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Abstract: Choice experiments help manufacturers, service providers, policymakers,

and other researchers to make business decisions. Traditionally, in a discrete-choice

experiment, each respondent is shown the same collection of choice pairs (i.e., the

choice design). In addition, as the number of attributes and/or the number of

levels under each attribute increases, the number of choice pairs in an optimal

paired choice design increases rapidly. Moreover, in the literature on utility-neutral

setups, random subsets of theoretically obtained optimal designs are often allocated

to respondents. This raises the question of whether we can do better than simply

using a random allocation of subsets. We answer this question using a linear paired-

comparison model (or, equivalently, a multinomial logit model), where we first

incorporate the fixed respondent effects (also referred to as the block effects), and

then obtain optimal designs for the parameters of interest. Our approach is simple

and theoretically tractable, unlike other approaches that are algorithmic in nature.

We present several constructions of optimal block designs that can be used to

estimate main effects or main plus two-factor interaction effects. Our results show

when and how an optimal design for the model without blocks can be split into

blocks such that the optimality properties are retained under the block model.

Key words and phrases: Choice experiment, hadamard matrix, linear paired com-

parison model, multinomial logit model, orthogonal array, utility-neutral setup.

1. Introduction

Choice experiments mimic situations in which individuals have to choose

between a number of competing options. The goal of such experiments is to

quantify the influence of the attributes that characterize the choice options. In

a choice experiment, respondents are shown multiple choice sets of options, from

which they must choose a preferred option. Considering choice sets of size two

and r respondents, a paired choice experiment usually shows the same set of

N choice pairs to each of the r respondents. Then respondents are asked to

indicate their preference between the two options for each of the N choice pairs.

Each option in a choice pair is described by a set of k attributes, where, for
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i = 1, . . . , k, the ith attribute has vi levels, for vi ≥ 2. We represent the vi levels

by 0, . . . , vi− 1. In a choice experiment, a paired choice design d is an allocation

of choice pairs among r respondents such that each respondent observes N choice

pairs. Such paired choice designs are often analyzed using a multinomial logit

model.

One objective of a choice experiment is to optimally or efficiently estimate

the parameters of interest, which are either the main effects or the main plus

two-factor interaction effects of the k attributes. D-optimal designs have been

employed in studies under utility-neutral setups or using the locally D-optimal/

Bayesian approach. D-optimal designs have also been obtained theoretically

under the utility-neutral setup; for example, see Graßhoff et al. (2003), Graßhoff

et al. (2004), Street and Burgess (2007), Street and Burgess (2012), Demirkale,

Donovan and Street (2013), Bush (2014), Großmann and Schwabe (2015), and

Singh, Chai and Das (2015). In contrast, using locally optimal and Bayesian

approaches, D-optimal designs have been obtained using computer algorithms

(e.g., Huber and Zwerina (1996), Sándor and Wedel (2001), Sándor and Wedel

(2002), Sándor and Wedel (2005), Kessels, Goos and Vandebroek (2006), Kessels,

Goos and Vandebroek (2008), Kessels et al. (2008), Kessels et al. (2009), Yu, Goos

and Vandebroek (2009)). In this study, we follow the utility-neutral approach.

Traditionally, in a choice experiment, respondents are shown the same col-

lection of N choice pairs under the assumption that the respondents are alike.

However, this assumption is not always practical because respondents who are

sampled randomly from a population are more likely to be heterogeneous. For

example, Kessels, Goos and Vandebroek (2008) note that this heterogeneity leads

to variations in the responses from different respondents.

In a paired choice experiment, there is always a constraint on the maximum

number of choice pairs that can be shown to each respondent so as to maintain

the overall response quality. A major concern with traditional optimal paired

choice designs is that the number of choice pairs in the design increases rapidly

with a moderate increase in k and/or vi.

Attempts have been made to address the issue of heterogeneity among re-

spondents using different models and approaches. Sándor and Wedel (2002)

construct designs using a computer-intensive algorithmic approach under the so-

called mixed logit model. In their approach, the same set of N choice pairs are

shown to each respondent. Subsequently, Sándor and Wedel (2005) demonstrated

that using different choice designs and randomly allocating respondents to these
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designs yields substantially higher efficiency than the designs obtained in Sándor

and Wedel (2002). Later, Kessels, Goos and Vandebroek (2008), addressing the

heterogeneity in conjoint experiments, introduced a random respondent effects

model for estimating the main effects and used algorithmic methods to construct

D-optimal designs. The conjoint designs under their setup identify as many sets

of options as there are respondents. Therefore, their approach, though similar,

is not applicable to our setup.

In practice, there is often a pool of choice sets, a random subset of which is

allocated to each respondent Street and Burgess (2007). This process is continued

until all choice sets are used once. Thereafter, the process is started again. To

address this ad hoc approach to the allocation of choice sets, we use an additional

fixed-effect term in the model to systematically split the pool of choice sets. In

experimental design theory, the concept of blocking is used extensively as a tool

to eliminate systematic heterogeneity in the experimental material. Following

the same approach, we consider the respondents as blocks. Thus, in contrast

to the computer-intensive algorithmic approaches of Sándor and Wedel (2005)

and Kessels, Goos and Vandebroek (2008), we treat respondent heterogeneity as

a nuisance factor by including respondent-level block-effect terms in the model.

Then we design experiments that optimally estimate the parameters of interest

after eliminating the respondent (block) effects. Adopting this approach enables

an experimenter to obtain optimal designs, with reasonable number of choice

pairs s(< N) shown to each of the r respondents. Later, in Section 2, we discuss

the kind of heterogeneity addressed by both our approach and seemingly similar

approaches.

