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Abstract: We consider asymptotic inferences for circular data based on empirical

characteristic functions. More precisely, we provide tests for reflective symmetry

of circular data based on the imaginary part of the empirical characteristic func-

tion. We show that the proposed tests have many attractive features including the

property of being locally and asymptotically maximin in the Le Cam sense under

sine-skewed alternatives in the specified mean direction case. To the best of our

knowledge, this result provides the first instance of such an optimality property

for empirical characteristic functions. For the unspecified mean direction case, we

provide corrected versions of the original tests that retain nice asymptotic power

properties. The results are illustrated using a well-known data set and are checked

using Monte-Carlo simulations.
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1. Introduction

Statistical modeling and the corresponding analyses of circular data have at-

tracted much attention in the recent years. For instance Jones, Pewsey and Kato

(2015) proposed copulas for circular distributions and Kato and Jones (2010),

Kato and Jones (2013), Kato and Jones (2015) introduced families of distribu-

tions on the circle obtained using various techniques. Density estimation on

the circle is considered in Garćıa–Portugués, Crujeiras and González–Manteiga

(2013) while Oliveira, Crujeiras and Rodŕıguez-Casal (2014a) and Oliveira, Cru-

jeiras and Rodŕıguez-Casal (2014b) provided practical tools to deal with circular

data. The popularity of circular statistics stems from various disciplines including

the study of wind direction or animal orientation. Traditional methods dealing

with circular data are well summarized in the monographs Mardia and Jupp

(2000) and Jammalamadaka and SenGupta (2001).

Symmetry is one of the most important structural assumptions made on

underlying distributions. Circular distributions are not an exception to this
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rule because (i) most circular distributions are reflectively symmetric around

a fixed direction, and (ii) most inferential procedures require the reflective sym-

metry structure in order to be valid or asymptotically valid. Nevertheless, non-

symmetric models have grown in popularity owing to their their flexibility and

practical usefulness; for example see Umbach and Jammalamadaka (2009), Kato

and Jones (2010), Abe and Pewsey (2011) and Jones and Pewsey (2012). Thus,

testing for symmetry in the circular data context has become increasingly im-

portant. Pewsey (2002) and Pewsey (2004) proposed procedures for testing sym-

metry around an unspecified and a specified mean direction respectively. The

proposed tests are based on the second-order trigonometric moments. In the

specified mean direction case, the Pewsey (2004) test has been shown to be lo-

cally and asymptotically optimal under natural skewed alternatives by Ley and

Verdebout (2014), who provided a family of testing procedures.

In general, many types of multivariate symmetric distributions exist includ-

ing spherically symmetric distributions, elliptically symmetric distributions, and

so on. A particular symmetry structure often yields a certain shape of the corre-

sponding characteristic function (CF). For instance, if a random vector X, taking

values in Rp, is symmetric around some location parameter µµµ (in the sense that

X−µµµ =d µµµ−X), then the imaginary part of the CF of X−µµµ vanishes. This is

the central idea behind the tests for symmetry proposed in many works includ-

ing Heathcote, Rachev and Cheng (1995), Neuhaus and Zhu (1998), Henze, Klar

and Meintanis (2003), and Ngatchou–Wandji and Harel (2013). In this study,

we also use the imaginary part of the empirical CF(ECF) process to provide

tests for reflective symmetry of circular data. The resulting procedures enjoy

many attractive features. First, they are asymptotically distribution-free, which

is obviously an important property in the given context. More importantly, we

show that in the specified mean direction case, the procedures based on the ECF

are locally and asymptotically maximin in the Le Cam sense, under very general

local alternatives. To the best of our knowledge, this is the first time that such a

property has been shown to hold for procedures based on an ECF. Furthermore

we also provide asymptotic procedures in the unspecified location case that are

extremely competitive.

The rest of the paper is organized as follows. In Section 2, we discuss the

properties of the CF of circular random variables. In Section 3, we present

our test procedures in the specified location case, and show their optimality

properties. In Section 4, we examine the unspecified location case. Section 5 is

devoted to Monte Carlo simulations, and in Section 6 we illustrate the procedures
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using a real data set. In Section 7, we conclude the paper. The proofs of the

main results are collected in the Appendix.

