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Abstract: We consider a setting in which we construct a binary classifier from a

panel of features in order to optimize either the sensitivity at a fixed specificity level

or the area under the partial receiver operating characteristic (ROC) curve. To this

end, we propose an efficient iterative numerical algorithm to solve a simple con-

strained optimization problem that mimics the original target. We also present the

associated asymptotic statistical inference procedures, including the construction

of the credible intervals for the realized sensitivity/specificity or the area under the

partial ROC curve of the estimated risk scores. We apply the method to simulated

data sets and show that the proposed method outperforms the classifiers based on

the generic logistic regression, without considering the specific criterion we want to

optimize. We also apply the new proposed method to two real-data examples.
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1. Introduction

Researchers often need to predict a binary outcome based on a collection of

features. For example, the credit rating model identifies the credit card default-

ers. The rating system is essentially a classification tool that signals the possible

future status of individuals of interest. The rating score for each individual is

calculated using features that characterize the borrower and the debt and aims

to reflect the risk of default. Similarly, in a different setting, the Framingham

risk score identifies people susceptible to a future cardiovascular attack based on

baseline risk factors, including age, gender, blood pressure, and cholesterol level,

among others (Wilson et al. (1998)). In general, there are two important tasks

related to this type of application: (1) the development of a scoring system that

measures the probability of an event occurring or the rank thereof; and (2) the

evaluation of the effectiveness of the scoring system. Oftentimes, these two tasks

are accomplished in separate stages. For example, at the first stage, we may fit

a logistic regression model to associate a linear combination of features with the
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binary outcome. At the second stage, the resulting scoring system, that is, the es-

timated linear combination (or a transformation thereof), is then evaluated using

selected criteria. A scoring system with good discriminatory power groups indi-

viduals with similar risks together and assigns a higher score to individuals with

higher risk. Quantitative quality measures for such scoring systems include the

misclassification error, Brier score, and, importantly, sensitivity and specificity

(Brier (1950)). Specifically, let Y and S be the binary response and risk score (or

the rating), respectively. The sensitivity and specificity associated with a cutoff

value d0 are defined as P (S ≥ d0|Y = 1) and P (S ≤ d0|Y = 0), respectively.

In practice, the cutoff value d0 is often selected to guarantee a given specificity

level, for example, P (S ≤ d0|Y = 0) = π0. Then the corresponding sensitivity

is used to measure the predictiveness of the risk score. In particular, when the

event of interest is relatively rare, we often need to set a high specificity level,

say π0 = 0.95, in order to reduce the false positive rate of the classification tool.

Furthermore, rather than a single specificity level, we might need to consider a

range of possible levels, for exmaple, [πL, πU ]. In this case, we may want to use the

“average sensitivity” for all specificities within the interval to measure the quality

of the score. In fact, this “average” is the scaled area under the partial receiver

operating characteristic (ROC) curve. The ROC curve is a popular graphical

representation of pairs of one minus the specificity and sensitivity as the cutoff

value varies (Pepe (2003)). An appealing property of ROC-based criteria is their

independence of the prevalence rate of the event of interest. Consequently, the

ROC curve can be estimated consistently in a case−control study, where fixed

numbers of cases and controls are selected according to the plan of the researcher,

which may not reflect their true proportions in the general population.

However, there seems to be a disconnect between the construction of a scoring

system and its evaluation standard. When the regression model at the first stage

is correctly specified, the resulting feature combination is automatically optimal

for many of the criteria used at the second stage (Jin and Lu (2009)). However,

in the most general case, where the regression model does not contain the true

model, this two-stage approach may be too generic, thus yielding suboptimal so-

lutions for the specific criterion of interest. Ideally, if an evaluation criterion is im-

portant and is used to evaluate the quality of the scoring system, we should con-

struct the scoring system based on the same criterion. Following this line of rea-

soning, Pepe, Cai and Longton (2006) proposed creating an ensemble of features

that directly maximize the area under the ROC curve (AUC), which is a popular
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method used to evaluate a scoring system (Zhou (2002); Pepe (2003); Englemann,

Hayden and Tasche (2003); Blochlinger and Leippold (2006); Ravi and Pramodh

(2008); Van Gool et al. (2011)). To overcome the numerical difficulties associ-

ated with the discontinuity of the objective functions, Ma and Huang (2007a)

and Zhao et al. (2012) proposed maximizing a smoothed AUC by replacing the

indicators with sigmoid or other surrogates. Furthermore, Komori and Eguchi

(2010); Ma and Huang (2007b), and Ye et al. (2007) combined the ROC-based en-

semble and various regularization approaches to construct a scoring system from

many features. Ricamato and Tortorella (2011) and Wang and Chang (2011)

proposed similar approaches for optimizing the area under partial ROC curves.

The aforementioned methods are all model-free in the sense that the target func-

tion to be maximized approximates the area under an ROC or a partial ROC

curve without needing a parametric model assumption. Assuming that the case

and control features follow distinct multivariate Gaussian distributions, Su and

Liu (1993); Hsu and Hsueh (2013), and Hsu, Chang and Hsueh (2014) proposed

maximizing a model-based estimate of the area under an ROC or a partial ROC

curve. However, the target function associated with the area under a partial ROC

curve behaves badly with multiple local maximizers, including those proposed by

Hsu and Hsueh (2013); Hsu, Chang and Hsueh (2014); Ricamato and Tortorella

(2011) and Wang and Chang (2011). As a result, there is no reliable numeri-

cal algorithm that identifies the global optimum. Furthermore, the asymptotic

properties of the estimated combinations are difficult to study. To appreciate

the difficulty, consider the simple problem of finding a scoring system S = β′Z

from a feature Z that maximizes the sensitivity P (S ≥ d0|Y = 1), where the

specificity P (S ≤ d0|Y = 0) = π0 for a given π0. Both the objective and the

constraint of the empirical version of this optimization problem involve a discon-

tinuous piecewise constant function, and the optimization is often numerically

intractable when the dimension of Z is greater than three. We are not aware of

an existing method that solve this problem effectively. If we aim to maximize the

area under the partial ROC curve, the associated optimization problem becomes

even more complicated.