In what follows, a design with b blocks, each of size s, is generated, where

each block is associated with a respondent. Usually, t copies of a proposed design

are used for larger numbers of respondents r = tb, because replicating the design

does not affect its optimality. Therefore, we restrict ourselves to optimal paired

choice block designs with b blocks, each of size s, with N = bs.

In this context, the traditional paired choice designs reduce to b = 1, s = N ,

and r = t, where s is necessarily at least the number of model parameters.

However, for b > 1, the block size s can be smaller than the number of model

parameters, but the paired choice design with b blocks can still estimate all of the

parameters. In order to estimate these parameters, we provide optimal designs

with block sizes that are flexible and practical under our setup.

In Section 2, we treat respondent heterogeneity as a nuisance factor and
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incorporate the fixed respondent (block) effects in the model. Then, we obtain

an information matrix for estimating the parameters of interest after eliminating

the respondent (block) effects. In Section 3, under the main-effects block model,

we provide optimal paired choice block designs for estimating the main effects

for symmetric and asymmetric attributes. We also provide a simple solution to

the problem of identifying generators when constructing an optimal paired choice

design. In Section 4, under a broader main-effects block model, we provide opti-

mal paired choice block designs for symmetric and asymmetric attributes. The

broader main-effects model includes the main effects and the two-factor interac-

tion effects, where we are interested only in estimating the main effects. Finally,

in Section 5, we provide optimal paired choice block designs for estimating the

main plus two-factor interaction effects. Finally, we conclude the paper in Sec-

tion 6.

2. Preliminaries and the Model Incorporating Respondent Effects

Most studies on optimal choice designs are based on the multinomial logit

models of Huber and Zwerina (1996) or Street and Burgess (2007). Großmann

and Schwabe (2015) observed that the two approaches are equivalent for the

purpose of finding D-optimal designs. Here we use the multinomial logit model

of Huber and Zwerina (1996). This model supposes that the probability of

preferring option 1 over option 2 in the ith choice pair can be expressed as

π12i = eu1i/(eu1i + eu2i), where u1i and u2i represent the systematic parts of the

utilities attached to the two options in choice pair i. Similarly, π21i = 1 − π12i
is the probability that option 2 is preferred over option 1. Thus, it follows that

for the ith choice pair, the choice probabilities depend only on the utility dif-

ference u1i − u2i. For a design d with N choice pairs, because the options are

described by k attributes, the utilities are modeled using the linear predictor

uj = Ppjθ, where θ is a p × 1 vector representing the parameters of interest,

Ppj is an N × p effects-coded matrix for the jth option, and uj = (uji) is an

N × 1 utility vector for the jth option, for j = 1, 2. Then, the utility difference

u1 − u2 = (Pp1 − Pp2)θ = Ppθ is a linear function of the parameter vector θ. For

the purpose of deriving optimal designs, it is often assumed that θ = 0. This

indifference, or the utility-neutral assumption, means that the two options in a

choice set are equally attractive, which simplifies the information matrix and the

design problem considerably. Under the utility-neutral multinomial logit model,

the Fisher information matrix is (1/4)P ′pPp (see Großmann and Schwabe (2015)).
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Graßhoff et al. (2003) and Graßhoff et al. (2004) both studied linear paired-

comparison designs, which they analyzed using a linear paired-comparison model.

Here, the observed utility difference Z between two choices again depends on the

difference matrix Pp = Pp1 − Pp2. More precisely, a response is described by the

model Z = u1 − u2 + ε = (Pp1 − Pp2)θ + ε = Ppθ + ε, where ε is a random error

vector. The matrix C = P ′pPp is the information matrix in the model. Because C

is proportional to the information matrix under the utility-neutral multinomial

logit model, it follows that the designs that are optimal under the linear paired-

comparison model are also optimal under the multinomial logit model, and vice

versa.

We focus on D-optimality because, as noted in Großmann and Schwabe

(2015), most of the optimality results for choice designs and linear paired-comparison

designs are available for the D-criterion. A D-optimal design yields the highest

determinant for the information matrix of all competing designs.

For paired choice experiments, the multinomial logit model and the linear

paired-comparison model are based on the utility difference u1−u2. By incorpo-

rating respondent effects, the relevant utility difference under the block model,

with blocks being the respondents, becomes

u1 − u2 = (Pp1 − Pp2)θ +Wβ = Ppθ +Wβ, (2.1)

where β = (β1, . . . , βb)
′ represents a b× 1 vector of block effects, and W = (wij)

is an N × b incidence matrix, with wij = 1 if the ith choice pair belongs to the

jth block, and 0 otherwise. Without loss of generality, we take W = Ib ⊗ 1s,

where Ia and 1a denote the identity matrix of order a and the a × 1 vector

of ones, respectively. Here, ⊗ denotes the Kronecker product. Note that (2.1)

corresponds to a paired choice block design with b blocks, each of size s, where

the b blocks are repeated t times to accommodate r = tb respondents. Each of

the r respondents is associated with a single block of the design.

Unlike Sándor and Wedel (2005) and Kessels, Goos and Vandebroek (2008),

where an assumed distribution on the model parameters takes care of the respon-

dent effects, our approach, following standard block-design theory, considers βj
as a fixed-effects term. Most of the literature on theoretically obtained D-optimal

designs for choice experiments employs multinomial logit models without any re-

spondent effects. In contrast, our fixed-effects block model attempts to obtain

an optimal block design theoretically under the utility-neutral setup.

