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Supplementary Material

Design for Example 3.1. k = 3, v1 = 2, v2 = 3, v3 = 4, b = 1, N = s = 72.

(000,111) (000,222) (000,333) (100,211) (100,322) (100,033) (020,131) (020,313) (120,302)

(001,112) (001,223) (001,330) (101,212) (101,323) (101,030) (021,132) (021,310) (121,303)

(002,113) (002,220) (002,331) (102,213) (102,320) (102,031) (022,133) (022,311) (122,300)

(003,110) (003,221) (003,332) (103,210) (103,321) (103,032) (023,130) (023,312) (123,301)

(010,121) (010,232) (010,303) (110,221) (110,332) (110,003) (020,202) (120,231) (120,013)

(011,122) (011,233) (011,300) (111,222) (111,333) (111,000) (021,203) (121,232) (121,010)

(012,123) (012,230) (012,301) (112,223) (112,330) (112,001) (022,200) (122,233) (122,011)

(013,120) (013,231) (013,302) (113,220) (113,331) (113,002) (023,201) (123,230) (123,012)

Lemma 1. A necessary and sufficient condition for C̃M = CM to hold is that for each block

and each attribute, the frequency distribution of the levels of the attribute are same for the two

options.

Proof. Let PMj = ((Pj)
′
1 · · · (Pj)′t · · · (Pj)′b)′ where (Pj)t represents PMj for the tth block. Then
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the condition W ′PM = 0 is equivalent to the condition 1′(P1)t = 1′(P2)t, t = 1, . . . , b. Let

(Pj)t = ((Pj)
1
t · · · (Pj)wt · · · (Pj)kt ) where (Pj)

w
t is of order s× (vw − 1) and represents (Pj)t for

the wth attribute. Therefore for t = 1, . . . , b, if 1′(P1)t = 1′(P2)t, then 1′(P1)wt = 1′(P2)wt for

every w and t. Now, since the ith column of (Pj)
w
t provides frequency of level i and level vw in

the wth attribute of the jth option in the tth block, therefore, 1′(P1)wt = 1′(P2)wt implies that

the frequency of each of the levels of attribute w is same in the two options among the s choice

pairs in block t.

The converse follows by noting that if for each block and each attribute, the frequency

distribution of the levels of the attribute are same for the two options, then 1′(P1)t = 1′(P2)t

for every t.

Proof of Theorem 1. The proof follows as a special case of Lemma 1.

Proof of Theorem 2. Under the linear paired comparison model, a design d optimally esti-

mates the main effects if CM = diag(C(1), . . . , C(k)) (see Großmann and Schwabe (2015)) where

C(i) = zi(Ivi−1 + Jvi−1) with zi = 2N/(vi − 1), i = 1, . . . , k. This implies that CM normal-

ized by number of pairs would attain an optimal structure if C(i) = zi(Ivi−1 + Jvi−1) with

zi = 2/(vi − 1), i = 1, . . . , k.

Since the OA + G method of construction entails adding generators to the orthogonal

array of strength t, (t ≥ 2), the off-diagonal elements of P ′MPM corresponding to two different

attributes is zero since under each level of the first attribute, all the levels of the second attribute

occur equally often. Also, since in an orthogonal array, under each column (attribute) the

levels are equally replicated, to establish that each C(i) attains an optimal structure of the

form zi(Ivi−1 + Jvi−1), it is enough to show that normalized P ′MPM corresponding to a paired

choice design with one attribute, say at v levels, attains the structure z(Iv−1 + Jv−1), where

z = 2/(v − 1).
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Without loss of generality, we consider only v choice pairs for a typical attribute since

under each column, the n rows of the orthogonal array involves v symbols each replicated n/v

times. While using the generator gj , let P 0
1 , P j2 be the v × (v − 1) effects-coded matrix for the

main effects for the first and second options, respectively, corresponding to any one attribute at

v levels. When h > 1, note that PM is the collection of different matrices generated out of the

corresponding {P 0
1 , P

j
2 }, j = 1 . . . , h of choice pairs. For notational simplicity, we denote P 0

1 by

P0 and P j2 by Pj , j = 1, . . . , v − 1. Also, note that 1′Pj = 0 and
∑v−1
j=0 Pj = 0.

