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Abstract: The potential use of auxiliary summary information to improve the ef-

ficiency of estimation has attracted significant interest. Most existing methods

assume that the data distribution is the same for the sample data and for the

population that generates the auxiliary information. However, recent works have

relaxed this assumption by allowing heterogeneity between the two covariate distri-

butions. We consider an empirical likelihood approach that guarantees that using

auxiliary information will increase the efficiency of estimation when the variability

associated with this information is sufficiently small. We also investigate the ef-

fects of this variability on the efficiency. Furthermore, we implement the proposed

approach using a Newton–Raphson-type algorithm. Lastly, we discuss our simula-

tion results, which demonstrate the efficiency gains and confirm the large sample

approximations.
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1. Introduction

In many settings the main statistical objective is to fit models for a response

variable conditional on certain covariates. With the increasing availability of

large databases, there is much interest in the possibility of using auxiliary infor-

mation to enhance modeling, prediction and inference for a current study. Such

methodology has been used for many years in survey sampling, where summary

population-level data (e.g., from a census) are used to provide calibration factors

that increase the efficiency of an estimation based on the survey data (e.g., Dev-

ille and Särndal (1992); Chen and Qin (1993); Chaudhuri, Handcock and Rendall

(2008); Chen and Kim (2014)). Similar problems have also been considered in

economics. For example, Imbens and Lancaster (1994) considered a longitudinal

employment study involving covariates, with auxiliary data provided by longitu-

dinal unemployment rates. More recently, studies in medicine and public health
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have received attention (e.g., Qin et al. (2015); Chatterjee et al. (2016); Huang,

Qin and Tsai (2016)). The auxiliary data typically have much less detailed co-

variate information than the study data, and are often in summary or aggregate

form. For example, Huang, Qin and Tsai (2016) consider detailed models for

the time to some event, such as the recurrence of cancer in a group of treated

patients, along with auxiliary data that summarize the recurrence rates by a spe-

cific time, available from a population cancer registry. Another example is the

use of large cohorts or populations as the basis for two-phase studies (e.g., Law-

less, Kalbfleisch and Wild (1999); Breslow et al. (2009); Lumley, Shaw and Dai

(2011)), where a subset of the cohort is selected to measure detailed information

on certain covariates. See also Kim and Rao (2012) in the context of survey

sampling.

Several methods for using auxiliary data have been proposed, including

weight calibration (e.g., Lumley, Shaw and Dai (2011)), generalized regression

(e.g., Chen and Chen (2000); Lawless and Kalbfleisch (2011)), the constrained

maximum likelihood method (Handcock, Huovilainen and Rendall (2000); Chat-

terjee et al. (2016)), the generalized method of moments (e.g., Imbens and Lan-

caster (1994)), and the empirical likelihood method (e.g., Chen and Qin (1993);

Qin (2000); Chaudhuri, Handcock and Rendall (2008); Chen and Kim (2014);

Qin et al. (2015); Huang, Qin and Tsai (2016)). Most of these methods assume

that (a) the conditional distribution of the response variable, given the covariates

of interest, is the same in the populations that provide the study data and the

auxiliary data, and (b) the covariate distributions in the two populations are also

the same. These assumptions are reasonable when a study is based on a sample

of individuals from the population that provides the auxiliary data. However, re-

searchers are increasingly using large databases that are external to their studies

(e.g., Qin et al. (2015); Chatterjee et al. (2016); Huang, Qin and Tsai (2016)).

In many such contexts, assumption (a) may be plausible but assumption (b) is

more likely to be violated. For example, Keiding and Louis (2016) noted that

conditional features or distributions are more likely to be “transportable” from

one population to another than marginal distributions. In this case, methods

that assume both (a) and (b) can lead to biased estimation and incorrect con-

clusions. Our objective in this paper is to provide an empirical likelihood-based

method for the case where assumption (b) does not hold.

In order to use auxiliary summary information when the covariate distribu-

tions are different, we require a supplementary sample from the auxiliary data

population, for which measurements on the covariates of interest are collected.
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This supplementary sample can be of small size, and it can be independent of or

a subset of the original units on which the auxiliary information is based. It is

sometimes relatively easy to obtain such a supplementary sample, for example

when the covariates of interest represent demographic characteristics in a large

data base with accessible micro-data on individuals. However, there will often be

significant incremental costs to obtaining a supplementary sample, which need

to be weighed against potential efficiency gains.

We study here an empirical likelihood-based method which treats the co-

variate distributions as nuisance parameters and leaves them unspecified. The

only model we specify is for the conditional distribution of the response given the

covariates of interest. The approach was proposed by Han and Lawless (2016)

in a discussion of Chatterjee et al. (2016), but was not developed or studied

there. When the variability associated with the auxiliary summary information

is negligible compared with that in the study data, we show that the proposed

estimators are more efficient than the maximum likelihood estimator based on

the study data alone. When the variability in the auxiliary summary information

is non-negligible, we show explicitly how it affects the efficiency of the proposed

estimators. Furthermore, we discuss how to implement the proposed method and

provide numerical results on the efficiency for binary logistic and normal linear

regression models. In the final section we discuss our assumptions and related

issues, including potential uses of the proposed approach when employing large

data sets.

2. Setup and Review of Some Existing Methods

The setting we consider is as follows. Let (Yi,X
T
i ,Z

T
i )T, i = 1, . . . , n, denote

the random sample collected in the current study, where Y is the response and

X and Z are vectors of covariates. Our interest is in f(Y |X ,Z ), the distribution

of Y given X and Z . We consider a family of models f(Y | X ,Z ;β) that is

parametrized by parameter β and assume that f(Y |X ,Z ) = f(Y | X ,Z ;β0) for

some β0. In addition to the study data, auxiliary summary information is avail-

able in the form of an estimate θ̂ and its variance estimate, based on a known

set of estimating functions h(Y,X ; θ) that are applied to the auxiliary data set.

The summary data reflect measurements on Y and X , but not on Z . This is

relatively common because the current study is typically tailored to particular

scientific questions and measures numerous relevant covariates, whereas the aux-
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iliary data summarize a few features only. Examples can be found in Imbens and

Lancaster (1994); Chaudhuri, Handcock and Rendall (2008); Qin et al. (2015)

and Huang, Qin and Tsai (2016). We assume that the populations represented by

the study data and by the auxiliary data share the same conditional distribution

f(Y |X ,Z ). The goal is to make inference about β0 using both the study data

and the auxiliary summary information, in the hope this improves efficiency over

inference based solely on the study data.

