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Proof of Theorem 2.1. We only prove the theorem for the AWLS estimator
(2.4). For (2.3), the proof is similar and thus is omitted here. It can be

easily verified that § = 3 'ijém,
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which completes the proof. O
Proof of Theorem 2.2. (1) We first give the proof for the case when b, is
known. By the definition of # and the second inequality in (C1), we have
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The first inequality in (C1) and above result leads to the conclusion of the
theorem.

(2) When b,, is unknown, we consider its estimator as
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Thus, by the above result and the method given in the proof (1), we can
prove the conclusion of the theorem. 0]
Proof of Theorem 2.3. We only prove the conclusion for the case when b,
is unknown. For the other case, the proof is more simple.

When b, is unknown and &,(7) depends on 6, the AWLS estimator is
given in (2.3), i.e., the estimator has the form as 0 = Sy wkém — l;ngn
As shown in the proof of Theorem 2.2, by, = by, + 0,(0 — ém) Similarly,
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This completes the proof for the first conclusion.
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Note that

w* = min w! lim YWy
Tt Wy
1 wg_l

By Lagrange multipliers, we see that the optimal weight vector has the

following closed representation:
w* = (17(lim ) '1) ! (lim ¥g) 1,

which completes the proof for the second result of the theorem. O
Proof of Theorem 3.1. Clearly,
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where Z; = —1(e; < b,+XT(3,—B))—(r—1I(e < b,)) and E(Z|X;, B, b,) =
7 — F.(by + XT(B; — B)) — (r — F.(b,)). To apply the standard empirical
process to prove the asymptotic properties, we only need to get that for any
3 and b, such that || — 8]| = O(1/+/n) and |b, —b,| = O(1/+/n), the vari-
ance of X;(Z; — E(Z;| X, B,, ET)) is of order n~!. This result can be easily
computed. Thus, by the standard empirical process theory (see Chapter II.
Theorem 37 of Pollard 1984), the first term 2 S0 | X;(Zy,— E(Zi| X, 3, b))

has the convergence rate of order O,(n~%%). Further, by (C4), we have
E(Zi|Xi, r,br) = = (by = bo) fel(br) = (Br = B)" Xifelbr) + Op(n 7).

Since X is centralized and Z;T —b, = Op(nfl/z),
Iy .
sz@—m:@my
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By the definition of D,,
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Consequently,
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Combing the results above leads to
—D ZX 1(Y; — XT3 < b))

—D ZX I(Y; = XTB < b)) = (B = B) felbr) + 0p(n /%),

It follows from the result above and the Bahadur representation given in
Example 1 that
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Note that Bm has the same Bahadur representation as given in Example 1.
By the representation, we finish the proof. 0
Proof of Theorem 3.2. We first prove the result in (1). The estimator 7 (z)
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n (3.5) can be rewritten as
) = LS iy,
) = - ity
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where Wi = 32 gu =455, fx (o) = 530 Ko (X — o) and g = wy -
k=1 =
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Note that fx(z) — fx(x) at the rate of n=27 (or n~%7) under Condition
(C5) (or Condition (C6)). We only need to consider the property of 7, (x) =

53 Wies and Fiy(r) = £ 32 Wi(r(X,) — r(a). where IV, = 32 gk, (X, ~
;1:) From the standard techmque (see e.g. Hérdle 1990), 1t is to see that

711 (x) has zero mean and variance
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Then Va7, (z) N(O, o’wl Ay (W)wa(:c)> and consequently
Vnl=17(z) BN N(O, O'2WTA1(W)W/fX(£L‘)>.

m
Further, from the definition of g; above, it is easy to see that > g,77 = 0.
k=1

Because of this, when Condition (C6) holds (noticing the symmetry of the
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kernel function), the application of Taylor expansion yields 7}, (z) has mean

B(Fy(x)) = ngE(KTk<X—x><r<X>—r(x»)
= ngTk” 1b(x) fx ( +ng7k:” Ye(x) fx(x) + o(n™*7)

= ngn Ye(z) fx () + o(n™™),

where b(z) and ¢(z) are known functions. When the weaker Condition (C5)
is assumed, the term c,(x) = > grman *c(z) fx(z) + o(n™*7) should be a
k=1

term o(n~?7) instead. Namely, the mean becomes o(n~=27). Furthermore,

under only Condition (C5), 7j5(x) has the variance

Lyar (3205 (6 2)(r(X) ~ ()

k=1

1o <E<§:ngm(X —2)(r(X) - T(‘”))y)
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which is of smaller order than O(ﬁ) Thus for ¢,(z) = o(n™27) or

cn(r) = ne(x) 3 gpmit according to Condition (C5) or Condition (C6)
k=1

Vil (g ) = ealw) fx () =0,

implying

vnl=n <f12(x) - cn(x)> ~50.
Therefore, combining the above results leads to the asymptotic normality
of the first estimator 7 (x).

Now we prove the asymptotic normality for the AWLS estimator 75 (z)
defined in (3.7) under Condition (C6). By the Bahadur representation, we
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obtain
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Here the last term in (0.1) is of smaller order than o,(n=1=7/2) i.e.,
O, (n=30=m/4) = o (n=(=1/2) " Note that v, — fx(z), and fx(z) N
fx () at the rate of n=27. Similar to the above proof for 7, (x), we also only

need to study the property of
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Consider 75, (x) first. It can be rewritten as
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7:(2)1( Z Z ZkaTk - )KTk(Xj - m)(ej + €i>‘

1<i<j<n k=1

79,(x) is an U-statistic with the kernel
h(X1,e1; X, e9) = zm:kaTk(Xl — o) K, (X — z)(ex + e).
The kernel has zero mean, its projection onto (X7, e;) is
E(h(X1,e1; X, e9)| X1, 61) = Zkaﬂc —x)e; +o(n™")

and the variance of the projection is

L M

=’ f3 (:E)n_”WTAg(w)w +o(n™").

Then, from the asymptotic normality of U-statistic (see, e.g.. Serfling
(1980), Theorem 5.5.1 A), it follows that v/n1 779, (z) — N(O, 402WTA2(W)Wf§((x)>.

Thus, Vn!="73 (x) SN N<0, O'QWTAQ(W)WfX(ZL')> and consequently

Vil gy (z) 2 N(o, o*wT Ay(w)w/ fX(a:)).

We now consider 75, (). It is easy to see that it mean is the following:

> we (K (X1 = 0) Ko (Xz = 2)(r(Xa) = 7(2))) + O(1/n)

=Y wirid(@) f3 (x)n 2" + o(n”?7),
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for a given function d(z). The variance of 75,(z) can be written as

n'E (Z > az‘j) — E*(75y(x))

i=1 j=1
=n' Y > B +nt Y D Y Y E(aiagy) — B (7n(),
i=1 j=1 i, A5 i ET
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where

= ZkaTk(X’i — ) Ko, (X; — 2)(r(X;) — r(2)).

k=1
We can easily verify that, under Condition (C5), n=* 3" 3~ Fa; is of or-

i=1j5=1

der O( 2(1+n)) Moreover, for i # j,i # ;i # 7/ and j # j', we have
E(a;)E(aj;) = E*(f2(2)) + O (£). Thus the variance of 7%,(z) is of order
O (m), which is of smaller order than O (nll—,n) Consequently,

\/ﬁ(f%(m) - zm: wkT,fd(x)f)Q((x)n_Q"> 250,
k=1

implying
nl n <7’22 Z wlegd 7277) i> 0

The above results together ylelds the asymptotic normality of the second
AWLS estimator 75(x). O
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