In this paper, we propose a new approach to creating an ensemble of fea-

tures that optimizes the sensitivity for given specificity level(s) or the area under

a partial ROC curve by appropriately modifying the objective and constraint

functions. The target function is well behaved and the related optimization

problem can be solved efficiently and reliably. In Section 2, we present the pro-

posed approach and the associated statistical inference procedures. We perform
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an extensive simulation study to investigate the operating characteristics of the

proposed method and present the results in Section 3. In Section 4, we apply the

proposed method to two real-data examples, in which we predict the quality of

wine and “good” credit. Lastly, we conclude the paper in Section 5.

2. Method

2.1. Sensitivity-based ensemble

2.1.1. Point estimator and numerical algorithm

Suppose the observed data consist of {(Zi, Yi), i = 1, . . . , N}, where Zi and

Yi represent the feature vector and the binary response for the ith subject, re-

spectively. Let Si = β′Zi be the risk score. Our objective is to identify the

optimal score by solving the following constrained optimization problem:

maximize the sensitivity: N−11

N∑
i=1

YiI(β′Zi ≥ d), (2.1)

subject to: N−10

N∑
i=1

(1− Yi)I(β′Zi ≤ d) ≥ π0, (2.2)

where I(·) is the indicator function and N0 =
∑N

i=1(1 − Yi) and N1 =
∑N

i=1 Yi
are the numbers of controls and cases, respectively. Note that the inequality

constraint (2.2) can be replaced by the approximate equality constraint:

N−10

N∑
i=1

(1− Yi)I(β′Zi ≤ d) ≈ π0.

This constraint holds true when the optimal scores {Si, i = 1, . . . , N} have no

ties. Otherwise, we can further lower the cutoff value d without reducing the

corresponding sensitivity.

As discussed in the introduction, it is difficult to find the optimal weight β̂opt
and cutoff value d̂opt by directly solving the optimization problem given in (2.1)

and (2.2). Therefore, we present an alternative characterization for the optimal

solution. To this end, we let (β̂′w, d̂w)′ represent the maximizer of

N∑
i=1

YiI(β′Zi ≥ d) + w

N∑
i=1

(1− Yi)I(β′Zi ≤ d), (2.3)
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and ŵ be the solution to the equation

N−10

N∑
i=1

(1− Yi)I(β̂′wZi ≤ d̂w)− π0 ≈ 0. (2.4)

In Appendix A, we show that β̂ŵ is an approximate solution to the original opti-

mization problem; that is, β̂ŵ ≈ β̂opt. This equivalence is not surprising because

maximizing (2.3) is equivalent to minimizing the weighted misclassification error

N∑
i=1

YiI(β′Zi − d < 0) + w

N∑
i=1

(1− Yi)I(−β′Zi + d < 0), (2.5)

for given w, which balances the trade-off between false-positive and false-negative

errors. Therefore, we can find the optimal weights by minimizing the weighted

loss function (2.5) and solving the corresponding univariate equation (2.4).

However, it is still not feasible to minimize the weighted misclassification

error directly, owing to the discontinuity of the indicator function. In the follow-

ing, we propose solving a simpler optimization problem by replacing the indicator

function I(x < 0) with a convex surrogate g(x) (Hastie and Zhu (2006)). Here,

we choose g(x) = log{1 + exp(−x)}, and the surrogate loss function becomes

lw(β, d) =
∑
Yi=1

log{1 + exp(d− β′Zi)}+ w
∑
Yi=0

log{1 + exp(−d+ β′Zi)}, (2.6)

which is the negative of the log-likelihood function from the weighted logistic

regression model

P (Yi = 1|Zi) =
exp(−d+ β′Zi)

1 + exp(−d+ β′Zi)
,

with all controls weighted by w. Therefore, β̂w is simply the maximum likelihood

estimator of the weighted logistic regression. Furthermore, under this framework,

I(β′Zi < d) is approximated by P (Yi = 0|Zi) = {1 + exp(−d + β′Zi)}−1, which

also allows us to construct the smoothed counterpart of equation (2.4), as follows:

N−10

N∑
i=1

(1− Yi){1 + exp(−d+ β′Zi)}−1 = π0. (2.7)

The new constraint is smooth and often substantially improves the finite-sample

performance of the estimated combination. In summary, we propose using β̂S =

β̂(ŵ) as optimal weights when combining the features, where{
{β̂(w), d̂(w)} = argmin(β,d)lw(β, d),

N−10

∑N
i=1(1− Yi){1 + exp(−d̂(ŵ) + β̂′(ŵ)Zi)}−1 = π0.

(2.8)
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In general, β̂S differs from β̂opt. However, the resulting risk score Si = β̂′SZi may

still exhibit satisfactory sensitivity because it indirectly maximizes a surrogate

function of the sensitivity. To compute β̂S , we use the following algorithm:

1. Fixing the current β̂, minimize the loss function lw(β̂, d) with respect to d.

Let the solution be d̂(w). Furthermore, let ŵ be the root of the equation

N−10

N∑
i=1

(1− Yi){1 + exp(−d̂(w) + β̂′Zi)}−1 = π0 and d̂ = d̂(ŵ).