In a multinomial logit model or a linear paired-comparison model, including

respondent effects β can be regarded as adding b two-level attributes to the
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set of p predictor variables. Then, the corresponding difference matrix for the

pairs, in b blocks, has an additional component, which can be written as (Pp,W ).

Thus, under the utility-neutral multinomial logit block model, it follows that the

information matrix for estimating θ and β is

M =
1

4

[
C P ′pW

W ′Pp W ′W

]
, (2.2)

where C = P ′pPp, as defined earlier. Moreover, up to a constant factor of 1/4,

M coincides with the information matrix in the linear paired-comparison block

model. Thus, optimal designs under the latter model are also optimal under

the utlity-neutral multinomial logit block model. The information matrix for

estimating θ under the linear paired-comparison block model, after eliminating

the block effects, is

C̃ = C − P ′pW (W ′W )−1W ′Pp = C − 1

s
P ′pWW ′Pp. (2.3)

This follows from the standard linear model theory, where a parameter vector is

partitioned into a parameter vector of interest and the nuisance parameters (see,

e.g., Page 68 of Haines (2015)).

A paired choice block design is connected if all parameters of interest are

estimable, which happens if and only if C̃ has rank p. In what follows, the class

of all connected paired choice block designs with k attributes in b blocks, each of

size s, is denoted by Dk,b,s. From (2.3), C − C̃ is a non-negative definite matrix.

Thus, if in the class of unblocked designs with N = bs, a paired choice design d is

D-optimal, then d, considered as a design in Dk,b,s, is also D-optimal, provided

that C̃ = C.

Note that eliminating the respondent effects simultaneously controls the

within-pair order effects (see Goos and Großmann (2011) and Bush, Street and

Burgess (2012)).

3. Optimal Block Designs Under the Main-Effects Model

Under the main-effects block model, from (2.1), it follows that u1 − u2 =

(PM1 − PM2)τ + Wβ = PMτ + Wβ, where τ is a
∑k

i=1(vi − 1) × 1 parameter

vector of the main effects, PMj is an N ×
∑k

i=1(vi − 1) effects-coded matrix of

the main effects for the jth option, for j = 1, 2, and PM = PM1−PM2. A row of

PMj contains the effects-coded row vector of length vi − 1 for the ith attribute.

The effects coding for level l is represented by a unit vector with 1 in the (l+1)th

position, for l = 0, . . . , vi − 2, and the coding for level vi − 1 is represented by a
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unit vector with −1 in each of the vi− 1 positions, for i = 1, . . . , k. For example,

for v = 3, effects-coded vectors for l = 0, 1, 2 are (1 0), (0 1), and (−1 − 1),

respectively.

From (2.3), the information matrix used to estimate the main effects after

eliminating the block effects is

C̃M = CM −
1

s
P ′MWW ′PM , (3.1)

where CM = P ′MPM is the information matrix used to estimate the main effects

under the unblocked model. From (3.1), it follows that a necessary and sufficient

condition for C̃M = CM to hold is W ′PM = 0. Therefore, by blocking the choice

pairs of an optimal paired choice design into b suitable blocks, such that W ′PM =

0, we can obtain an optimal paired choice block design. Here, we provide a simple

condition to achieve this; the proof is provided in the Supplementary Material.

Theorem 1. C̃M = CM if, for each block, the levels of all attributes appear

equally often in the first option and in the second option.

This property of every level of an attribute appearing the same number of

times in the first and second options of pairs is also known as position-balance

(see Großmann and Schwabe (2015)).

An orthogonal array OA(n, k, v1 × · · · × vk, t) of strength t is an n× k array

with elements in the ith column from a set of vi distinct symbols {0, 1, . . . , vi−1}
(i = 1, . . . , k), such that all possible combinations of symbols appear equally often

as rows in every n× t subarray. An orthogonal array is symmetric if vi = v for all

i, and the corresponding OA is denoted by OA(n, k, vk, t); else it is an asymmetric

orthogonal array.

Street and Burgess (2007), Demirkale, Donovan and Street (2013), and Bush

(2014) provide the OA+G method for constructing optimal paired choice designs

using orthogonal arrays and generators G. Let G be a collection of h generators

G1, . . . , Gh, where Gj = (gj1 , gj2 , . . . , gjk). The OA + G method gives a paired

choice design (A,Bj), j = 1, . . . , h, where A = (Ali) is an OA(n1, k, v1 × · · · ×
vk, t) and Bj = (Bj

li), with Bj
li = Ali + gji reduced mod vi, for l = 1, . . . , n1,

i = 1 . . . , k, and j = 1, . . . , h. This method depends on the availability of the

required orthogonal array, which may not always exist. The SAS link http:

//support.sas.com/techsup/technote/ts723.html, the Sloane link http://

neilsloane.com/oadir/, and Hedayat, Sloane and Stufken (1999) provide a

comprehensive summary of orthogonal arrays and their constructions.

In the literature, the generators G are usually derived through a trial-and-

http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
http://neilsloane.com/oadir/
http://neilsloane.com/oadir/
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error approach, and no general results on the structure of such generators appear

to exist. In fact, Bush (2014) highlights the complexities involved in choosing

the sets of generators. We present a simple result that systematically provides

h generators, the proof of which is provided in the Supplementary Material. Let

lcm(a1, . . . , ak) denote the least common multiple of a1, . . . , ak.