Consider the information matrix P ′MPM normalized for v even. v(v−1)P ′MPM =
∑v−1
j=1 (P0−

Pj)
′(P0−Pj) =

∑v−1
j=1 (P ′0P0 +P ′jPj −P ′0Pj −P ′jP0) =

∑v−1
j=1{2(Iv−1 + Jv−1)}−P ′0(

∑v−1
j=1 Pj)−

(
∑v−1
j=1 P

′
j)P0 = {2(v−1)(Iv−1+Jv−1)}−P ′0(−P0)−(−P ′0)P0 = 2{(v−1)(Iv−1+Jv−1)}+2P ′0P0 =

2v(Iv−1 + Jv−1). Thus, for v even, h = v − 1 generators of the type gj = 1, . . . , v − 1 leads to

the optimal structure of normalized P ′MPM .

For v odd, we note that, if say, mth row of P0 corresponds to the level i, then the mth

row of Pv−j corresponds to the level i− j (mod v). Similarly, if say, lth row of Pj corresponds

to the level i, then the lth row of P0 corresponds to the level i − j (mod v). This makes the

lth row of Pj and P0 same as the mth row of P0 and Pv−j for every two rows l 6= m = 1, . . . , v.

Therefore, for v odd, P ′jP0 = P ′0Pv−j . Now, v(v− 1)/2P ′MPM =
∑(v−1)/2
j=1 (P0−Pj)′(P0−Pj) =∑(v−1)/2

j=1 (P ′0P0 +P ′jPj−P ′0Pj−P ′jP0) =
∑(v−1)/2
j=1 {2(Iv−1 +Jv−1)}−

∑(v−1)/2
j=1 (P ′0Pj +P ′jP0) =

(v−1)(Iv−1+Jv−1)−
∑(v−1)/2
j=1 (P ′0Pj+P

′
0Pv−j) = (v−1)(Iv−1+Jv−1)−P ′0

∑(v−1)/2
j=1 (Pj+Pv−j) =

(v−1)(Iv−1 +Jv−1)−P ′0
∑v−1
j=1 Pj = (v−1)(Iv−1 +Jv−1)−P ′0(−P0) = v(Iv−1 +Jv−1). Thus, for

v odd, h = (v− 1)/2 generators of the type gj = 1, . . . , (v− 1)/2 leads to the optimal structure

of normalized P ′MPM .

Proof of Theorem 3. For a given OA(n1, k + 1, v1 × · · · × vk × δ, 2), corresponding to the k

attributes at levels vi, i = 1, . . . , k, let d1 be the design constructed through OA + G method



Rakhi Singh, Ashish Das and Feng-Shun Chai

using h = lcm(v1, . . . , vk) generators. Then d1 with parameters k, v1, . . . , vk, b = 1, s = hn1

is an optimal paired choice design. From d1, the choice pairs obtained through each of the h

generators constitute a block of size n1. This is true since n1 rows of a block form the orthogonal

array in the first option and, with labels re-coded through the generator, in the second option

and hence the conditions in Theorem 1 are satisfied.

Finally, we use the δ symbols of the (k + 1)th column of the orthogonal array for further

blocking giving a paired choice block design d2 with parameters k, v1, . . . , vk, b = hδ, s = n1/δ.

This is true since for every attribute in each of the blocks so formed, each of the vi levels occurs

equally often under ith attribute and hence by Theorem 1, d2 is optimal in Dk,b,s.

Proofs for Theorem 4 and Theorem 5 require a result from Dey (2009) that is given below.

Lemma 2 (Dey (2009)). Consider v(v − 1)/2 combinations involving v levels taken two at a

time. Then, for v odd, the combinations can be grouped into (v−1)/2 replicates each comprising

v combinations. The groups are {(i, v−2− i), (i+1, v−1− i), . . . , (i+v−1, v−2−(i−(v−1)))}

and the levels are reduced modulo v; i = 0, . . . , (v − 3)/2.

Proof of Theorem 4. Theorem 3 of Graßhoff et al. (2004) states that from m(≥ k) rows

of a Hadamard matrix Hm of order m, an optimal paired choice design d3 with parameters

k, v, b = 1, s = mv(v − 1)/2 is constructed using the v(v − 1)/2 combinations of v levels taken

two at a time. From every row of {Hm,−Hm}, v(v−1)/2 choice pairs are obtained by replacing

‘1’ in the row by the first column of the combinations and ‘−1’ in the row by the second column

of the combinations. If v is odd, then (v−1)/2 is an integer and the v(v−1)/2 combinations can

be arranged in rows such that each of the two columns have every level appearing equally often.

Such an arrangement is always possible and follows from systems of distinct representatives.