Most existing methods assume that the two populations share the same co-

variate distribution f(X ,Z ). To describe the situation, assume for now that there

is no variability or uncertainty associated with the estimate θ̂. In other words, the

auxiliary data summary consists of the vector θ∗ that satisfies E{h(Y,X ; θ∗)} =

0, where the expectation E(·) is taken under the joint distribution f(Y | X ,Z )

f(X ,Z ). Let s(Y,X ,Z ;β) = ∂ log f(Y | X ,Z ;β)/∂β be the score function

of model f(Y | X ,Z ;β). Estimation based on the current study data alone

solves the estimating equation
∑n

i=1 s(Yi,Xi,Zi;β) = 0. The simplest way to

use the auxiliary information is to treat {s(Y,X ,Z ;β)T, h(Y,X ; θ∗)T}T as a

set of estimating functions and then to apply the generalized method of mo-

ments (Hansen (1982)) or the empirical likelihood method (Qin and Lawless

(1994); Owen (2001)) to the current study data. However, this approach does

not yield a fully efficient estimator because it does not make full use of the fact

that f(Y | X ,Z ;β) is a likelihood function (Imbens and Lancaster (1994)).

Because E{h(Y,X ; θ∗)} = E[E{h(Y,X ; θ∗) | X ,Z}], it follows that E{u(X ,

Z ;β0, θ
∗)} = 0, where

u(X ,Z ;β, θ∗) =

∫
h(Y,X ; θ∗)f(Y | X ,Z ;β)dY.

This moment equality provides a constraint on f(X ,Z ). Applying the semi-

empirical likelihood method (Qin (2000); Chatterjee et al. (2016)) leads to an

estimator of β0 defined through

max
β,p1,...,pn

n∏
i=1

f(Yi | Xi,Zi;β)pi subject to

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piu(Xi,Zi;β, θ
∗) = 0,

where the pi denote an empirical distribution for (X ,Z ) supported on the study

data. This estimator has been shown to be more efficient than β̂MLE, the maxi-

mum likelihood estimator based on current study data alone (Qin (2000); Chat-

terjee et al. (2016)). Asymptotically equivalent estimators can be derived by



EL ESTIMATION USING AUXILIARY INFORMATION 1325

treating {s(Y,X ,Z ;β)T, u(X ,Z ;β, θ∗)T}T as a set of estimating functions and

then straightforwardly applying the generalized method of moments or the empir-

ical likelihood method (Imbens and Lancaster (1994); Han and Lawless (2016)).

As noted, the assumption of the same f(X ,Z ) is often implausible (e.g.,

Keiding and Louis (2016)), and when it is violated, the aforementioned estima-

tors, other than β̂MLE, are biased. To relax this assumption, denote f(X ,Z ) and

f∗(X ,Z ) as the covariate distributions for the study data and the auxiliary data

populations, respectively. The auxiliary summary information θ∗ then satisfies

E∗{h(Y,X ; θ∗)} = 0, where the expectation E∗(·) is taken under the joint dis-

tribution f(Y | X ,Z )f∗(X ,Z ). As before, we have that E∗{u(X ,Z ;β0, θ
∗)} = 0.

However, with the study data alone the auxiliary estimating function u(X ,Z ;β,θ∗)

cannot be used because E∗(·) is taken under the auxiliary data covariate dis-

tribution f∗(X ,Z ). To use the auxiliary information, Chatterjee et al. (2016)

assumed that a small random sample (X ∗Tj ,Z ∗Tj )T, j = 1, . . . , n∗, is available

from the auxiliary data population, referred to here as the supplementary sam-

ple. They proposed a constrained maximum likelihood estimator by maximizing∏n
i=1 f(Yi | Xi,Zi;β) under the constraint n∗−1

∑n∗

j=1 u(X ∗j ,Z
∗
j ;β, θ∗) = 0. How-

ever, this estimator can be less efficient than β̂MLE, especially when n∗/n is not

large. Han and Lawless (2016) observed that an empirical likelihood approach

could be applied. We develop this idea in the following sections.

3. The Proposed Empirical Likelihood-based Method

3.1. The proposed estimators

With the auxiliary summary information and the supplementary sample

(X ∗Tj , Z ∗Tj )T, j = 1, . . . , n∗, we can construct estimators that are guaranteed to

be more efficient than β̂MLE. Han and Lawless (2016) noted that the approach

of Qin (2000), also considered by Chen, Leung and Qin (2003), could be applied.

This involves p∗j , j = 1, . . . , n∗, an empirical distribution for the supplementary

sample, and defines an estimator β̂EL1 through

max
β,p∗1 ,...,p

∗
n∗

n∏
i=1

f(Yi | Xi,Zi;β)

n∗∏
j=1

p∗j subject to

p∗j ≥ 0,

n∗∑
j=1

p∗j = 1,

n∗∑
j=1

p∗ju(X ∗j ,Z
∗
j ;β, θ∗) = 0. (3.1)

For convenience, we write f(β) = f(Y | X ,Z ;β), s(β) = ∂ log f(β)/∂β and
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u∗(β) = u(X ∗,Z ∗;β, θ∗). In the Appendix we show that β̂EL1 is the component

of (β̂TEL1, λ̂
T)T that satisfies

n∑
i=1

si(β̂EL1) +

n∗∑
j=1

∂u∗j (β̂EL1)/∂β
T

1− λ̂Tu∗j (β̂EL1)
λ̂ = 0, (3.2)

n∗∑
j=1

u∗j (β̂EL1)

1− λ̂Tu∗j (β̂EL1)
= 0, (3.3)

where λ is a vector of Lagrange multipliers, and p̂∗j = 1/[n∗{1 − λ̂Tu∗j (β̂EL1)}]
with

1− λ̂Tu∗j (β̂EL1) >
1

n∗
, j = 1, . . . , n∗. (3.4)

Based on the Z-estimator theory (e.g., van der Vaart (1998)), it is easy to

see that (β̂TEL1, λ̂
T)T

p−→ (βT0 , 0
T)T, and thus β̂EL1 is a consistent estimator of β0.

To introduce the asymptotic distribution of β̂EL1, we write S = E{s(β0)s(β0)
T},

G∗ = E∗{∂u∗(β0)/∂β}, Ω∗ = E∗{u∗(β0)u∗(β0)T}, and κ = limn→∞ n
∗/n. In

the Appendix we show that
√
n(β̂EL1 − β0)

d−→ N
(
0, (S + κG∗TΩ∗−1G∗)−1

)
. (3.5)

It is clear that G∗TΩ∗−1G∗ is positive-definite, and thus the above asymptotic

variance VEL ≡ (S + κG∗TΩ∗−1G∗)−1 is always smaller than VMLE ≡ S−1, the

asymptotic variance of β̂MLE. Therefore, β̂EL1 is guaranteed to be more efficient

than β̂MLE, and the efficiency improvement increases with κ.

The formulation (3.1), following Qin (2000), uses a parametric likelihood

multiplied by a nonparametric likelihood. A full empirical likelihood formulation

as in Qin and Lawless (1994) can be given by letting pi, i = 1, . . . , n, denote an

empirical distribution supported on the study data sample. Then we define an

estimator β̂EL2 through

max
β,pi’s,p∗j ’s

n∏
i=1

pi

n∗∏
j=1

p∗j subject to

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pis(Yi,Xi,Zi;β) = 0,

p∗j ≥ 0,

n∗∑
j=1

p∗j = 1,

n∗∑
j=1

p∗ju(X ∗j ,Z
∗
j ;β, θ∗) = 0.