Theorem 2. The number of generators for the optimal paired choice design

with k attributes is h = lcm(h1, . . . , hk), where hi = vi − 1 for vi even, and

hi = (vi − 1)/2 for vi odd, for i = 1, . . . , k. Then the generators are given by

Gj = (gj1 , gj2 , . . . , gjk), where gji takes each of the values from the set {1, . . . , hi}
with frequency h/hi, for j = 1, . . . , h, i = 1, . . . , k.

Note that Theorem 2 provides generators for unblocked paired choice designs.

As in Street and Burgess (2007), we use several sets of generators to create the

final design; thus, the number of generators given in Theorem 2 may not be the

smallest possible.

Example 1. Suppose there are three attributes with v1 = 2, v2 = 3, and v3 = 4.

Then, we have h1 = 1, gj1 = 1; h2 = 1, gj2 = 1; and h3 = 3, gj3 = 1, 2, 3.

Thus, h = lcm(1, 1, 3) = 3. This leads to the generators G1 = (111), G2 = (112),

and G3 = (113). Thus, for a given OA(24, 3, 2 × 3 × 4, 2), the corresponding

optimal paired choice design with parameters k, v1 = 2, v2 = 3, v3 = 4, b = 1,

and N = s = hn1 = 3 × 24 = 72 is obtained using the OA + G method of

construction with three generators. The corresponding design is given in the

Supplementary Material.

Example 2. Suppose there are two attributes, with v1 = 4 and v2 = 5. Then,

we have h1 = 3, gj1 = 1, 2, 3 and h2 = 2, gj2 = 1, 2. Thus, h = lcm(3, 2) = 6.

This leads to the six generators G1 = (11), G2 = (12), G3 = (21), G4 = (22),

G5 = (31), and G6 = (32), which yield an optimal paired choice design when

used in conjunction with OA(20, 2, 4× 5, 2).

In general, for a given OA(n1, k, v1 × · · · × vk, 2), the corresponding optimal

paired choice design d1 with parameters k, v1, . . . , vk, b = 1, and N = s = hn1,

is obtained using the OA + G method of construction with generators Gj , j =

1, . . . , h. When N = s is large, we find that practitioners advocate allocating

choice pairs into more than one block either randomly or using a spare attribute

(see Street and Burgess (2007), Bliemer and Rose (2011)). Based on Theorem 1,

it follows that under our block model, we can retain the optimality of the de-

sign obtained through the OA + G method if blocking is done using a column
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corresponding to an attribute. Any other blocking approach may jeopardize the

characteristics of the design. We now provide four theorems and their construc-

tions, detailed proofs of which are provided in the Supplementary Material.

Theorem 3. For δ ≥ 1 and an OA(n1, k + 1, v1 × · · · × vk × δ, 2), there exists

an optimal paired choice block design d2 ∈ Dk,b,s, with parameters k, v1, . . . , vk,

b = hδ, and s = n1/δ, where h = lcm(h1, . . . , hk).

Construction. For a given OA(n1, k + 1, v1 × · · · × vk × δ, 2), corresponding to

the k attributes at levels vi, i = 1, . . . , k, let d1 be the design constructed using the

OA+G method and h = lcm(h1, . . . , hk) generators from Theorem 2. Then, d1,

with parameters k, vi, for i = 1, . . . , k, b = 1, and s = hn1 is an optimal paired

choice design. From d1, the choice pairs obtained from each of the h generators

constitute a block of size n1. Finally, we use the δ symbols of the (k + 1)th

column of the orthogonal array for further blocking. This yields a paired choice

block design d2, with parameters k, v1, . . . , vk, b = hδ, and s = n1/δ.

Example 3. From an OA(24, 15, 213 × 3 × 4, 2), in order to estimate the main

effects of k = 14 attributes, of which 13 attributes are at two levels and one

attribute is at three levels, an optimal paired choice block design can be con-

structed for δ = 4, h = 1, k = 14, b = 4, and s = 6. As an illustration, we give a

24 × 3 paired choice block design d2, with parameters k = 5, b = 4, and s = 6.

d2 =

B1 B2 B3 B4

(00000,11111) (01102,10010) (10112,01000) (10001,01112)

(11010,00101) (11110,00001) (00111,11002) (00012,11100)

(01101,10012) (11011,00102) (01002,10110) (10100,01011)

(11002,00110) (00100,11011) (11101,00012) (01011,10102)

(10111,01002) (10012,01100) (01010,10101) (01110,10001)

(00112,11000) (00001,11112) (10000,01111) (11102,00010)

Note that when the attributes have mixed levels greater than three, the OA+

G method leads to choice designs with a large number of choice pairs. However,

blocking still helps to reduce the number of choice pairs shown to a respondent

from N = s = 96 to s = 24. For example, an OA(32, 11, 23 × 47 × 8, 2) can be

used to construct a paired choice block design with three two-level attributes and

seven four-level attributes in N = 96 choice pairs with b = 24 and s = 4.

For many parameter sets corresponding to k attributes, each at v levels,

Graßhoff et al. (2004) and Demirkale, Donovan and Street (2013) provide optimal
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paired choice designs with fewer choice pairs than those constructed using the

OA + G method. We now show how an optimal paired choice block design can

be constructed, starting with its design.

Theorem 4. For a Hadamard matrix Hm, an optimal paired choice design d3
exists, with parameters k, v, b = 1, and s = mv(v−1)/2, for k ≤ m. Furthermore,

for v odd, a paired choice block design d4 exists, with parameters k, v, b = m(v −
1)/2, and s = v, that is optimal in Dk,b,s.