2. Fixing the current (d̂, ŵ), find β̂ by minimizing lŵ(β, d̂) with respect to β.

3. Repeat steps 1 and 2 until convergence. Let the limit of β̂ be β̂S . Then, the

risk score can be constructed as S = β̂′SZ for a future subject with covariate

Z. The cutoff value corresponding to the specificity of π0, d̂S , is given as

the π0-th quantile of {β̂′SZi | Yi = 0}. Note that, in general, d̂S differs from

the limit of d̂ in steps 1 and 2.

If the sample size N = N0 + N1 → ∞, with N0/N = p0 ∈ (0, 1), we can show

that β̂S converges to a deterministic limit βS in probability under mild regular-

ity conditions, where (βS , d̃S , dS , wS) is the solution of the limiting estimating

equation s0(β, d̃, d, w) = 0 given in (1) of Appendix B.

2.1.2. Confidence interval and credible set

Note that, in general, βS and dS do not have a meaningful interpretation

with respect to the association between the feature vector Zi and the binary

outcome of interest and, thus, may not be of direct interest. However, they may

serve as anchors to quantify the variability of the estimated weights and cutoff

values. Specifically, we can show that
√
N(β̂′S − β′S , d̂S − dS)′ converges weakly

to a Gaussian distribution with mean zero and variance−covariance matrix ΣS ,

which can be used to construct the confidence intervals for βS and dS . A direct

estimation of ΣS involves difficult nonparametric smoothing, and may be sensitive

to the choice of related tuning parameters. Alternatively, one can estimate ΣS

using the resampling method. Specifically, let (β∗S
′, d̃∗S)′ be the minimizer of

l∗w∗
S
(β, d) =

∑
Yi=1

Bi log{1 + exp(d− β′Zi)}+ w∗S
∑
Yi=0

Bi log{1 + exp(−d+ β′Zi)}

with respect to β and d, and choose the weight w∗S such that

N−10

N∑
i=1

Bi(1− Yi){1 + exp(−d̃∗S + Z ′iβ
∗
S)}−1 = π0,
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where the weights {Bi, i = 1, 2, . . . , N} are independent and identically dis-

tributed (i.i.d.) random variables from the unit exponential distribution. Lastly,

let the perturbed cutoff value d∗S be the root of the estimating equation

N−10

N∑
i=1

Bi(1− Yi)I(Z ′iβ
∗
S ≤ d) ≈ π0.

Note that, in general, d∗S , the counterpart of d̂S , differs from d̃∗S , the counterpart

of the limit of d̂.

Conditional on the observed data, we can obtain a large number of real-

izations of (β∗S
′, d∗S)′ by repeatedly generating different sets of random weights

Bi and solving the constrained optimization problem. The empirical variance−
covariance matrix of

√
N(β∗S

′ − β̂′S , d∗S − d̂S)′ can then be used to estimate ΣS .

The justification is given in Appendix B. This resampling method is a special

version of bootstrap method and has been used successfully in various settings

(Foster, Tian and Wei (2001); Jin, Ying and Wei (2001)). Compared with the

conventional bootstrap method, the independence between the random weights

Bis simplifies the theoretical justification.

Furthermore, we may be interested in making an inference on the true sen-

sitivity and specificity corresponding to the obtained β̂S and d̂S . Note that

both the sensitivity P (β̂′SZi ≥ d̂S |β̂S , d̂S , Yi = 1) and the specificity P (β̂′SZi ≤
d̂S |β̂S , d̂S , Yi = 0) depend on the estimators β̂S and d̂S and, thus, are ran-

dom variables. It is obvious that the sensitivity and specificity converge to

η0 = P (β′SZi ≥ dS |Yi = 1) and π0, respectively, as the sample size goes to

infinity, owing to the consistency of β̂S and d̂S . However, it is still important to

quantify the uncertainty in a finite sample to and construct, for example, the

credible regions. To this end, we specify the large sample approximation(
P (β̂′SZi≥ d̂S |β̂S , d̂S , Yi=1)− η̂0
P (β̂′SZi ≤ d̂S |β̂S , d̂S , Yi=0)− π0

)
≈−

(
N−11

∑N1

i=1 Yi{I(β′SZi≥dS)−η0}
N−10

∑N0

i=1(1− Yi){I(β′SZi≤dS)−π0}

)
,

where

η̂0 = N−11

N∑
i=1

YiI(β̂′SZi ≥ d̂S) and η0 = P (β′SZi ≥ dS |Yi = 1).

It is obvious that
∑N1

i=1 Yi{I(β′SZi ≥ dS) and
∑N0

i=1(1− Yi){I(β′SZi ≤ dS) follow

independent binomial distributions, B(N1, η0) and B(N0, π0), respectively. Thus,

we have

P
{
P (β̂′SZi ≥ d̂S |β̂S , d̂S , Yi = 1) ∈ Iα,η

}
≈ 1− α
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and

P
{
P (β̂′SZi ≤ d̂S |β̂S , d̂S , Yi = 0) ∈ Iα,π

}
≈ 1− α

for large N, where

Iα,η =

[
2η̂0 −

c1−α/2,B(N1,η̂0)

N1
, 2η̂0 −

c1−α/2,B(N1,η̂0)

N1

]
,

Iα,π =

[
2π0 −

c1−α/2,B(N0,π0)

N0
, 2π0 −

c1−α/2,B(N1,π0)

N0

]
,

and cα,B(N,p) is the α-quantile of the binomial distribution B(n, p). Therefore,

Iα,η and Iα,π are the (1− α) credible intervals for the sensitivity and specificity,

respectively. Furthermore, Ω̂α = Iα/2,η × Iα/2,π can serve as the joint credible

region of the potential sensitivity and specificity if we apply the constructed

score and estimated cutoff value to future patients from the same population.

The theoretical justification is given in Appendix B.

Remark 1. The choice of g(·) is not unique. For example, we can let g(x) =

exp(−x) or the hinge loss (1 − x)+ = max(0, 1 − x). Although these alternative

choices cannot fit into a coherent statistical model, such as, a logistic regression,

constraints (2.4) or (2.7) can still be coupled with the new objective function to

yield efficient algorithms that combine multiple features.