Arguments similar to those in the Appendix leading to (3.2)-(3.3) show that β̂EL2
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is the component of (β̂TEL2, λ̂
T, ρ̂T)T that satisfies

n∑
i=1

∂si(β̂EL2)/∂β

1− λ̂Tsi(β̂EL2)
λ̂+

n∗∑
j=1

∂u∗j (β̂EL2)/∂β
T

1− ρ̂Tu∗j (β̂EL2)
ρ̂ = 0, (3.6)

n∑
i=1

si(β̂EL2)

1− λ̂Tsi(β̂EL2)
= 0, (3.7)

n∗∑
j=1

u∗j (β̂EL2)

1− ρ̂Tu∗j (β̂EL2)
= 0, (3.8)

and p̂i = 1/[n{1− λ̂Tsi(β̂EL2)}] and p̂∗j = 1/[n∗{1− ρ̂Tu∗j (β̂EL2)}] with

1− λ̂Tsi(β̂EL2) >
1

n
, i = 1, . . . , n; 1− ρ̂Tu∗j (β̂EL2) >

1

n∗
, j = 1, . . . , n∗.

(3.9)

Based on the Z-estimator theory, it is easy to see that (β̂TEL2, λ̂
T, ρ̂T)T

p−→
(βT0 , 0

T, 0T)T, showing the consistency of β̂EL2. In the Appendix, we show that√
n(β̂EL2 − β0) has the same asymptotic distribution as that in (3.5). In other

words, β̂EL2 is asymptotically equivalent to β̂EL1, and thus is guaranteed to be

more efficient than β̂MLE.

3.2. Numerical implementation

Reliable procedures for obtaining empirical or constrained maximum likeli-

hood estimates can be difficult to find (e.g., Chaudhuri, Handcock and Rendall

(2008)). A simple way to compute β̂EL1 and β̂EL2 seems to be to solve (3.2)–(3.3)

for (βT, λT)T and (3.6)–(3.8) for (βT, λT, ρT)T, respectively. However, this way

is not recommended owning to its unstable behavior: equations (3.3) and (3.7)–

(3.8), viewed as equations for λ and (λT, ρT)T, respectively, for a fixed β, typically

have many roots (Han and Wang (2013)). Here we need λ̂ and (λ̂T, ρ̂T)T that

satisfy (3.4) and (3.9), respectively. Solving those equations directly can lead to

an unwanted root.

A more reliable implementation is to consider the saddle-point representation

of β̂EL1 and β̂EL2, as recommended in the empirical likelihood literature (e.g.,

Owen (2001); Imbens (2002); Kitamura (2007)). As such, we outline a Newton–

Raphson-type algorithm, which we show demonstrates good performance. The

following discussion focuses on β̂EL1 for simplicity. From the derivation of (3.2)-

(3.3) in the Appendix, we have that, for a fixed β, the solution p̂∗j (β) to (3.1) is

given by p̂∗j (β) = 1/[n∗{1 − λ̂(β)Tu∗j (β)}], where λ̂(β) solves
∑n∗

j=1 u∗j (β)/{1 −
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λTu∗j (β)} = 0. It is then easy to see that λ̂(β) minimizes

L∗(λ, β) ≡ −
n∗∑
j=1

log{1− λTu∗j (β)}, (3.10)

and
∑n∗

j=1 log p̂∗j (β) = L∗{λ̂(β), β} − n∗ log n∗. Therefore, β̂EL1 defined in (3.1)

can be equivalently defined as

β̂EL1 = arg max
β

{
n∑
i=1

log fi(β) + min
λ
L∗(λ, β)

}
≡ arg max

β
M(β).

This is the so-called saddle-point representation, so named because of its nested

optimizations.

An implementation based on the Newton–Raphson algorithm requires the

Jacobian Mβ(β) = ∂M(β)/∂β and the Hessian Mββ(β) = ∂2M(β)/∂β∂βT of

M(β), the expressions of which, together with some simplifications, are given in

the Appendix. Both Mβ(β) and Mββ(β) involve λ̂(β), the value of which at the

current β in each iteration can be calculated by minimizing L∗(λ, β) in (3.10)

with respect to λ. This minimization requires the Jacobian L∗λ(λ, β) and Hessian

L∗λλ(λ, β):

L∗λ(λ, β) =

n∗∑
j=1

u∗j (β)

1− λTu∗j (β)
, L∗λλ(λ, β) =

n∗∑
j=1

u∗j (β)u∗j (β)T

{1− λTu∗j (β)}2
.

The implementation consists of two loops: the outer loop updates β using

Mβ(β) and Mββ(β), where the needed λ̂(β) at the current β is calculated by the

inner loop. The algorithm is described below.

Outer loop:

Step 0: Set l = 0 (iteration count), σ = 5 (maximum number of attempts within

each iteration to find a step-length that increases M(β)), and ε = 10−4

(algorithm convergence criterion). Let β̂(0) = β̂MLE (initial value of β)

and M (0) = M(β̂(0)) (here the calculation invokes the inner loop).

Step 1: Calculate ∆(l) = Mββ(β̂(l))−1Mβ(β̂(l)) (direction for updating β̂(l); the

calculation invokes the inner loop). Set τ = 1 (the initial step-length

taken along the direction ∆(l)) and t = 0 (number of attempts to find a

step-length that increases M(β)).

Step 2: Calculate β̂temp = β̂(l) − τ∆(l) and M temp = M(β̂temp) (the calculation

invokes the inner loop). If M temp > M (l) or t = σ, then go to Step 3;

otherwise, let t = t+ 1 and τ = τ/2 and repeat Step 2.
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Step 3: Let β̂(l+1) = β̂temp and M (l+1) = M temp. If ‖ β̂(l+1) − β̂(l) ‖1< ε, let

β̂EL1 = β̂(l+1) and stop the algorithm; otherwise, set l = l + 1 and go

back to Step 1.

Inner loop:

Step 0: Set l = 0 (iteration count) and ε = 10−4 (algorithm convergence crite-

rion). Let λ̂(0) = 0 (initial value of λ) and L∗(0) = 0.

Step 1: Calculate ∆(l) = L∗λλ(λ̂(l), β)−1L∗λ(λ̂(l), β) (direction for updating λ̂(l)).

Set τ = 1 (the initial step-length taken along the direction ∆(l)).

Step 2: Calculate λ̂temp = λ̂(l)−τ∆(l). If λ̂temp satisfies 1−(λ̂temp)Tu∗j (β) > 1/n∗

for j = 1, . . . , n∗ and L∗temp ≡ L∗(λ̂temp, β) < L∗(l), then go to Step 3;

otherwise, let τ = τ/2 and repeat Step 2.