Construction. For a given Hm, an optimal paired choice design d3 is obtained

through Theorem 3 of Graßhoff et al. (2004), with parameters k, v, b = 1, and

s = mv(v − 1)/2. Moreover, for v odd, the choice pairs corresponding to each

of the rows of {Hm,−Hm} form a block; thus, the design is an optimal paired

choice block design. Now, using a result from Dey (2009), v(v−1)/2 combinations

involving v levels, taken two at a time, can be grouped into (v − 1)/2 replicas,

each comprising v elements. Therefore, the blocks generated by each row of Hm

can be broken further into (v−1)/2 blocks, each of size v, which gives the optimal

paired choice block design d4.

Example 4. Consider v = 3, with combinations (0, 1), (1, 2), and (2, 0), and the

Hadamard matrixH4. An optimal paired choice design d3 exists, with parameters

k = 4, v = 3, b = 1, and s = 12. Furthermore, because v is odd, an optimal paired

choice block design d4 is constructed with parameters k = 4, v = 3, b = 4, and

s = 3 by considering the choice pairs generated by each row of {H4,−H4} as a

block.

d4 =

B1 B2 B3 B4

(0000,1111) (0101,1010) (0011,1100) (0110,1001)

(1111,2222) (1212,2121) (1122,2211) (1221,2112)

(2222,0000) (2020,0202) (2200,0022) (2002,0220)

Theorem 5. For an OA(n2, k + 1, vk × vk+1, 2), with vk+1 = n2/v, an opti-

mal paired choice design d5 exists, with parameters k, v, b = 1, s = n2(v − 1)/2.

Furthermore, for v odd, a paired choice block design d6 exists, with parameters

k, v, b = n2(v − 1)/2v, and s = v, that is optimal in Dk,b,s.

Construction. For a given OA(n2, k + 1, vk × vk+1, 2), with vk+1 = n2/v, an

optimal paired choice design d5 is obtained from Construction 3.2 of Demirkale,

Donovan and Street (2013), with parameters k, v, b = 1, and s = vk+1

(
v
2

)
. More-

over, for v odd, the choice pairs corresponding to each of the parallel sets of the
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orthogonal array form a block; thus, the design is an optimal paired choice block

design. Now, following Dey (2009), the blocks generated by each parallel set can

be broken further into (v − 1)/2 blocks, each of size v, which gives the optimal

paired choice block design d6.

Theorem 6. For δ ≥ 1 and an OA(n3, k + 1,m1 × · · · ×mk × δ, 2), with mi =

vi(vi−1)/2 for some odd vi, an optimal paired choice block design d8 exists, with

parameters k, vi, . . . , vk, b = δ, and s = n3/δ.

Construction. For a given OA(n3, k + 1,m1 × · · · × mk × δ, 2), with mi =

vi(vi− 1)/2 for some odd vi, an optimal paired choice design d7 is obtained from

Theorem 4 of Graßhoff et al. (2004), with parameters k, vi, . . . , vk, b = 1, and

s = n3. Then, similarly to the construction of Theorem 3, we use the δ (≥ 1)

symbols of the (k + 1)th column of the orthogonal array for blocking. This yields

an optimal paired choice block design d8, with parameters k, vi, . . . , vk, b = δ, and

s = n3/δ. Note that this method of blocking is applicable for odd vi only.

Table 1 highlights the flexibility in the number of blocks while blocking

the traditional optimal symmetric paired choice designs listed in Table 2 of

Demirkale, Donovan and Street (2013). We list the values of s and b corre-

sponding to the optimal designs obtained using Theorem 3 and Theorem 4. Note

that in the parameter range of Table 1, Theorem 5 and Theorem 6 do not provide

additional designs that are not obtainable from Theorem 3 and Theorem 4. Some

of the traditional optimal paired choice designs, marked ∗, are not optimal under

the block setup for blocks of size s = N and b = 1, because the design matrices

are not orthogonal to the vector of ones. However, because b > 1, optimal designs

with blocks of size s = N/b are feasible using Theorem 3.

Note that, from a given optimal paired choice design in Dk,b,s, we can ran-

domly group the b blocks into b/x blocks, each of size xs, to obtain optimal

paired choice designs in Dk,b/x,sx. In Table 1, the designs with x = 1 are first ob-

tained using the Theorems listed in the corresponding column headers, whereas

the designs with x > 1 are obtained thereafter using random grouping. We can

obtain a table similar to Table 1 for optimal asymmetric paired choice designs

based on a list of more than 600 orthogonal arrays with n ≤ 100.

4. Optimal Block Designs Under the Broader Main-Effects Model

In this section, we estimate the main effects under the broader main-effects

model for an asymmetric paired choice design, where the ith attribute is at vi
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Table 1. Optimal designs in Dk,b,s.

v k Traditional (s,1) Theorem 3 (s, b) Theorem 4 (s, b)

2 3 4 (4,1)

2 4 4* (4x,2/x), x=1,2

2 5-6 8
(4x,2/x), x=1,2
(6x,2/x), x=1,2

2 7 8
(8,1)

(6x,2/x), x=1,2
(4x,4/x), x=1,2,4

2 8 8*
(6x,2/x), x=1,2

(4x,4/x), x=1,2,4

2 9-10 12
(6x,2/x), x=1,2

(4x,4/x), x=1,2,4
(10x,2/x), x=1,2

2 11 12

(12,1)
(4x,4/x), x=1,2,4
(10x,2/x), x=1,2
(6x,4/x), x=1,2,4

2 12 12*
(4x,4/x), x=1,2,4
(10x,2/x), x=1,2
(6x,4/x), x=1,2,4

3 3 9,12 (3x,3/x), x=1,3 (3x,4/x), x=1,2,4

3 4 9,12,18
(9,1)