Remark 2. A sufficient condition to ensure the convergence of the proposed

algorithm is that

N∑
i=1

(1− Yi)
[
1 + exp{β̂(w)′Zi − d̂(w)}

]−1
is a monotone function of the weight w. This condition is almost always satisfied

in practice, because we can show that a similar function,

N∑
i=1

(1− Yi) log

([
1 + exp{β̂(w)′Zi − d̂(w)}

]−1)
,

is monotone in w. The justification is given in Appendix B.

Remark 3. The cutoff value associated with the estimated risk score β̂′SZi is

given by the π0-th quantile of the observed scores of all controls. This may be

similar to
ˆ̃
dS , the root of the estimating equation

N−10

N∑
i=1

(1− Yi)
{

1 + exp(−d+ β̂′SZi)
}−1

= π0.

However, we prefer d̂S to
ˆ̃
dS because the former ensures that the observed sensi-
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tivity level is π0 without needing an approximation or a model assumption.

2.2 Partial ROC curve-based combination

2.2.1. Point estimator and numerical algorithm

In practice, rather than a single specificity level π0, we may be interested in,

for example, all specificity levels within a given interval [πL, πU ]. In such a case,

the predictiveness of the risk score S is measured as the area under the partial

ROC curve over the interval [1− πU , 1− πL]. For observed data, the area under

the partial empirical ROC curve is∫ πU

πL

N−11

N∑
i=1

YiI{Si ≥ d̂(π)}dπ, (2.9)

where d̂(π) satisfies the equality

N−10

N∑
i=1

(1− Yi)I{Si ≤ d̂(π)} ≈ π.

Similarly to the discussion in Section (2.1), the weight of the best linear com-

bination Si = β′Zi that maximizes (2.9) can be approximated by β̂R = β̂ŵ(·),

where{β̂ŵ(·), d̂ŵ(·)(·)} = argmin{β,d(·)}
∫ πU

πL
lŵ(π){β, d(π)}dπ,

N−10

∑N
i=1(1− Yi)

[
1 + exp

{
−d̂w(·)(π) + β̂′w(·)Zi

}]−1
= π,

(2.10)

Then as in (2.8), we can use the following algorithm to solve this constrained

optimization problem:

1. For given β̂, minimize the loss function lw(β̂, d) with respect to d, and denote

the minimizer by d̂(w). Furthermore, for any π ∈ [πL, πU ], let ŵ(π) be the

root of the estimating equation

N−10

N∑
i=1

(1− Yi)
[
1 + exp{−d̂(w) + β̂′Zi}

]−1
= π.

2. For given ŵ(π) and d̂(w), find β̂ by minimizing∫ πU

πL

lŵ(π)[β, d̂{ŵ(π)}]dπ.

3. Repeat steps 1 and 2 until convergence. Let the limit of β̂ be β̂R. Finally,

the risk score is constructed as S = β̂′RZ for a future subject, with covari-

ate Z. The cutoff value associated with the specificity π is d̂R(π), the π-the
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quantile of {β̂′RZi | Yi = 0}.

2.2.2. Confidence interval and credible set

In Appendix C, we show that β̂R converges to a deterministic limit βR in

probability under mild regularity conditions. Here {βR, d̃R(π), dR(π), wR(π), π ∈
[πL, πU ]} is the solution to the functional estimating equation m0{β, d̃(·), d(·),
w(·)}(π) = 0, π ∈ [πL, πU ] given in (2) in Appendix C. Furthermore, we can show

that
√
N{β̂′R − β′R, d̂R(π1) − dR(π1), . . . , d̂R(πK) − dR(πK)}′, πk ∈ [πL, πU ], for

k = 1, 2, . . . ,K, converges weakly to a normal distribution with zero mean and a

variance−covariance matrix ΣR, where K is a given integer. A direct estimation

of ΣR is difficult. Thus we can estimate ΣR using a resampling method similar

to that introduced in Section 2.1. Specifically, let {β∗R, d̃∗R(·)} be the minimizer

of ∫ πU

πL

l∗π∗
R(π){β, d(π)}dπ

with respect to {β, d(·)}, where the weight function w∗R(·) is chosen such that

N−10

N∑
i=1

Bi(1− Yi)[1 + exp{−d̃∗R(π) + Z ′iβ
∗
R}]−1 = π, π ∈ [πL, πU ],

where the weights {Bi, i = 1, 2, . . . , N} are i.i.d. random variables from the unit

exponential distribution. Lastly, we select d∗R(·) satisfying

N−10

N∑
i=1

Bi(1− Yi)I{Z ′iβ∗R ≤ d∗R(π)} ≈ π, π ∈ [πL, πU ].

Conditional on the observed data, we can obtain a large number of realiza-

tions of {β∗R, d∗R(·)} by repeatedly generating different sets of random weights Bi
and solving the constrained optimization problem. Then, we can use the empiri-

cal variance−covariance matrix of
√
N{β∗R

′− β̂′R, d∗R(π1)− d̂R(π1), . . . , d
∗
R(πK)−

d̂R(πK)}′ to estimate ΣR. The justification is similar to that for β̂S , given in the

Appendix B.

We may also want to know the true area under the partial ROC curve based

on the estimated risk score β̂′RZ in the future population, that is,∫ πU

πL

P
{
β̂′RZi ≥ d̂R(π) | Yi = 1, β̂R, d̂R(·)

}
dπ.