Step 3: Let λ̂(l+1) = λ̂temp and L∗(l+1) = L∗temp. If ‖ λ̂(l+1) − λ̂(l) ‖1< ε, let

λ̂ = λ̂(l+1) and stop the algorithm; otherwise, set l = l + 1 and go back

to Step 1.

In the outer loop, Step 2 sequentially tries step-lengths 1, 2−1, . . . , 2−5 along the

direction for updating β, and accepts the first length that makes M(β) increase.

If no step-length is identified, we update β by taking the step-length as 2−5. This

is because the current β might be a local rather than a global maximizer, and

continuing to update β could take the iterations out of this region. In the inner

loop, with β fixed, Step 2 sequentially tries step-lengths 1, 2−1, . . . , along the

direction for updating λ, accepting the first length that satisfies 1 − λTu∗j (β) >

1/n∗ for j = 1, . . . , n∗ and makes L∗(λ, β) decrease. Such a step-length always

exists because λ̂(0) = 0 and L∗(λ, β) is a strictly convex function of λ. The inner

loop almost always converges (Chen, Sitter and Wu (2002); Han (2014)). The

initial value for the outer loop, β̂(0) = β̂MLE, is a consistent estimator of β0,

and the initial value for the inner loop, λ̂(0) = 0, is the probability limit of λ̂.

Therefore, the convergence of the above algorithm is usually fast.

For β̂EL2, we have the following saddle-point representation:

β̂EL2=arg max
β

min
λ

[
−

n∑
i=1

log{1−λTsi(β)}

]
+min

ρ

− n∗∑
j=1

log{1−ρTu∗j (β)}

 .

The determination of β̂EL2 is similar to that of β̂EL1. Thus we omit the details

here.
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3.3. Uncertainty of the auxiliary summary information

If the auxiliary data set is not sufficiently large, the variability associated

with the auxiliary summary information may be non-negligible and may affect

the properties of β̂EL1 and β̂EL2. To study this effect, let N∗ denote the sample

size for the auxiliary data set from which the auxiliary estimate θ̂ is derived

based on solving
∑N∗

k=1 h(Yk,Xk; θ) = 0, and let Vθ∗ be the asymptotic variance

of
√
N∗(θ̂−θ∗), where now θ∗ is the unknown probability limit of θ̂. The auxiliary

summary information now includes θ̂ and V̂θ̂, where V̂θ̂ is an estimate of Vθ∗ .

The estimation procedures are as before, but with θ̂ replacing θ∗. It turns

out that in this case the asymptotic distribution of β̂EL1 depends on whether

the supplementary sample is independent of or a subset of the auxiliary data

set. In the former case, as shown in the Appendix,
√
n(β̂TEL1 − βT0 , λ̂T)T has an

asymptotic normal distribution with mean zero and variance(
−S , κG∗T

κG∗, κΩ∗

)−1(
S , 0

0, κ(Ω∗ + κ∗Q∗Vθ∗Q∗T)

)(
−S , κG∗T

κG∗, κΩ∗

)−1
, (3.11)

where κ∗ = limn→∞ n
∗/N∗ and Q∗ = E∗{∂u∗(β0, θ

∗)/∂θ}. An explicit but messy

expression for the asymptotic variance of
√
n(β̂EL1 − β0) may then be derived,

but this is not necessary for the implementation because we can calculate (3.11)

and then extract the corresponding sub-matrix for β̂EL1.

From the proof of (3.5) in the Appendix, the asymptotic variance of
√
n(β̂TEL1−

βT0 , λ̂
T)T, when θ∗ is used instead of θ̂, is(

−S , κG∗T

κG∗, κΩ∗

)−1(
S , 0

0, κΩ∗

)(
−S , κG∗T

κG∗, κΩ∗

)−1
. (3.12)

Because Q∗Vθ∗Q∗T is positive-definite, a comparison between (3.11) and (3.12)

reveals that the variability of θ̂ always increases the asymptotic variance of β̂EL1.

Therefore, the confidence intervals for β̂EL1 ignoring this uncertainty will have a

coverage rate that is smaller than the nominal level.

When the supplementary sample is a subset of the auxiliary data set, it

is shown in the Appendix that
√
n(β̂TEL1 − βT0 , λ̂T)T has an asymptotic normal

distribution with mean zero and variance(
−S , κG∗T

κG∗, κΩ∗

)−1(
S , 0

0, κ{(1− 2κ∗)Ω∗ + κ∗Q∗Vθ∗Q∗T}

)(
−S , κG∗T

κG∗, κΩ∗

)−1
.

(3.13)

A comparison between (3.13) and (3.12) leads to a surprising observation: the

variability of θ̂ increases the asymptotic variance of β̂EL1 when Q∗Vθ∗Q∗T >
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2Ω∗ and reduces the asymptotic variance when Q∗Vθ∗Q∗T < 2Ω∗. Calculations

show that Q∗Vθ∗Q∗T = Ω∗ +E∗[Var{h(θ∗) | X ,Z}]. Therefore, the uncertainty

of θ̂ reduces the asymptotic variance of β̂EL1 when E∗[Var{h(θ∗) | X ,Z}] <
Ω∗. In other words, the confidence intervals for β̂EL1 ignoring this uncertainty

have a coverage rate that is smaller than the nominal level when E∗[Var{h(θ∗) |
X ,Z}] > Ω∗ and larger than the nominal level when E∗[Var{h(θ∗) | X ,Z}] < Ω∗.

In general, the asymptotic variance of the proposed estimators is affected

by κ and κ∗. Because this effect depends on quantities derived from the data

distribution, a quantitative assessment is difficult. For example, consider the

case where the supplementary sample is independent of the auxiliary data set.

The asymptotic variance is determined by (3.11). When κ = 0, the asymptotic

variance becomes that of β̂MLE based on the current study data alone, and thus

the auxiliary information is no longer useful. When κ∗ = 0, (3.11) reduces to

(3.12), the asymptotic variance with known θ∗. The case where κ =∞ or κ∗ =∞
is not practically meaningful because n∗ is typically small owning to the micro

data from the auxiliary data set not being available. When n∗/n and n∗/N∗ vary,

the asymptotic variance varies between that of β̂MLE and that using a known θ∗,

but a quantification is difficult because the quantities in (3.11) depend on the

data distribution.

In the special case that the summary information θ̂ is an estimate of θ∗ =

E∗(Y ) for the auxiliary study population, calculated as the sample average of

the auxiliary data {Yk : k = 1, . . . , N∗}, we have h(Y ; θ) = Y − θ. Some

calculation shows that G∗ = E∗{Y s(β0)
T}, Ω∗ = Var∗{E(Y | X ,Z )}, Q∗ = −1

and Vθ∗ = Var∗(Y ) in this case. Therefore, when the supplementary sample is

a subset of the auxiliary data set, the uncertainty of θ̂ reduces the asymptotic

variance when E∗{Var(Y | X ,Z )} < Var∗{E(Y | X ,Z )}.
The above conclusions all apply to β̂EL2 as well because it has the same

asymptotic expansion as β̂EL1.