(3x,4/x), x=1,2,4
(3x,6/x), x=1,2,3,6

3 5,6 18,24 (3x,6/x), x=1,2,3,6 (3x,8/x), x=1,2,4,8

3 7 18,24,27
(9x,2/x), x=1,2

(3x,8/x), x=1,2,4,8
(3x,9/x), x=1,3,9

3 8 24,27 (3x,9/x), x=1,3,9 (3x,8/x), x=1,2,4,8

3 9 27,36 (3x,9/x), x=1,3,9 (3x,12/x), x=1,2,3,4,6,12

3 10-12 27,36
(9x,3/x), x=1,3

(3x,12/x), x=1,2,3,4,6,12
(3x,12/x), x=1,2,3,4,6,12

4 3-4 24*,28 (4x,12/x), x=1,2,3,4,6,12

4 5 48
(16x,3/x), x=1,3

(4x,24/x), x=1,2,3,4,6,8,12,24

4 6-8 48*,96 (4x,24/x), x=1,2,3,4,6,8,12,24

4 9 72*,96
(16x,6/x), x=1,2,3,6

(4x,36/x), x=1,2,3,4,6,9,12,18,36

4 10-12 72*,144 (4x,36/x), x=1,2,3,4,6,9,12,18,36

5 3-4 40,50 (5x,10/x), x=1,2,5,10 (5x,8/x), x=1,2,4,8

5 5 50,80 (5x,10/x), x=1,2,5,10 (5x,16/x), x=1,2,4,8,16

5 6 50,80,100
(25x,2/x), x=1,2

(5x,16/x), x=1,2,4,8,16
(5x,20/x), x=1,2,4,5,10,20

5 7-8 80,100 (5x,20/x), x=1,2,4,5,10,20 (5x,16/x), x=1,2,4,8,16

5 9-10 100,120 (5x,20/x), x=1,2,4,5,10,20 (5x,24/x), x=1,2,3,4,6,12,24

6 3 60*,180
(12x,15/x), x=1,3,5,15
(18x,10/x), x=1,2,5,10

6 4 60*,180*,360 (6x,60/x), x=1-6,10,12,15,20,30,60

6 5-6 120*,180*,360 (6x,60/x), x=1-6,10,12,15,20,30,60

7 3-4 84,147 (7x,21/x), x=1,3,7,21 (7x,12/x), x=1,2,3,4,6,12

7 5-7 147,168 (7x,21/x), x=1,3,7,21 (21x,8/x), x=1,2,4,8

7 8 147,168,294
(49x,3/x), x=1,3

(21x,8/x), x=1,2,4,8
(7x,42/x), x=1,2,3,6,7,14,21,42



OPTIMAL PAIRED CHOICE BLOCK DESIGNS 1431

levels, for i = 1, . . . , k. The broader main-effects model constitutes the main

effects and the two-factor interaction effects, where we are interested only in

estimating the main effects. For symmetric paired choice designs, Graßhoff et al.

(2003) characterized optimal paired choice designs under the broader main-effects

model. More recently, for vi = 2, Singh, Chai and Das (2015) obtained optimal

designs under the same model.

After introducing the respondent effects, from (2.1), the relevant utility dif-

ferences become

u1 − u2 = (PM1 − PM2)τ + (PI1 − PI2)γ +W ′β = PMτ + PIγ +W ′β, (4.1)

where γ is a
∑k−1

i=1

∑k
j=i+1(vi − 1)(vj − 1) × 1 parameter vector for the two-

factor interaction effects, PIj is an N×
∑k−1

i=1

∑k
j=i+1(vi−1)(vj−1) effects-coded

matrix of the two-factor interaction effects for the jth option, for j = 1, 2, and

PI = PI1−PI2. Let PIj = (P 1′

Ij , . . . , P
n′

Ij )′, where P lIj corresponds to the lth choice

pair in PIj . In addition, let P lMj(i) represent the columns of PMj corresponding

to the lth choice pair and ith attribute. Then, P lIj = (P lMj(1) ⊗ P
l
Mj(2), P

l
Mj(1) ⊗

P lMj(3), . . . , P
l
Mj(k−1) ⊗ P

l
Mj(k)).

The information matrix used to estimate the main effects after eliminating

the two-factor interaction effects and the block effects is

C̃B = CM − [P ′MPI P
′
MW ]

[
P ′IPI P

′
IW

P ′IW W ′W

]− [
P ′IPM
W ′PM

]
. (4.2)

Therefore, a paired choice design that is optimal under the main-effects

model is also optimal under the broader main-effects block model if C̃B = CM ,

that is, if P ′IPM = 0 and W ′PM = 0. The designs in Theorem 3 satisfy

W ′PM = 0. Furthermore, for symmetric designs with v = 2, it follows from

Singh, Chai and Das (2015) that the designs also satisfy P ′IPM = 0. Therefore,

in particular, for symmetric designs with v = 2, the paired choice block designs

of Theorem 3 are also optimal under the broader main-effects block model.

We now give the following construction for optimal paired choice block de-

signs under the broader main-effects model.

Theorem 7. Under the broader main-effects model, for an OA(n1, k, v1 × · · · ×
vk, 3) and h = lcm(v1, . . . , vk), there exists a paired choice block design dB1 , with

parameters k, v1, . . . , vk, b = 1, and s = hn1, that is optimal in Dk,b,s.

