The proposed estimator B is more efficient than the estimator 8 from Huang’s

method when there exists m; > 2 for any subject 7, i =1,...,n.

Web Appendix B. Proof under the Conditional Independent Censor-

ing Assumption

Here we only provide detailed proofs of the asymptotic properties for 8
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under the conditional independent censoring assumption when the covariate-
specific Kaplan-Meier estimator is used for the estimation of G(¢ | A). Similar
techniques can be used for establishing the asymptotic properties when a semi-
parametric regression model is used. For the arguments below, we need the
regularity conditions (C1) and (C2) in Web Appendix A.1 and an additional
condition, namely,
(C4) X¢ is nonsingular.
B.1. Uniqueness and consistency of ,B

We rewrite the estimating functions (2.5) and (2.6) as

t A N
D(C](bo) = / w(al, ag, bo)(aQ - al)MFo(dt7 dS, dal; ag, bo)H(d&g),
t,s,a1,a2 G0<t ’ al)
(S.6)
t A .
Di*(b) = / w(a, as, by)(ag — al)MFf(dt,ds,dal;aQ,b)H(dag).
t,s,aq,as G1 (t | 3.1)
(S.7)

The covariate-specific Kaplan-Meier estimators Go(t | A) and Gy(t | A) are
continuous and compactly differentiable as well as FO, F ., and H.T hus, it fol-
lows that D§ and D{* are continuous and compactly differentiable functionals.
Due to the monotonicity of the estimating functions in by and in by

given by, the solutions to D§(by) = 0 and D{*(b) = 0 are unique.
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Given the uniform consistency of the Kaplan—Meier estimators and that of
the empirical functions, the consistency of ,BO and B , can be shown in a manner
similar to that in Web Appendix A.2.

B.2. Asymptotic normality of D¢(3)

Let D¢(b) = {Dg! (by), D{*”(b)}T. By the functional delta method and the
influence function approach, we show that n'/ 2D¢(B) is asymptotically normal
with mean zero and variance €2°. The proof is in the same line as Web Appendix

A.3. For i, we derive

AiwOry{ Zio, Ziiro(Bo) }
Go(Zig AN Lo | A;)

Yio(Bo) = n~** Y " w(Ai, Ay, Bo)A

=1
AigOry{ Ziro, uo(ﬂo)}] ITE ko Qg(t,ﬂo)AGo(t— | Ai)dMg (1)
Go(Zyo A Lo | Ay) 0 Yo(t)Go(t | Ay) v
(S.8)
* — ,3/2 - ) ., ”, 1 AZ]OLl{ ij> ZZJ(IB)}
Va(B) =n ;wmz,Al,ﬂl)Am mz«*jzl Gz AL [ A)
il ’”Z 2101 {Zin, ZeaB)} | | oo /Ll QF (1AL (1= | Ad) g prew )
L — Gi(Zn ALy | Ay) 0 Yy (0)G(t | Ay)

(S.9)
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in which,

AioOro{ Zio; Ziiro(Bo) }
Q t ﬁO AzaAz aﬁO i1/ 0 i I(ZzO > t)
! z;zl i Go< Zio N Lo | Ai)
1 sz ()L { (7R zz ([3)}
QC* t ﬁ AzyAz uﬁl i1’ ¥ ] - J £l ](Zz > t) )
1212 m; ]ZI G1(Zij N Ly | Ay) !

t
Mfo(t) =1(Zip <t,0ip=0) —/ I(Zy > S)dAo(S | Ay,
0

*
m;

Mﬁ*@)z%;I(Zij <t A = / ZI (Zy; > s)dAy(s | A;)
and Ay (t | A) is the Nelson-Aalen estimator corresponding to Gy (¢ | A) for k =
0,1. The last terms on the right-hand side of equations (S.8) and ( . ) result
from the large sample properties of Go(t | A) and Gy(t | A). The variance Q°
can be consistently estimated by Q¢ = =7 {45 (B), viT (B)} {¢h(By), ¢ (B)}-
B.3. Asymptotic linearity of D¢(b) at b=/

We define

OLo(t S)
ot al)

N O
Df*(b) = /t w(ay,az,B1)(az — al)%

D (by) = / w(ar, az. o) (az — a) - Fy(dt, ds, day; ay, by) H (day)
t,s,ai,az

Er(dt,ds, day; ay, b) H(day).
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Let ¢ be the limit of the left and right partial derivative of D¢(b). We can
prove the linearity of D¢(b) in a similar way as Web Appendix A.4. Thus, we
omit the details and present the main result. By the generalized law of mean,

for b converging to B, we obtain that

D?(b) = D*(8) + X°(b — B) + 0,(|[b — BI| +n""/%).