4. Simulation and Analytical Results

4.1. Logistic regression

We first examine the efficiency for logistic regression, as considered by Qin

et al. (2015) and Chatterjee et al. (2016) in case-control settings. Two covari-

ates X and Z are assumed to jointly follow a bivariate normal distribution with

marginal means of zero and marginal variances of one. The correlation coef-

ficient is taken as ρ = 0.5 for the current study population and ρ∗ = 0.1 for
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Table 1. Simulation results for logistic regression models based on 1,000 replications.
All numbers other than the percentages have been multiplied by 1,000. Scenarios 1-
3 correspond to no uncertainty in the auxiliary summary information, uncertainty in
the auxiliary summary information and the supplementary sample is independent of
the auxiliary data set, and uncertainty in the auxiliary summary information and the
supplementary sample is a subset of the auxiliary data set, respectively. For all scenarios,
n = 300 and n∗ = 100. For scenarios 2 and 3, N∗ = 500.

Scenario 1 Scenario 2 Scenario 3
βc βX βZ βXZ βc βX βZ βXZ βc βX βZ βXZ

current study sample only
bias 11 −14 −25 30 7 −9 −24 32 8 −12 −23 31

SE-EMP 139 168 167 173 144 169 179 166 139 166 181 168
empirical likelihood 1

bias −13 −9 −24 35 13 −13 −22 30 9 −12 −23 31
SE-EMP 66 86 159 163 106 127 172 169 101 120 172 167

SE-NAIVE 65 87 159 160 65 86 158 159 65 86 159 159
CP-95% 93.7 95.3 95.4 95.5 76.1 80.3 94.1 93.6 79.3 83.1 92.8 93.7
SE-EST − − − − 105 124 162 164 101 118 161 163

CP-95%-ADJ − − − − 94.6 95.1 94.3 94.3 94.6 95.7 93.3 94.2
empirical likelihood 2

bias −13 −9 −25 35 13 −12 −23 30 9 −13 −23 32
SE-EMP 67 86 159 164 106 127 172 169 101 120 172 167

SE-NAIVE 65 87 159 160 65 86 159 159 65 86 159 159
CP-95% 93.8 95.5 95.4 95.5 75.9 80.7 93.9 93.7 79.4 83.2 92.5 93.3
SE-EST − − − − 105 124 162 164 101 118 161 163

CP-95%-ADJ − − − − 94.5 94.7 94.1 94.2 94.6 95.6 93.1 93.9
SE-EMP: empirical standard error; SE-NAIVE: mean of the estimated standard error based on the
asymptotic variance without accounting for the uncertainty in θ̂; CP-95%: coverage probability of the
95% confidence interval based on the asymptotic distribution without accounting for the uncertainty
in θ̂; SE-EST: mean of the estimated standard error based on the asymptotic variance adjusting for
the uncertainty in θ̂; CP-95%-ADJ: coverage probability of the 95% confidence interval based on the
asymptotic distribution adjusting for the uncertainty in θ̂.

the auxiliary data population. Given X and Z, Y follows a Bernoulli distri-

bution with logit{P (Y = 1 | X,Z)} = β0c + β0XX + β0ZZ + β0XZXZ, where

logit(π) = log{π/(1−π)} and βT0 = (β0c, β0X , β0Z , β0XZ) = (0.5,−0.5,−0.5, 0.5).

For the auxiliary data set, we assume the model logit{P (Y = 1 | X)} =

θc + θXX was fitted for f∗(Y | X) using the maximum likelihood score func-

tion h(Y,X; θ) = (1, X)T{Y − expit(θc + θXX)}, where expit(γ) = eγ/(1 + eγ).

Note that this is a misspecified model for f∗(Y | X). The value of θ∗ can be

calculated numerically as the solution to E∗{h(Y,X; θ)} = 0. We then have

u(X,Z;β, θ∗) = P (Y = 1 | X,Z;β)h(Y = 1, X; θ∗) + P (Y = 0 | X,Z;β)h(Y =

0, X; θ∗).

Table 1 contains the simulation results based on 1,000 replications. Scenarios

1–3 correspond to (i) no uncertainty in the auxiliary summary information, (ii)

uncertainty in the auxiliary summary information (that is, θ̂ replaces θ∗) and
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the supplementary sample is independent of the auxiliary data set, and (iii)

uncertainty in the auxiliary summary information and the supplementary sample

is a subset of the auxiliary data set, respectively. For all scenarios, we take

n = 300 for the study sample and n∗ = 100 for the supplementary sample; for

scenarios 2 and 3, we take N∗ = 500 for the auxiliary data set used to calculate

θ̂ and V̂θ̂. In all scenarios, β̂EL1 and β̂EL2 show almost identical performance.

Furthermore, both have considerably smaller empirical standard errors than those

of β̂MLE for the components βc and βX , corresponding to the regressors included

in the auxiliary data model. The reduction is much less in scenarios 2 and 3,

where the variability in θ̂ is non-negligible. Note that N∗ = 500 is small for most

auxiliary databases and in practice large data sets yield gains close to those in

scenario 1. In addition, the efficiency gains are small for βZ and βXZ , even in

scenario 1. These results agree qualitatively with the results of Qin et al. (2015)

and Chatterjee et al. (2016), although the former assumes that the covariate

distributions are the same. The coverage probabilities of the 95% confidence

intervals constructed using the asymptotic distributions, with no uncertainty in

scenario 1 and with an adjustment for uncertainty in scenarios 2 and 3, are very

close to the nominal levels.

4.2. Normal linear regression

To gain further insight into how the efficiency improvement might be affected

by various factors, we next consider a linear regression, where a mathematical

calculation is feasible. Let X and Z be generated as before, but with ρ and ρ∗

unspecified. We assume that the model N(θc+θXX, 1) was fitted to the auxiliary

data, and that the model N(βc+βXX+βZZ+βXZXZ, 1) holds for f(Y | X,Z).

Here the variances of the normal distributions are assumed to be known in order

to simplify the calculations. The auxiliary data model leads to h(Y,X; θ) =

(1, X)T(Y − θc − θXX) and then u(X,Z;β, θ) = (1, X)T(βc + βXX + βZZ +

βXZXZ − θc − θXX). Solving E∗{h(Y,X; θ∗)} = 0 gives θ∗c = β0c + β0XZρ
∗ and

θ∗X = β0X + β0Zρ
∗. Thus the auxiliary data provide information only on a two-

dimensional function of β0c, β0X , β0Z , and β0XZ . Straightforward calculations

show that

S =


1 0 0 ρ

0 1 ρ 0

0 ρ 1 0

ρ 0 0 1 + 2ρ2

 , G∗ =

(
1 0 0 ρ∗

0 1 ρ∗ 0

)
,
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and Ω∗ =

(
β20Z(1− ρ∗2) + β20XZ(1 + ρ∗2) 2β0Zβ0XZ(1− ρ∗2)

2β0Zβ0XZ(1− ρ∗2) β20Z(1− ρ∗2) + β20XZ(3 + 7ρ∗2)

)
.