Because the true area under the partial ROC curve depends on β̂R and d̂R(·),
it is a random variable. To construct a credible interval for this variable with a
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desired probability, we employ the approximation√
N1

[
τ̂R −

∫ πU

πL

P
{
β̂′RZi ≥ d̂R(π) | Yi = 1, β̂R, d̂R(·)

}
dπ

]
≈
√
N1

[∫ πU

πL

1

N1

∑
Yi=1

I{β′RZi ≥ dR(π)}dπ − τR

]
,

where

τR =

∫ πU

πL

P
{
β′RZi ≥ dR(π) | Yi = 1

}
dπ

and

τ̂R =

∫ πU

πL

N−11

∑
Yi=1

I{β̂′RZi ≥ d̂R(π)}dπ.

Furthermore, we generate many realizations of

W =

∫ πU

πL

N−11

[
N1∑
i=1

I{Ui ≤ η̂R(π)}

]
dπ

by repeatedly simulating {Uj , j = 1, . . . , N1} from the uniform distribution U [0, 1]

to approximate the distribution of∫ πU

πL

N−11

∑
Yi=1

I{β′RZi ≥ dR(π)}dπ,

where η̂R(π) = N−11

∑
Yi=1 I{β̂′RZi ≥ d̂R(π)} is a consistent estimator of ηR(π) =

P{β′RZi ≥ dR(π)}. This approximation is based on the fact that I{β′RZi ≥
dR(π)} and I{Ui ≤ ηR(π)}, for π ∈ [πL, πU ], have the same distribution. There-

fore,

lim
N→∞

P

(∫ πU

πL

P
{
β̂′RZi ≥ d̂R(π) | Yi = 1, β̂R, d̂R(·)

}
dπ ∈ Iα,η

)
= 1− α

and

Iα,η =

[
2τ̂R −

c1−α/2,W

N1
, 2τ̂R −

cα/2,W

N1

]
serves as an asymptotic valid credible set for

∫ πU

πL
P{β̂′RZi ≥ d̂R(π) | Yi = 1, β̂R,

d̂R(·)}dπ, where cα,W is the estimated α-th quantile of W, based on the afore-

mentioned Monte Carlo simulation.

Remark 4. Because the area under the partial ROC curve can be approximated

by

(πU − πL)× 1

N1K

K∑
k=1

N∑
i=1

YiI{Si ≥ d̂(π̃k)}dπ,
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for πL = π̃1 < π̃2 < · · · < π̃K = πU , in practice, we can minimize the objective

function
K∑
k=1

N∑
i=1

lw̃k
(β, dk)

under the constraints

N−10

N∑
i=1

(1− Yi)
{

1 + exp(−dk + β′Zi)
}−1

= π̃k, k = 1, . . . ,K

for selected π̃k.

Remark 5. When the dimension of Zi is high relative to the sample size N , the

regularization method can be easily adapted for the proposed framework. Con-

sider the sensitivity-oriented combination as an example. Here, we can employ

the popular lasso method to select informative features by modifying step 2 of

the algorithm described in Section 2.1.1 (Tibshirani (1996)):

Fixing the current d̂ and ŵ, find β̂ by minimizing

lŵ(β, d̂) + λ|β|1,

where |β|1 is the L1-norm of the vector β and λ is the penalty parameter.

The lasso-penalty parameter λ controls the sparsity of the final solution

β̂S(λ) or β̂R(λ) and can be selected using the data-dependent cross-validation

method. Then, the objective function in step 2 is convex, and the regularized

minimization can often be performed by modifying the existing algorithm. Specif-

ically, for g(x) = log{1 + exp(−x)}, the optimization is equivalent to fitting a

lasso-regularized logistic regression model with a known intercept, and the as-

sociated numerical algorithm (e.g., the coordinate descending algorithm) is well

developed.

3. Numerical Study

3.1. Simulation design

We performed extensive simulation to investigate the operational character-

istics of the proposed method in a finite sample. To give an overview of the

results in this section, we examined the following:

(a) the ability of the proposed method in finding feature combinations with

high sensitivity at a fixed specificity level;

(b) the empirical performance of the resampling method-based inference proce-
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dures when characterizing the uncertainty of the optimal weights β̂S ;

(c) the empirical coverage level of the proposed credible set for the true sensi-

tivity;

(d) the ability to identify informative features in a moderately high-dimensional

case.

To this end, we simulated a training set consisting of an equal number of cases

and controls (i.e., N1 = N0 = 200). The p-dimensional feature vector Zi for

the cases and controls are generated from different distributions. Specifically, we

let Zi ∼ N(µ0,Σ0) and N(µ1,Σ1) for the controls and cases, respectively, where

various choices of µ0, µ1,Σ0, and Σ1 are considered. Specifically, we considered

the following eight cases:

1. p = 2, µ0 = (0, 0)′, µ1 = (1, 0)′,

Σ0 = Σ1 =

(
1 0

0 1

)
;

2. p = 2, µ0 = µ1 = (0, 0)′,

Σ0 =

(
1 0.8

0.8 1

)
,Σ1 =

(
1 −0.8

−0.8 1

)
;

3. p = 3, µ0 = (0, 0, 0)′, µ1 = (0, 0, 1)′,

Σ0 =

1 0 0

0 1 0

0 0 1

 ,Σ1 =

 1 −0.80 0.64

−0.80 1 −0.80

0.64 −0.80 1

 ;

4. As in case 3, except µ1 = (1, 0, 1)′;

5. p = 4, µ0 = (0, 0, 0, 0)′, µ1 = (1, 0, 0, 0)′,

Σ0 =


1 0.80 0.64 0.51

0.80 1 0.80 0.64

0.64 0.80 1 0.80

0.51 0.64 0.80 1

, Σ1 =


1 −0.80 0.64 −0.51

−0.80 1 −0.80 0.64

0.64 −0.80 1 −0.80

−0.51 0.64 −0.80 1

;