Therefore, corresponding to each of the rows of {Hm,−Hm}, using v(v − 1)/2 choice pairs as

a block, a paired choice block design with parameters k, v, b = m, s = v(v − 1)/2 is obtained
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which, following Theorem 1 is optimal. Now for v odd, from Dey (2009), v(v−1)/2 combinations

involving v levels taken two at a time can be grouped into (v− 1)/2 replicates each comprising

v combinations. Therefore, the blocks generated by each row of Hm can be further broken into

(v − 1)/2 blocks each of size v, which gives us d4.

Proof of Theorem 5. Construction 3.2 of Demirkale, Donovan, and Street (2013) uses an

OA(n2, k + 1, vk × vk+1, 2) with vk+1 = n2/v and forms vk+1 parallel sets each having v rows.

Then, an optimal paired choice design with parameters k, v, b = 1, s = vk+1

(
v
2

)
is constructed

using the v(v − 1)/2 combinations of v numbers {1, . . . , v} taken two at a time. Let {i, j} be

a typical row. Then, for each such row of size two, corresponding rows i and j from each of

the vk+1 parallel sets are chosen to form the choice pairs of the optimal paired choice design

d6. Again as earlier, for v odd, the v(v − 1)/2 combinations can be arranged in rows such that

each of the two columns have every number appearing equally often. Considering the v(v−1)/2

choice pairs, obtained from a parallel set, as a block, we get the paired choice block design with

parameters k, v, b = vk+1, s = v(v − 1)/2 which is optimal in Dk,b,s. Further proof follows on

the same lines as the proof of Theorem 4 by treating the pairs generated by each parallel set as

blocks.

Proof of Theorem 6. Theorem 4 of Graßhoff et al. (2004) uses an OA(n3, k + 1,m1 × · · · ×

mk×δ, 2) with mi = vi(vi−1)/2 for some odd vi to construct an optimal paired choice design d7

with parameters k, vi, . . . , vk, b = 1, s = n3. This method involves a one-one mapping between

mi levels of orthogonal array to the vi(vi−1)/2 combinations on vi symbols. For a combination

{i, j} corresponding to a symbol of an orthogonal array, the first option in a pair is obtained by

replacing i in place of that symbol and the second option has j in the corresponding position.

Then, similar to construction of Theorem 3, using the δ (≥ 1) symbols of the (k+ 1)th column

of the orthogonal array for blocking gives us an optimal paired choice block design d8 with
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parameters k, vi, . . . , vk, b = δ, s = n3/δ. Note that this method is applicable only for odd vi

since for even vi, it is not possible to arrange vi(vi − 1)/2 combinations in a position-balanced

manner.

Proof of Theorem 7. From Theorem 1, for each of the h generators, a paired choice design

using the OA+G method of construction is optimal under the broader main effects block model

if P ′MPI = 0.

For a given generator, to show that P ′MPI = 0, it suffices to show that the inner product of

the columns of PM corresponding to the mth main effect and the columns of PI corresponding

to the two-factor interaction effect of ith and jth attribute is zero. Using an OA(n1, k, v1 ×

· · ·× vk, 3) in the OA+G method of construction, we establish the result through the following

two cases.

Case (i) m = i: In an orthogonal array of strength 2, each of the vivj combinations occur

equally often n1/(vivj) times as rows. Therefore, since the paired choice design is based on the

orthogonal array, for showing that P ′MPI = 0, it suffices to show that P ′MPI = 0 for one of

the n1/(vivj) sets of vivj rows of the type (i, j); i = 0, . . . , vi − 1; j = 0, . . . , vj − 1. For such

vivj rows, note that PMy, (y = 1, 2), corresponding to the jth attribute, can be partitioned

into vi sets PMy(j) each of vj distinct rows. Then, 1′PMy(j) = 0. Let PIy corresponding to the

ith attribute fixed at level il (il = 0, . . . , vi − 1) and the jth attribute taking vj distinct levels

be represented by PIy(ilj). Then, the columns of PIy(ilj) are multiples of either PMy(j) or 0v.

Therefore, 1′PIy(ilj) = 0 for y = 1, 2.

Let PM corresponding to the ith attribute at level il be represented by Xil . Then, Xil =

1x′il where x′il is a row vector of size vi−1. Therefore, P ′MPI =
∑vi−1
il=0 X

′
il

(PI1(ilj)−PI2(ilj)) =∑vi−1
il=0 xil(1

′PI1(ilj) − 1′PI2(ilj)) = 0.