(4.1)

From (3.5), the efficiency improvement becomes more significant when |β0Z | and

|β0XZ | are small. For example, taking ρ = 0.5, ρ∗ = 0.1 and κ = 1/3, the

square root of the ratio of the diagonal elements of VEL to those of VMLE is

(0.68, 0.81, 0.97, 0.97) when βT0 = (0.5,−0.5,−0.5, 0.5) and (0.40, 0.52, 0.93, 0.95)

when βT0 = (0.5,−0.5,−0.2, 0.2). This observation makes intuitive sense because

a weak association between Y and (Z,XZ) means that the fitted auxiliary data

model N(θc + θXX, 1) is close to the model of interest N(βc + βXX + βZZ +

βXZXZ, 1), and thus should lead to a greater efficiency improvement. This

observation is confirmed by our simulation results for these models. These results

are omitted owning to their similarity with those based on the logistic regression.

Imbens and Lancaster (1994) found similar behavior for probit binary response

models, using generalized method of moments estimators, when the covariate

distributions are the same.

For the above linear regression case, we can further examine the effect of the

uncertainty in θ̂ for scenario 3. Here, as shown by our theoretical results, the

definiteness of E∗[Var{h(θ∗) | X,Z}]−Ω∗ determines whether using θ̂ increases or

reduces the asymptotic variance of β̂EL1 and β̂EL2, as compared with using θ∗. In

this case, Ω∗ is given in (4.1), and a simple calculation shows that E∗[Var{h(θ∗) |
X,Z}] is the identity matrix. Taking βT0 = (1, 1, 1, 1) as an example, it is easy

to see that E∗[Var{h(θ∗) | X,Z}]−Ω∗ is never positive-definite and is negative-

definite when |ρ∗| > 0.27. In other words, using θ̂ instead of θ∗ reduces the

asymptotic variance of β̂EL1 and β̂EL2 when |ρ∗| > 0.27. Figure 1 plots, as a

function of ρ∗, the ratio of the asymptotic standard deviation of
√
n(β̂EL1 − β0)

using θ̂ versus that using θ∗, taking ρ = 0.5, κ = 1/3 and κ∗ = 1/5. Clearly, when

|ρ∗| > 0.27, the uncertainty of θ̂ reduces the asymptotic variance. When |ρ∗| <
0.27, this uncertainty may reduce the asymptotic variance for some regression

coefficients but increase it for others. The impact, however, is very small, as can

be seen from the scale of the y-axis. Other aspects of efficiency can be examined

using (4.1), such as the effects of ρ and ρ∗.

5. Conclusion

The fact that a supplementary sample of (X T,ZT)T from the auxiliary data

population is needed when f(X ,Z ) 6= f∗(X ,Z ) limits the use of auxiliary sum-
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Figure 1. Plot of the ratio of the asymptotic standard deviation of
√
n(β̂EL1− β0) using

θ̂ versus that using θ∗ when the supplementary sample is a subset of the auxiliary data
set, taking βT

0 = (1, 1, 1, 1), ρ = 0.5, κ = 1/3, and κ∗ = 1/5.

mary information, as well as the methodology presented here, to cases where

such information can be obtained. This is feasible in settings where individual-

level data can be produced from the auxiliary database. However, if micro data

are not available or if the covariates Z are not included in such data, then a

randomly selected supplementary sample of individuals from the auxiliary data

population is needed to measure the covariates. In such cases the cost of doing so

needs to be weighted against the potential efficiency gains or, in some cases, the

cost of expanding the current study. There is a growing awareness of the need

to consider covariate distributions, and for methodologies to deal with situations

where these distributions differ across populations. In addition to the analysis

of a current study “borrowing strength” from external summary data, this also

applies to the comparison or integration of results from different studies. It is es-

sential that information concerning different populations be compared critically

in order to assess the usefulness of auxiliary data.

The two proposed estimators are asymptotically equivalent and perform sim-

ilarly in our simulations. However, further research is needed to compare their

finite-sample behavior in more detail. On computational grounds, we recommend

using β̂EL1 because its implementation involves only one Lagrange multiplier λ̂,
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whereas the implementation of β̂EL2 involves both λ̂ and ρ̂. A larger set of La-

grange multipliers may affect the performance of the optimization procedures.

Let ĝ(β) = {n−1
∑n

i=1 si(β)T, (n∗)−1
∑n∗

j=1 u∗j (β)T}T. An alternative to the

proposed empirical likelihood estimators is the generalized method of moments

estimator that minimizes ĝ(β)TĈ (β)−1ĝ(β), where

Ĉ (β) =

(
(1/n)

∑n
i=1 si(β)si(β)T 0

0 (n/n∗)(1/n∗)
∑n∗

j=1 u∗j (β)u∗j (β)T

)
is the sample version of C (β0) = diag(S , κ−1Ω∗), the asymptotic variance of√
nĝ(β0). Standard results on generalized method of moments (Hansen (1982))

show that this estimator is asymptotically equivalent to the ones we have pro-

posed. The well-established comparisons between the generalized method of

moments and the empirical likelihood method apply here (e.g., Imbens (2002);

Newey and Smith (2004)). Imbens and Lancaster (1994) considered auxiliary

information and the generalized method of moments when f(X,Z) = f∗(X,Z).

The parametric model f(Y | X ,Z ;β) assumed in the current study can be

checked using relevant goodness-of-fit tests. The assumption that the study pop-

ulation and the auxiliary data population have the same distribution f(Y | X ,Z )

is more difficult to check in the setting considered here, where only summary in-

formation plus a supplementary sample on (X T,ZT)T is available for the latter

population. One option is to compare β̂MLE with β̂EL1 or β̂EL2, with a significant

lack of agreement suggesting departures from this assumption (e.g., Imbens and

Lancaster (1994); Chatterjee et al. (2016)). Another is to evaluate the average

of u(X ,Z ; β̂MLE, θ̂) over the supplementary sample, where a significant differ-

ence from zero indicates a violation of this assumption. However, note that such

checks cannot detect certain types of differences in the distributions for Y given

X and Z (e.g., Newey (1985)) and a supplementary sample of (Y,X T,ZT)T or

background information is needed to remedy this. These issues will be examined

in more detail elsewhere.
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Appendix

Derivation of (3.2) and (3.3). The Lagrangian corresponding to the constrai-
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ned optimization problem (3.1) is

L =

n∑
i=1

log fi(β) +

n∗∑
j=1

log p∗j + n∗λT
n∗∑
j=1

p∗ju
∗
j (β)− µ

 n∗∑
j=1

p∗j − 1

 ,

where λ and µ are the Lagrange multipliers. At the solution β̂EL1 and p̂∗j we

must have ∂L/∂p∗j = 0 and ∂L/∂β = 0. Multiplying both sides of ∂L/∂p∗j =

1/p∗j +n∗λTu∗j (β)−µ by p∗j and summing over j, the constraints in (3.1) lead to

µ̂ = n∗, which, combined with ∂L/∂p∗j = 0 yields p̂∗j = 1/[n∗{1 − λ̂Tu∗j (β̂EL1)}].
Then ∂L/∂β = 0 gives (3.2) and the constraint

∑n∗

j=1 p̂
∗
ju
∗
j (β̂EL1) = 0 gives (3.3).