6. As in case 4, except µ1 = (1, 0, 1, 0)′;

7. As in case 4, except µ1 = (1, 1, 1, 0)′;

8. As in case 4, except µ1 = (1, 1, 1, 1)′.



1408 ZHANG, LU AND TIAN

For the first case, the variance−covariance of the biomarkers from the cases

is the same as that from the controls, and only the first biomarker is informa-

tive. In this case, a single biomarker Zi1 is the optimal choice for maximizing

the ROC curve at any specificity level, and the simple logistic regression is ex-

pected to perform well. In this ideal setting for a logistic regression, we plan

to investigate the potential loss in efficiency of the new method. In the second

case, although there is no difference in the mean level, the variance−covariance

of the biomarkers differs between the cases and controls. Under this setting, the

optimal discriminant function Zi1Zi2 is nonlinear, and the optimal linear com-

bination depends on the targeted specificity level. Here, we examine whether

the proposed method improves the performance of the simple logistic regression,

which we expect will find it difficult to identify a high-quality combination at

some specificity levels. Cases 3 and 4 investigate more complicated and realistic

settings, where both the mean and the covariance structure of the biomarkers

depend on the outcome. The optimal discriminant function consists of both lin-

ear and quadratic components and varies with the specificity level. Cases 5−8

represent similar settings, but consider more biomarkers with higher correlations

between them.

To further summarize the various cases, we plot the ROC curves based on

the optimal discriminant function and the linear combination from fitting the

simple logistic regression; see Figures 1 and 2 of Appendix D. It is clear that the

simple logistic regression is far from optimal for cases 2−8 (especially for cases 2

and 8). These models are designed to examine whether our simple method can

take advantage of the suboptimality of the standard logistic regression, which is

not sensitive to differences between the covariance structures.

3.2. Simulation results

In the first set of studies, we have examined the true sensitivity and speci-

ficity of combinations of multiple features estimated using different methods.

The targeted specificity level π0 was set at 95%. For comparison purposes,

we implemented three methods: our proposed method, the logistic regression,

and a grid search to directly maximize the sensitivity. When implementing the

proposed method, the maximum likelihood estimator from the regular logistic

regression was used as the initial value for β. The grid search was only used

for p = 2 and 3, as the method is very time consuming for p ≥ 4. In the grid

search, we reparametrized the weights β as (cos θ1, sin θ1)
′, for θ1 ∈ [0, π] and

(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2)
′, for (θ1, θ2)

′ ∈ [0, π] × [0, 2π], for p = 2 and 3,
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Figure 1. Boxplots for the empirical distributions of the realized sensitivities of the risk
score constructed using three methods: white, logistic regression; light gray, proposed
method; dark gray, grid search.

respectively, as proposed by Hsu, Chang and Hsueh (2014). The true sensitivity

and specificity of the resulting combinations were estimated using an indepen-

dently generated validation set of 50, 000 cases and controls. Repeating the

simulation 500 times, we then compared the “true” sensitivities and specificities

in the validation sets.

Figure 1 plots the empirical distributions of the realized sensitivities in the

validation set. In cases 2−4, the grid search that optimizes the empirical sensitiv-

ity in the training set always yields the best result, as expected. The second best

results are achieved by the proposed method, which is sometimes substantially

better than the logistic regression. In case 1, all three methods perform similarly,

suggesting that the proposed method is comparable with the logistic regression,
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Table 1. The empirical performance of the resampling method: bias, empirical bias;
ESE, empirical standard error; ASE, empirical average of the estimated standard error;
COV, the empirical coverage probability.

case βS bias ESE ASE COV
3 −0.052 −0.010 0.127 0.131 95.8%

0.076 0.014 0.125 0.133 96.0%
1.019 0.049 0.173 0.162 92.4%

4 0.929 0.040 0.158 0.164 93.6%
0.238 0.027 0.164 0.164 95.4%
0.928 0.037 0.170 0.164 92.6%

6 0.832 0.007 0.177 0.178 94.8%
−0.808 0.018 0.186 0.189 95.2%

1.017 0.020 0.189 0.192 95.6%
−0.332 −0.013 0.176 0.181 96.4%

7 0.210 0.032 0.241 0.229 92.6%
1.321 0.063 0.313 0.289 91.2%
0.888 0.028 0.215 0.217 94.4%
−1.351 −0.041 0.222 0.212 94.0%

case dS bias ESE ASE COV
3 1.675 0.032 0.186 0.184 93.6%
4 2.198 0.032 0.223 0.216 93.4%
6 1.383 0.006 0.128 0.142 97.0%
7 2.590 0.043 0.295 0.270 92.2%

which is the optimal choice. When the grid search becomes infeasible, the per-

formance of the proposed method continues to be superior to that of the logistic

regression, particularly in case 8. Although all three methods aim to control the

specificity level at 95%, the true average specificity from the grid search tends to

be slightly lower than 95%. The true specificities from the other two methods

are above 94% in all cases.

In the second set of simulations, we studied the performance of the proposed

resampling method. For each simulated training set, we obtained β̂S , variance

estimates based on the resampling method, and the corresponding Wald−type

95% confidence intervals. To approximate the true βS , we simulated 100,000

independent cases and controls and treated the corresponding estimator of βS
as the true value. Then, we examined the accuracy of the variance estimator

from the resampling method and the empirical coverage level of the constructed

confidence interval. To save space, we only reported the results from cases 3,4,6,

and 7 in Table 1. The other cases are similar. In all of the reported cases, the

empirical average of the estimated standard errors is fairly close to the empiri-

cal standard error of β̂S . Furthermore, the empirical coverage level of the 95%
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Table 2. The empirical probabilities of selecting informative and noise features using
lasso-logistic regression and the proposed sensitivity-based ensemble method. The em-
pirical averages of the realized sensitivity (sen.) are also reported.

method Emp. Prob. of Being Selected sen.
ρ Z1 Z2 Z3 Z4 Noise markers

Logistic reg. 100% 100% 99% 72% 13% 0.62
Sensitivity-based 0.0 100% 100% 87% 39% 6% 0.60
Logistic reg. 100% 100% 100% 74% 11% 0.77
Sensitivity-based 0.4 100% 100% 91% 46% 5% 0.76
Logistic reg. 100% 100% 91% 65% 9% 0.89
Sensitivity-based 0.8 92% 99% 75% 38% 4% 0.88

confidence interval is almost the same as the nominal level. Similarly, we also

examine the variance estimates of d̂S and the performance of the corresponding

95% confidence interval for dS . The results are also satisfactory (Table 1).