Construction. We obtain dB1 using the OA+G method of construction and h

generators, as in Theorem 2. A detailed proof is provided in the Supplementary

Material.
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Theorem 8. Under the broader main-effects model, for δ ≥ 1 and an OA(n1, k+

1, v1×· · ·×vk×δ, 3), there exists a paired choice block design dB2 , with parameters

k, v1, . . . , vk, b = hδ, and s = n1/δ, that is optimal in Dk,b,s.

Construction. In a similar manner to Theorem 3, the construction here is based

on using sets of generators, from Theorem 2, on an orthogonal array of strength

three.

We now provide another method to obtain symmetric optimal paired choice

block designs with s = v; v ≥ 3.

Theorem 9. For an OA(n1, k − 1, vk−1, 3), there exists a paired choice block

design dB3 , with parameters k, v ≥ 3, s = v, and b = hn1, that is optimal in

Dk,b,s.

Construction. We adopt the following method of construction:

(i) Following Theorem 8, construct dB2 from an OA(n1, k, v
k−1 × 1, 3) for k −

1 attributes, each at v levels. While constructing dB2 , the h generators, as in

Theorem 2, are (k− 1)-tuples of the form (1 . . . 1), . . . , (v− 1 . . . v− 1) for v even

(h = (v − 1)), and of the form (1 . . . 1), . . . , ((v − 1)/2 . . . (v − 1)/2) for v odd

(h = (v− 1)/2). Then, for each choice pair, add the kth attribute at level zere in

option one and, similarly, generate the kth attribute in the second option using

the same generator as that used for the other k − 1 attributes.

(ii) For each of the h generators, generate v − 1 additional copies of the design

obtained in (i) by adding 1 (mod v),. . . , (v− 1) (mod v) to every attribute under

both options. Note that every copy in (ii) is just a recoding of the design obtained

in (i) and, hence, the resultant design with parameters k, v, s = hn1v, and b = 1

is also optimal.

(iii) Finally, for each of the h generators, the ith block of size v comprises the

ith row from each of the v copies created in (ii), for i = 1, . . . , n1.

The hn1 blocks obtained in this way with s = v form the required optimal design

dB3 . This design has distinct choice pairs in every block.

5. Optimal Block Designs for Estimating the Main Plus Two-Factor

Interaction Effects

The literature on optimal paired choice designs for estimating the main plus

two-factor interaction effects is very limited because such designs require a large

number of choice pairs to be shown to every respondent. Graßhoff et al. (2003),
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Street and Burgess (2004), and Großmann, Schwabe and Gilmour (2012) provide

optimal and/or efficient paired choice designs under this setup for k attributes,

each at two levels. In this section, we consider each of the k attributes to be

at two levels. Let q = dk/2e, where dze represents the smallest integer greater

than or equal to z. The construction method of Street and Burgess (2007) entails

starting with an orthogonal array OA(n1, k, 2
k, 4) as a set of n1 first options, and

then taking the foldover of α attributes in the second option, keeping the rest

of the k − α attributes the same for each of the n1 choice pairs. Here α = q

for k odd, and α = q and q + 1 for k even. This process is repeated for
(
k
α

)
possible combinations of the attributes. Here, the foldover of an attribute in the

second option of a choice pair means that the attribute level in the second option

is different from that in the first. This paired choice design dI1 with parameters

k, v, s, b = 1 is optimal, where s = n1
(
k
q

)
for k odd, and s = n1

(
k+1
q+1

)
for k even.

Incorporating respondent effects, the model is as given in (4.1). However, in

contrast to Section 4, here we want to estimate both the main effects and the two-

factor interaction effects. The information matrix used to estimate the main plus

two-factor interaction effects under the multinomial logit model incorporating

respondent effects is

C̃I =

[
CM P ′MPI
P ′IPM P ′IPI

]
− 1

s
[P ′MW P ′IW ]

[
W ′PM
W ′PI

]
. (5.1)

As earlier, in order to achieve optimal paired choice block designs, we start

with an optimal paired choice design dI1 and then enforce blocking, such that

W ′PM = 0 and W ′PI = 0. We provide a simple condition to achieve this, the

proof of which is provided in the Supplementary Material.

Let the pair (a1, b1) mean that a1 and b1 are the levels corresponding to an

attribute for the first and second options, respectively. Similarly, let the pair

(a1a2, b1b2) mean that a1a2 and b1b2 are the levels corresponding to the two

attributes for the first and second options, respectively.

Theorem 10. W ′PM = 0 and W ′PI = 0 if and only if, for every block,

(i) the frequency of the pair (1, 0) is same as the frequency of the pair (0, 1)

for every attribute;

(ii) the frequency of pairs from the set {(01, 00), (01, 11), (10, 00), (10, 11)}
is the same as the frequency of pairs from the set {(00, 01), (00, 10), (11, 01),

(11, 10)}, for every combination of two attributes.
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We now provide the method used to construct optimal paired choice block

designs with s = 4.

Theorem 11. For k > 4, there exists a paired choice block design dI2, with

parameters k, v = 2, s = 4, and b, that is optimal in Dk,b,s. Here, b = 2k−3
(
k
q

)
for

k odd, and b = 2k−3
(
k+1
q+1

)
for k even.

Construction. Let F be a set of
(
k
α

)
attribute indices of size α = q obtained

from the attribute labels 1, . . . , k, taking α labels at a time, such that 2 ≤ α ≤
k − 2. For an element f = (f1, . . . , fi, . . . , fα) of F , let f ′ = {1, . . . , k} − f =

(f ′1, . . . , f
′
j , . . . , f

′
(k−α)) be the complement of f . Similarly to the construction

of design dI1, we adopt steps (i)–(v) to construct an optimal paired choice block

design dI2 for k attributes:

(i) Write the complete factorial involving 2α combinations. Divide this set into

two halves, such that the second half is a foldover of the first half.