Proof of (3.5). Applying the mean-value theorem to (3.2)–(3.3) around (βT0 ,

0T)T leads to

0 =


1

n

n∑
i=1

si(β0)

√
n∗

n

1√
n∗

n∗∑
j=1

u∗j (β0)



+


1

n

n∑
i=1

∂si(β̄)

∂β
,

n∗

n

1

n∗

n∗∑
j=1

∂u∗j (β̂EL1)/∂β
T

1−λ̂Tu∗j (β̂EL1)

n∗

n

1

n∗

n∗∑
j=1

∂u∗j (β̄)/∂β

1−λ̄Tu∗j (β̂EL1)
,
n∗

n

1

n∗

n∗∑
j=1

u∗j (β̄)u∗j (β̂EL1)
T

{1−λ̄Tu∗j (β̂EL1)}2


(
β̂EL1 − β0

λ̂

)
,

where β̄ is some value between β̂EL1 and β0 and λ̄ is some value between λ̂ and

0. Then we have

√
n

(
β̂EL1 − β0

λ̂

)
= −

(
−S , κG∗T

κG∗, κΩ∗

)−1
1√
n

n∑
i=1

si(β0)

√
n∗√
n

1√
n∗

n∗∑
j=1

u∗j (β0)

+ op(1).

(A.1)

From the central limit theorem,
√
n(β̂TEL1 − βT0 , λ̂T)T has an asymptotic normal

distribution with mean zero and variance(
−S , κG∗T

κG∗, κΩ∗

)−1(
S , 0

0, κΩ∗

)(
−S , κG∗T

κG∗, κΩ∗

)−1

=

(
(S + κG∗TΩ∗−1G∗)−1, 0

0, (κΩ∗ + κ2G∗S−1G∗T)−1

)
,

which shows (3.5).
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Derivation of the asymptotic distribution of
√
n(β̂EL2 − β0). Applying the

mean-value theorem to (3.6)–(3.8) around (βT0 , 0
T, 0T)T leads to

0 =


1

n

n∑
i=1

si(β0)

√
n∗

n

1√
n∗

n∗∑
j=1

u∗j (β0)

0

+



1

n

n∑
i=1

∂si(β̄)/∂β

1−λ̄Tsi(β̂EL2)
,

1

n

n∑
i=1

si(β̄)si(β̂EL2)
T

{1−λ̄Tsi(β̂EL2)}2
, 0

n∗

n

1

n∗

n∗∑
j=1

∂u∗j (β̄)/∂β

1−ρ̄Tu∗j (β̂EL2)
, 0,

n∗

n

1

n∗

n∗∑
j=1

u∗j (β̄)u∗j (β̂EL2)
T

{1−ρ̄Tu∗j (β̂EL2)}2

0,
1

n

n∑
i=1

∂si(β̂EL2)/∂β

1−λ̂Tsi(β̂EL2)
,

n∗

n

1

n∗

n∗∑
j=1

∂u∗j (β̂EL2)/∂β
T

1−ρ̂Tu∗j (β̂EL2)


 β̂EL2 − β0

λ̂

ρ̂



=


1√
n

n∑
i=1

si(β0)

√
n∗√
n

1√
n∗

n∗∑
j=1

u∗j (β0)

0

+

 −S , S , 0

κG∗, 0, κΩ∗

0, −S , κG∗T

√n
 β̂EL2 − β0

λ̂

ρ̂

+ op(1),

where β̄ is some value between β̂EL2 and β0, λ̄ is some value between λ̂ and 0,

and ρ̄ is some value between ρ̂ and 0. Then we have S λ̂ = κG∗Tρ̂ + op(1), and

thus the above equality becomes

0 =


1√
n

n∑
i=1

si(β0)

√
n∗√
n

1√
n∗

n∗∑
j=1

u∗j (β0)

+

(
−S , κG∗T

κG∗, κΩ∗

)
√
n

(
β̂EL2 − β0

ρ̂

)
+ op(1),

which has the same structure as (A.1). Therefore,
√
n(β̂EL2−β0) and

√
n(β̂EL1−

β0) have the same asymptotic distribution.

Expressions for Mβ(β) and Mββ(β). Bearing in mind the implicit dependence

of λ̂(β) on β, routine calculation leads to
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Mβ(β) =

n∑
i=1

si(β) +

n∗∑
j=1

u∗βj(β)T

1− λ̂(β)Tu∗j (β)
λ̂(β),

Mββ(β) =

n∑
i=1

sβi(β) +

n∗∑
j=1

u∗βj(β)Tλ̂(β)λ̂(β)Tu∗βj(β)

{1− λ̂(β)Tu∗j (β)}2
+

n∗∑
j=1

∑m
k=1 u

∗[k]
ββj(β)λ̂[k](β)

1− λ̂(β)Tu∗j (β)

−

 n∗∑
j=1

u∗βj(β)Tλ̂(β)u∗j (β)T

{1− λ̂(β)Tu∗j (β)}2
+

n∗∑
j=1

u∗βj(β)T

1− λ̂(β)Tu∗j (β)


 n∗∑
j=1

u∗j (β)u∗j (β)T

{1− λ̂(β)Tu∗j (β)}2

−1

×

 n∗∑
j=1

u∗j (β)λ̂(β)Tu∗βj(β)

{1− λ̂(β)Tu∗j (β)}2
+

n∗∑
j=1

u∗βj(β)

1− λ̂(β)Tu∗j (β)

 ,

where u∗[k](β) and λ̂[k](β) are the k-th components of u∗(β) and λ̂(β), respec-

tively.

When λ̂(β) is close to 0, as is the case for our implementation in Section 3.2

because λ̂
p−→ 0 and λ̂(0) = 0, we have the approximation

Mββ(β) ≈
n∑
i=1

sβi(β)−

 n∗∑
j=1

u∗βj(β)T

1− λ̂(β)Tu∗j (β)

 n∗∑
j=1

u∗j (β)u∗j (β)T

{1− λ̂(β)Tu∗j (β)}2

−1
 n∗∑
j=1

u∗βj(β)

1− λ̂(β)Tu∗j (β)

 ,

which is used in our implementation.

Proof of (3.11). Similarly to the derivation of (A.1), we have

√
n

(
β̂EL1 − β0

λ̂

)
= −

(
−S , κG∗T

κG∗, κΩ∗

)−1
1√
n

n∑
i=1

si(β0)

√
N∗√
n

1√
N∗

n∗∑
j=1

u∗j (β0, θ̂)

+ op(1).