Thus, D¢(b) is asymptotically linear at b = j.
B.4. Asymptotic normality of B

The asymptotic normality and linearity of D¢(8) yield that n'/ Z(B —B) is
asymptotically normal with mean zero and variance (3¢)~1Q¢{(2¢)~1}T, which
can be consistently estimated by (2¢)71Q¢{(2¢)1}7, where 3¢ = 9D%(B)/db

is a consistent estimator of X°.

Web Table S1. Summary of baseline characteristics
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Table S1: Summary of patient- and transplant-related characteristics.

No. Patients (%) / Median (Range)
Variables All Patients Children (Age < 18)  Adults (Age > 18)
N 516 155 361
Age at TX] 36.9 (0.5—71.4) 9.4 (0.5-17.9) 47.4 (18.1-71.4)
Gender
Male 304 (59) 100 (65) 204 (57)
Female 212 (41) 55 (35) 157 (43)
Diagnosis
ALL 131 (25) 67 (43) 64 (18)
AML 217 (42) 63 (41) 154 (43)
CML 19 (4) 1(1) 18 (5)
Hodgkin’s Lymphoma 7 (1) 1(1) 6 (2)
Multiple Myeloma 1(0) 0 (0) 1 (0)
Myelodysplastic Syndrome 45 (9) 9 (6) 36 (10)
Myeloproliferative Neoplasm 10 (2) 0 (0) 10 (3)
Neuroblastoma 1 (0) 1(1) 0 (0)
Non-Hodgkin’s Lymphoma 59 (11) 6 (4) 53 (15)
Other Leukemia 21 (4) 7 (5) 14 (4)
Other Malignancy 5 (1) 0 (0) 5 (1)
CMV Serostatus
Positive 301 (58) 100 (65) 201 (56)
Negative 215 (41) 55 (35) 160 (44)
Type of Transplant
Double Cord 374 (72) 60 (39) 314 (87)
Single Cord 142 (28) 95 (61) 47 (13)
Conditioning Regimen
Myeloablative 281 (54) 150 (97) 131 (36)
Non-Myeloablative w ATG 67 (13) 0 (0) 67 (19)
Non-Myeloablative wo ATG 168 (33) 5 (3) 163 (45)
HLA Locus Matching Score
4/6 262 (51) 44 (28) 218 (60)
5/6 202 (39) 86 (55) 116 (32)
6/6 52 (10) 25 (16) 27 (7)
GVHD Prophylaxis
CSA/MMF /MTX 449 (87) 104 (67) 344 (95)
Other 67 (13) 51 (33) 16 (4)
CD34+ graft infused (x10%/kg)  0.49 (0.06—27.53)  0.58 (0.06-8.42)  0.47 (0.07—27.53)
Low 130 (25) 35 (23) 95 (26)
High 386 (75) 120 (77) 266 (74)
TNC dose infused (x108/kg) 0.38 (0.11—4.89) 0.48 (0.15—2.27) 0.36 (0.11—4.89)
Low 139 (27) 29 (19) 110 (30)
High 377 (73) 126 (81) 251 (70)

Abbreviations: TX=transplant; ALL=acute lymphoblastic leukemia; AML=acute
myeloblastic leukemia; CML=chronic myeloid leukemia; CMV=cytomegalovirus;
ATG=anti-thymocyte globulin; HLA=human leukocyte antigen; GVHD=graft-versus-
host disease; CSA=cyclosporin; MMF=mychophenolate mofetil;, MTX=methotrexate;
TNC=total nucleated cell; High: dose > 15* quartile; low: dose < 15¢ quartile.
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