In the third set of simulations, we investigated whether the proposed credible

sets have an appropriate coverage level for the true sensitivity and the specificity

of the estimated combination. To this end, we estimated the credible intervals

and the true values of both the sensitivity and the specificity from the simulated

training and validation sets. The empirical coverage level based on 500 simula-

tions was recorded for each simulation setup. The results were summarized in

Figure 2. The empirical coverage levels of the credible sets for the sensitivity and

specificity are very close to the nominal level in all eight cases.

In the fourth set of simulations, we specifically examined the performance

of the proposed method in terms of selecting informative features. To this

end, we considered a moderately high-dimensional case with the following co-

variance matrix of the auto-regressive structure: Σ0 = Σ1 = {ρ|i−j|}p×p, for

p = 100. The mean vectors of the controls and cases are µ0 = (0, . . . , 0)′ and

µ1 = Σ0(1, 1, 1/2, 1/4, 0, . . . , 0)′, respectively. In this setting, the optimal combi-

nation of features is a linear combination of the first four features, with weights

of 1, 1, 1/2, and 1/4, respectively. The optimality of this combination holds for

any combination of sensitivity and specificity. We applied the lasso-regularized

logistic regression and the proposed method in order to estimate the optimal

linear combination with π0 = 90%. In Table 2, we summarizes the empirical

probabilities of being selected for both informative and noise features as well as

the resulting sensitivities. For all settings examined, the informative features are

slightly more likely to be identified by the lasso-regularized logistic regression

than they are by the proposed method. However, the logistic regression also

selects more noise features. For example, when ρ = 0, the logistic regression
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Figure 2. Empirical coverage levels for the constructed credible sets of sensitivity and
specificity: solid line, the coverage probability for specificity; dashed line, the coverage
probability for sensitivity.

mistakenly chooses 13 noise features, on average, compared to six by the pro-

posed method. As a result, the sensitivities of the combinations from the logistic

regression and the proposed method are very close: 62% vs. 60%. The slight

superiority of the logistic regression is expected, because the logistic regression

is the true model under this specific simulation design.

We also investigated the parallel properties of the partial ROC curve-based

combinations, and obtained similar results; see Appendix E.

4. Example

In the first example, we tested our proposed method on the “white wine”

data set studied by Cortez et al. (2009). The data set contains measurements for

4,898 white wine samples and is available in the University of California, Irvine

(UCI), Machine Learning Repository. Each of the wine samples has been evalu-

ated by at least three wine experts for quality, summarized on a scale from 0 to

10, with 0 and 10 representing the poorest and highest quality, respectively. In

addition, 11 physicochemical features, including fixed acidity, volatile acidity, cit-

ric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density,

pH, sulphates, and alcohol were measured for all samples. Cortez et al. (2009)

compared the ability of different data−mining methods to predict the ordinal
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quality measurement based on the 11 physicochemical features, concluding that

the support vector machine gave the most promising results. Here, we conducted

a simpler analysis to identify wine samples with quality above six. These wines

are considered superior and account for only 21.6% of all samples in the data set.

To this end, we coded Y = 1 if the quality is ≤ 6, and 0 otherwise. Suppose we

attempt to screen out a high proportion of good wine samples, that is, with a high

specificity level π0, by combining the 11 features. Setting π0 = 95%, we applied

the proposed method in order to maximize the sensitivity level. The resulting

weights of the features are reported in Table 3. The sensitivity of the score is

38.9%, which is 28% higher than the sensitivity of 30.3% achieved by the logistic

regression. In Figure 3, we plotted the ROC curves of the scores constructed

from the proposed method and the general logistic regression. Although the two

curves have similar areas under the curve (≈ 79%), the ROC curve based on the

proposed method is clearly superior to that based on the logistic regression for

the high-specificity region, but sacrifices its performance for low specificities. In

this example, the approximated specificity

N−10

N∑
i=1

(1− Yi)[1 + exp{−d̂(w) + β̂′(w)Zi}]−1

is a smooth monotone increasing function of w. Solving the corresponding esti-

mating equation suggests that each sample of good wine should be weighted by

58 to correspond to a specificity level of 95%. Furthermore, one may construct

the credible intervals for the true specificity and sensitivity as [93.7%, 96.4%]

and [37.3%, 40.5%], respectively. We also constructed the confidence interval for

βS based on the proposed resampling method. Here, we find that the contribu-

tions to the combination from the following features are statistically significantly

different from zero: fixed acidity, volatile acidity duration, citric acid, residual

sugar, density, pH, sulphates, and alcohol.