(A.2)

Then the mean-value theorem and the law of large numbers yield to

1√
N∗

n∗∑
j=1

u∗j (β0, θ̂) =
1√
N∗

n∗∑
j=1

u∗j (β0, θ
∗) + κ∗Q∗

√
N∗(θ̂ − θ∗) + op(1), (A.3)

leading to (3.11).
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Proof of (3.13). Let {(Y ∗k ,X ∗Tk )T : k = 1, . . . , N∗} denote the auxiliary data.

From (A.3) we have

1√
N∗

n∗∑
j=1

u∗j (β0, θ̂) =
1√
N∗

N∗∑
k=1

{
Rku∗k(β0, θ

∗)− κ∗Q∗H ∗−1h(Y ∗k ,X
∗
k ; θ∗)

}
+op(1),

(A.4)

where Rk indicates whether the k-th subject in the sample {k : k = 1, . . . , N∗} is

also in the supplementary sample {j : j = 1, . . . , n∗}, and H ∗ = E∗{∂h(Y,X ; θ∗)

/∂θ}. Without loss of generality, we assume that the underlying mechanism that

generates Rk samples n∗ subjects from a finite population of N∗ subjects without

replacement. Let W ∗ = Ru∗(β0, θ
∗)−κ∗Q∗H ∗−1h(Y ∗,X ∗; θ∗). It is easy to verify

that W ∗ has mean zero and that the covariance of W ∗
k1

and W ∗
k2

is zero when

k1 6= k2. In addition, from H ∗ = Q∗, calculations show that the variance of

W ∗ is equal to (κ∗− 2κ∗2)Ω∗+κ∗2Q∗Vθ∗Q∗T. Therefore, from (A.2) and (A.4),

(3.13) follows from the central limit theorem for dependent random variables

(e.g., Billingsley (1995)).

References

Billingsley, P. (1995). Probability and Measure 3rd Edition. Wiley-Interscience.

Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E. and Kulich, M. (2009). Using

the whole cohort in the analysis of case-cohort data. American Journal of Epidemiol-

ogy 169, 1398–1405.

Chatterjee, N., Chen, Y. H., Maas, P. and Carroll, R. J. (2016). Constrained maximum likeli-

hood estimation for model calibration using summary-level information from external big

data sources. Journal of the American Statistical Association 111, 107–117.

Chaudhuri, S., Handcock, M. S. and Rendall, M. S. (2008). Generalized linear models incorpo-

rating population level information: An empirical-likelihood-based approach. Journal of

the Royal Statistical Society Series B (Statistical Methodology) 70, 311–328.

Chen, J. and Qin, J. (1993). Empirical likelihood estimation for finite populations and the

effective usage of auxiliary information. Biometrika 80, 107–116.

Chen, J., Sitter, R. R. and Wu, C. (2002). Using empirical likelihood methods to obtain range

restricted weights in regression estimators for surveys. Biometrika 89, 230–237.

Chen, S. and Kim, J. K. (2014). Population empirical likelihood for nonparametric inference in

survey sampling. Statistica Sinica 24, 335–355.

Chen, S. X., Leung, D. H. Y. and Qin, J. (2003). Information recovery in a study with surrogate

endpoints. Journal of the American Statistical Association 98, 1052–1062.

Chen, Y. H. and Chen, H. (2000). A unified approach to regression analysis under double

sampling design. Journal of the Royal Statistical Society, Series B (Statistical Methodol-

ogy) 62, 449–460.

Deville, J. and Särndal, C. (1992). Calibration estimators in survey sampling. Journal of the

American Statistical Association 87, 376–382.



EL ESTIMATION USING AUXILIARY INFORMATION 1341

Han, P. (2014). Multiply robust estimation in regression analysis with missing data. Journal of

the American Statistical Association 109, 1159–1173.

Han, P. and Lawless, J. F. (2016). Discussion of “Constrained maximum likelihood estimation

for model calibration using summary-level information from external big data sources”.

Journal of the American Statistical Association 111, 118–121.

Han, P. and Wang, L. (2013). Estimation with missing data: beyond double robustness.

Biometrika 100, 417–430.

Handcock, M. S., Huovilainen, S. M. and Rendall, M. S. (2000). Combining registration-system

and survey data to estimate birth probabilities. Demography 37, 187–192.

Hansen, L. P. (1982). Large sample properties of generalized methods of moments estimators.

Econometrica 50, 1029–1054.

Huang, C.-Y., Qin, J. and Tsai, H.-T. (2016). Efficient estimation of the cox model with auxiliary

subgroup survival information. Journal of the American Statistical Association 111, 787–

799.

Imbens, G. W. (2002). Generalized method of moments and empirical likelihood. Journal of

Business and Economic Statistics 20, 493–506.

Imbens, G. W. and Lancaster, T. (1994). Combining micro and macro data in microeconometric

models. Review of Economic Studies 61, 655–680.

Keiding, N. and Louis, T. A. (2016). Perils and potentials of self-selected entry to epidemio-

logical studies and surveys. Journal of the Royal Statistical Society Series A (Statistics in

Society) 179, 319–376.

Kim, J. K. and Rao, J. N. K. (2012). Combining data from two independent surveys: a model-

assisted approach. Biometrika 99, 85–100.

Kitamura, Y. (2007). Empirical likelihood methods in econometrics: theory and practice In

Advances in Economics and Econometrics: Theory and Applications Ninth World Congress

3, 174–237. Cambridge University Press.

Lawless, J. F. and Kalbfleisch, J. D. (2011). Discussion of “connections between survey calibra-

tion estimators and semiparametric models for incomplete data”. International Statistical

Review 79, 225–228.

Lawless, J. F., Kalbfleisch, J. D. and Wild, C. J. (1999). Semiparametric methods for response-

selective and missing data problems in regression. Journal of the Royal Statistical Society

Series B 61, 413–438.

Lumley, T., Shaw, P. A. and Dai, J. Y. (2011). Connections between survey calibration estima-

tors and semiparametric models for incomplete data. International Statistical Review 79,

200–220.

Newey, W. K. (1985). Generalized method of moments specification testing. Journal of Econo-

metrics 29, 229–256.

Newey, W. K. and Smith, R. J. (2004). Higher order properties of GMM and generalized em-

pirical likelihood estimators. Econometrica 72, 219–255.

Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC Press, New York.

Qin, J. (2000). Combining parametric and empirical likelihoods. Biometrika 87, 484–490.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. The

Annals of Statistics 22, 300–325.

Qin, J., Zhang, H., Li, P., Albanes, D. and Yu, K. (2015). Using covariate-specific disease

prevalence information to increase the power of case-control studies. Biometrika 102, 169–



1342 HAN AND LAWLESS

180.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.

E-mail: peisong@umich.edu

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L

3G1, Canada.

E-mail: jlawless@uwaterloo.ca

(Received June 2017; accepted November 2017)

mailto:peisong@umich.edu
mailto:jlawless@uwaterloo.ca