Case (ii) m 6= i: In an orthogonal array of strength 3, each of the vivjvm combinations
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occur equally often n1/(vmvivj) times as rows. Therefore, as in Case (i), for showing that

P ′MPI = 0, it suffices to show that P ′MPI = 0 for one of the n1/(vmvivj) sets of vmvivj rows of

the type (m, i, j);m = 0, . . . , vm − 1; i = 0, . . . , vi − 1; j = 0, . . . , vj − 1.

For such vmvivj rows, note that PIy, (y = 1, 2), corresponding to the ith and jth attribute,

can be partitioned into vm sets PIy(ij) each of vivj distinct rows. Therefore, 1′PIy(ij) = 0 for

y = 1, 2, since from Case (i), 1′PIy(ilj) = 0 for the ith attribute at level il.

Finally, since for the mth attribute at level ml (ml = 0, . . . , vm−1), the vivj combinations

under attributes i and j occur equally often, therefore P ′MPI =
∑vm−1
ml=0 X

′
ml

(PI1(ij)−PI2(ij)) =∑vm−1
ml=0 xml(1

′PI1(ij) − 1′PI2(ij)) = 0.

Proof of Theorem 10. From Lemma 1, W ′PM = 0 if and only if for each attribute under the

choice pairs having foldover in the second option of a choice pair, the level l (l = 0, 1) appears

equally often in both the options in every block and thus, the frequency of the pair (1, 0) is

same as the frequency of the pair (0, 1) under every attribute in each block.

Let PI = (Y ′1 · · ·Y ′t · · ·Y ′b )′ where Yt is the s× k(k− 1)/2 matrix corresponding to the tth

block. With (PIj)t representing PIj for the tth block, Yt = (PI1)t− (PI2)t. Then, the condition

W ′PI = 0 is equivalent to the condition 1′(PI1)t = 1′(PI2)t for every t = 1, . . . , b. Consider

(PIj)t = ((PIj)
12
t · · · (PIj)lmt · · · (PIj)

(k−1)k
t ) where (PIj)

lm
t is of order s×1 and represents (PIj)t

for the two-factor interaction between the lth and the mth attribute. Therefore, the necessary

and sufficient condition for 1′(PI1)t = 1′(PI2)t is that 1′(PI1)lmt = 1′(PI2)lmt for every l and m.

In the tth block, for the choice pairs where either both the attributes have a foldover in

the second option or both do not have a foldover in the second option, the corresponding rows

in (PI2)lmt are same as the corresponding rows in (PI1)lmt .

However, for the pairs in which one attribute has a foldover in the second option and

another does not have foldover in the second option, the corresponding rows in (PI2)lmt are
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negative of the corresponding rows in (PI1)lmt . In such a case, 1′(PI1)lmt = 1′(PI2)lmt if and only

if 1′(PI1)lmt = −1′(PI2)lmt = 0. Now, 1′(PI1)lmt = 0 if and only if the frequency of the pairs

from the set {(01, 00), (01, 11), (10, 00),(10, 11)} is same as the frequency of the pairs from the

set {(00, 01), (00, 10), (11, 01), (11, 10)} under the lth and the mth attribute.

Proof of Theorem 11. In steps (iii)-(iv), corresponding to an element f of F , make the first

set of 2α−12k−α−2 = 2k−3 blocks having choice pairs (ab, a′b), (ab′, a′b′), (a′c, ac), (a′c′, ac′).

Similarly, following the steps (iii)-(iv), we make an additional set of 2k−3 blocks having choice

pairs (ac, a′c), (ac′, a′c′), (a′b, ab), (a′b′, ab′). Note that each of the constructed blocks satisfy

conditions (i) and (ii) of Theorem 10. This gives rise to a total of 2k−2 sets of blocks each

of size 4. The way we have constructed the choice pairs in steps (iii)-(iv), it follows that the

collection of first option in the 2k choice pairs forms a complete factorial having 2k combinations.

Furthermore, the additional set of 2k−3 blocks, in the construction, is identical to the first set

of 2k−3 blocks. Accordingly, we retain only the first set of 2k−3 blocks. This gives rise to a

total of 2k−1 choice pairs divided into 2k−3 blocks each of size 4. Therefore, step (v) gives an

optimal paired choice block design dI2 with parameters k, v = 2, s = 4, b where b = 2k−3
(
k
q

)
for

k odd and b = 2k−3
(
k+1
q+1

)
for k even.
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