Next, we applied the proposed method to construct a scoring system that

optimizes the area under the partial ROC curve corresponding to the specifici-

ties within [0.85, 0.95]. The resulting score is fairly similar to that using β̂S with

π0 = 95% (Table 2). The achieved area under the partial ROC curve is 0.047

with a 95% credible interval of [0.046, 0.049]. That is again substantially higher

than that of the logistic regression model, which is 0.043 [0.041, 0.044]. If we

optimize the area under the partial ROC curve corresponding to the specifici-

ties within [0.50, 0.95], the resulting weights are, in general, between those of

logistic regression and β̂S , with π0 = 95% as their compromise (Table 3). The
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Table 3. Estimated weights of standardized physicochemical features (with unit standard
deviation) for discriminating “good” and ”poor” white wine samples. All weights are
normalized such that “fixed acidity” has an unit weight.

features logistic reg. β̂S β̂R β̂R
specificity 0.95 (0.85, 0.95) (0.50, 0.95)
fixed acidity 1.000 1.000 1.000 1.000
volatile acidity −0.819 −1.384 −1.293 −1.077
citric acid −0.192 −0.270 −0.272 −0.244
residual sugar 3.214 3.287 3.211 3.188
chlorides −0.593 −0.166 −0.214 −0.397
free sulfur dioxide 0.316 −0.090 −0.023 0.142
total sulfur dioxide −0.025 0.244 0.192 0.086
density −4.231 −3.823 −3.780 −3.954
pH 1.083 0.919 0.889 0.943
sulphates 0.531 0.438 0.440 0.472
alcohol 0.376 0.635 0.602 0.484
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Figure 3. The ROC curves of the constructed risk scores for classifying white wine
quality: solid, the proposed method, optimizing the sensitivity at the specificity level of
95%; dotted, the proposed method, optimizing the area under the partial ROC curve
corresponding to specificities within [0.50, 0.95]; dashed, the logistic regression.

corresponding ROC curve, with an area under the partial ROC of 0.306 [0.301,

0.311], lies between those based on the logistic regression and β̂S (Figure 3). The

difference between the estimated weights highlights the need to apply a relevant

criterion when constructing the scoring system.

In our second example, we applied the proposed method to a German credit
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Figure 4. The ROC curves of the constructed risk scores for discriminating between
credit defaults: solid, the proposed method optimizing the sensitivity at the specificity
level of 95%; dashed, the logistic regression.

data set, which is also available in the UCI Machine Learning Repository. The

data set consists of 20 features: checking account status, duration of the credit,

credit history, purpose of the credit, credit amount, saving account status, cur-

rent employment time, installment rate, marriage status, co-applicant, guarantor,

time at the present residence, property, age, other installment plans, housing sta-

tus, number of existing credits, type of job, number of dependents, telephone, and

foreign worker. Each observation is rated as “good” or “bad”, which is the binary

outcome variable of interest. The data set includes 300 records of “bad” credit

and 700 records of “good” credit. Numerous classification methods, including the

simple logistic regression, support vector machine, and Bayesian network, have

been applied to the credit data, with different degrees of success (Kuhn and John-

son (2013)). Our objective is to construct a risk score that differentiates between

“good” credit and “bad” credit. Because it is worse to classify a “bad” credit

as “good” than to classify a “good” credit as “bad” (from the perspective of a

bank), we label “good” as one and “bad” as zero. We also set a high specificity

level of 95% in the feature ensemble, thus, guaranteeing that we identify 95%

of the “bad” credits. Then, we applied the proposed method to maximize the

sensitivity level. To this end, credit duration, age, and time at the present resi-



1416 ZHANG, LU AND TIAN

dence were log-transformed; marriage status was categorized as “male/divorced,”

“male/single,” “male/married,” and “females” and the purpose of the credit was

grouped into “new car purchasing,” “used car purchasing,” “appliance/repairs/

education/training”, and “business and others”. For simplicity, ordinal features

were treated as numerical, for example, the five categories, “unemployed,” “<1

year,” “1 to 4 years,” “4 to 7 years,” and “>7 years” were coded as 1, 2, 3, 4,

and 5, respectively, for the feature “current employment time.”

The sensitivity of the resulting score is 44.7% [40.9%, 48.6%], which is non-

trivially higher than the sensitivity of 38.6% [34.9%, 42.3%] achieved by the

logistic regression. In Figure 4, we plot the ROC curves of the scores constructed

using the proposed method and the standard logistic regression. The ROC curve

based on the new method is clearly above that from the logistic regression over

the region of high specificity levels. The contributions to the combination from

the following features are statistically significantly different from zero: checking

account status, credit duration, credit history, credit amount, time of present

employment, other installment plans, foreign work, purpose of the credit, and

marriage status. We also applied the proposed method to construct a scoring

system that optimizes the area under the partial ROC curve corresponding to

specificities between 0.85 and 0.95. The achieved area under the partial ROC

curve is 0.053, with a 95% confidence interval of [0.049, 0.056]. This is higher

than that of the logistic regression model, which has a value of 0.048 [0.045,

0.052].

5. Discussion

Based on our study, the optimal feature ensemble with respect to the sen-

sitivity at a given specificity level or the area under the partial ROC curve can

be differ significantly from that optimizing the area under the entire ROC curve.

Therefore, it is important to select an appropriate objective function matching

the most relevant criterion when combining multiple features. We proposed a

novel approach for combining multiple features for binary classifications, aimed

at optimizing the sensitivity or the area under the partial ROC curve. Compared

with existing approaches, we do not attempt to maximize a ill-behaved target

function directly. Instead, we try to solve an appropriately modified constrained

optimization problem, in which the objective function is smooth and convex and

has an appealing connection with the weighted logistic regression. It is possi-

ble to introduce regularization to deal with high−dimensional features under the
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same framework. In a survival analysis, the c-index is a natural generalization of

the area under the ROC curve. Generalizing the concept of the area under the

partial ROC curve and the development of an optimization procedure similar to

that presented here is left to future research.

Supplementary Material

The supplementary material is available at http://www3.stat.sinica.edu.

tw/statistica/. Appndexi A, B, and C provide a theoretical justification of the

proposed method. Appendix D provides further illustrations of the simulation

setup, and Appendix E reports the simulation results for partial ROC curve-based

method.
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