(ii) Write the complete factorial involving 2k−α combinations. Divide this set

into two halves, such that the second half is a foldover of the first half.

(iii) Take one combination from the first half of (i), say a, and two combinations

from the first half of (ii), say b and c. Let a′, b′, and c′ be the foldovers of a,

b, and c, respectively. Corresponding to the element f of F , create a block with

choice pairs (ab, a′b), (ab′, a′b′), (a′c, ac), and (a′c′, ac′). Here, in a choice pair,

option ab implies that if a = a1 . . . ai . . . aα and b = b1 . . . bj . . . bk−α, then ai
corresponds to the attribute index fi and bj corresponds to the attribute index f ′j.

(iv) Repeat (iii) for each of the 2α−1 combinations in the first half of (i) using

the same b and c as in (iii). Then, repeat the entire process for two different

combinations from the first half of (ii).

(v) Repeating (i)–(iv) for every element f of F corresponding to α = q for k

odd, and α = q and q + 1 for k even, an optimal paired choice block design dI2
is obtained with parameters k, v = 2, s = 4, and b, where b = 2k−3

(
k
q

)
for k odd,

and b = 2k−3
(
k+1
q+1

)
for k even.

Example 5. Let k = 4, v = 2, b = 10, and s = 8. For k = 4, α takes the values

2 and 3. Because α = 3 > 2 = k − 2, Theorem 11 does not enable us to derive

dI2 from dI1. However, for α = 2, the proposed construction method still holds,

yielding 12 blocks, each of size four, as below.
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B1 B2 B3 B4 B5 B6

(0000,1100) (0100,1000) (0000,1010) (0010,1000) (0000,1001) (0001,1000)

(0011,1111) (0111,1011) (0101,1111) (0111,1101) (0110,1111) (0111,1110)

(1101,0001) (1001,0101) (1011,0001) (1001,0011) (1011,0010) (1010,0011)

(1110,0010) (1010,0110) (1110,0100) (1100,0110) (1101,0100) (1100,0101)

B7 B8 B9 B10 B11 B12

(0000,0110) (0010,0100) (0000,0101) (0001,0100) (0000,0011) (0001,0010)

(1001,1111) (1011,1101) (0110,0011) (0111,0010) (1100,1111) (1101,0010)

(0111,0001) (0101,0011) (1011,1110) (1010,1111) (0111,0100) (0110,0101)

(1110,1000) (1100,1010) (1101,1000) (1100,1001) (1011,1000) (1010,1001)

For α = 3, we obtain a design with four blocks, each of size eight, as below.

B13 B14 B15 B16

(0000,1110) (0000,1011) (0000,1101) (0000,0111)

(0110,1000) (0011,1000) (0101,1000) (0011,0100)

(1010,0100) (1010,0001) (1100,0001) (0101,0010)

(1100,0010) (1001,0010) (1001,0100) (0110,0001)

(0001,1111) (0100,1111) (0010,1111) (1000,1111)

(0111,1001) (0111,1100) (0111,1010) (1011,1100)

(1011,0101) (1110,0101) (1110,0011) (1101,1010)

(1101,0011) (1101,0110) (1011,0110) (1110,1001)

We form six blocks, each of size eight by combining blocks Bi and Bi+6, for

i = 1, . . . , 6, which, together with the four blocks Bi, for i = 13, . . . , 16, gives the

optimal design with parameters k = 4, b = 10, and s = 8.

6. Discussion

In situations in which an optimal design has more choice pairs than a re-

spondent can complete, the N choice pairs can be split among the respondents

(blocks), either randomly or using a spare attribute, if one is available (see Street

and Burgess (2007)). As a result, we have instances in which respondents are

considered as blocks in choice experiments, although without much theoretical

rigor. Bliemer and Rose (2011) reported that, in their sample, 64% of stud-

ies used a blocking column to allocate choice sets to respondents, 13% assigned

choice sets randomly to respondents, and 5% provided the full factorial to each

respondent. In the remaining 18%, of the studies, the authors were not able to

determine how choice sets were assigned to respondents.

With an objective of assessing the main or the interaction effects, wherever

practical, the same set of N optimal choice pairs are shown to every respondent.

As such, there are no theoretical results on optimal designs under the utility-

neutral setup, where different respondents see smaller and different designs. In
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contrast, the approach adopted here allows for the construction of an optimal

design with a smaller and flexible number of choice pairs that will be shown

to every respondent. Even in situations where simple techniques (e.g. blocking

using a spare attribute) cannot be used, we provide optimal paired choice block

designs.

In contrast to the approaches of Sándor and Wedel (2005) and Kessels, Goos

and Vandebroek (2008), following block-design theory, we use the fixed-effects

block model to obtain optimal designs. This approach treats respondent hetero-

geneity as a nuisance factor by including respondent-level fixed-effect terms in

the model, thus, enabling the derivation of analytical results. However, there

is no guarantee that the optimal block designs obtained under this setup and

the heterogeneous designs obtained by Sándor and Wedel (2005) are the same.

Thus, further research is needed to compare the optimal designs obtained under

the two approaches.

Furthermore, unlike their designs, which can only be used to optimally es-

timate the main effects, we have provided optimal paired choice block designs

for the main-effects model, as well as for the broader main-effects model and the

main plus two-factor interaction effects model.

Supplementary Material

The Supplementary Material available online includes all proofs.
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