2. Properties of the CF

Let θ denote an arbitrary circular random variable with an absolutely con-

tinuous circular distribution function F (t) = P(θ ≤ t). The specificity of such a

circular random variable or random angle θ is its periodicity, in the sense that

letting f denote the density associated with F , we have

f(t) = f(t+ 2kπ)

for any integer k. As on the real line, the distribution of θ is in one-to-one

correspondence with the CF defined as

ϕθ(r) := E
[
eirθ
]

=

∫ π

−π
eirtdF (t), r ∈ R. (2.1)

The CF can also be written in terms of Cartesian coordinates as

ϕθ(r) = E [cos(rθ)] + iE [sin(rθ)] := αr + iβr, (2.2)

where αr (resp. βr) is the real (resp. the imaginary) part of ϕθ. Owing to its pe-

riodicity, and unlike real-line distributions, the CF of a circular random variable

needs to be defined only at integer values r = 0,±1,±2, . . .; see Jammalamadaka

and SenGupta (2001).

Now, letting µ denote the mean direction of θ, defined as

(cos(µ), sin(µ))′ :=
(E[cos(θ)],E[sin(θ)])′

(α2
1 + β21)1/2

,

θ is said to be reflectively symmetric around µ if its density f is such that

f(µ + t) = f(µ − t) for all t ∈ [−π, π). Throughout this paper, the class Fµ of

reflectively symmetric densities around µ is denoted as

Fµ :=

{
f : f(t) > 0 a.e., f(t+ 2jπ) = f(t) ∀j ∈ Z, f(µ+ t) = f(µ− t),

f unimodal atµ,

∫ π

−π
f(t)dt = 1

}
.

Following Jammalamadaka and SenGupta (2001), if θ is reflectively symmetric

around µ, then the central trigonometric moments

E
[
eir(θ−µ)

]
= E [cos(r(θ − µ))] + iE [sin(r(θ − µ))] := ᾱr + iβ̄r, (2.3)

are such that β̄r = 0 for all r ∈ N. This is the basis of our test statistic for the

null hypothesis of symmetry around µ.
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3. Optimal Tests Based on the Empirical Characteristic Function

Let θ1, . . . , θn, be an identically and independently distributed (i.i.d.) random

sample with mean direction µ. First, we consider testing for symmetry around

a known center. Thus throughout the section and without loss of generality,

we assume that µ = 0. The aforementioned properties of the CF of symmetric

circular random variables discussed lead directly to consider the imaginary part

of the ECF,

bn(r) :=
1√
n

n∑
i=1

sin(rθi), (3.1)

for any r ∈ N. The simplest tests for reflective symmetry are based on bn(1)

or bn(2) such as the tests proposed by Pewsey (2004) and Ley and Verdebout

(2014). In particular, Ley and Verdebout (2014) showed that a natural test based

on bn(r) is locally and asymptotically most powerful under r-skewed alternatives

(see below). In this study we use the empirical process bn(r) to construct new

tests for reflective symmetry. Specifically, we use the following result, which is a

direct consequence of the central limit theorem.

Proposition 1. Assume that θ1, . . . , θn is an i.i.d. sequence of circular random

variables with density f0 in F0. Then, as n → ∞, the process {bn(r)}r∈N con-

verges in (finite-dimensional) distribution to a Gaussian process B(.) with mean

zero and covariance kernel (the expectation is taken under f0)

K(s, t) = E[sin(sθ1) sin(tθ1)]. (3.2)

Proposition 1 states that any vector of the form

B
(n)
(k1,...,km) := (bn(k1), . . . , bn(km))

converges weakly to a centered multinormal distribution with a covariance matrix

ΣΣΣ(k1,...,km);f0 determined by the kernel in (3.2). Letting Σ̂ΣΣ(k1,...,km);f0 denote a

consistent estimator of ΣΣΣ(k1,...,km);f0 , this suggests to consider test statistics of

the form

W
(n)
(k1,...,km) := (B

(n)
(k1,...,km))

′Σ̂ΣΣ
−1
(k1,...,km);f0B

(n)
(k1,...,km). (3.3)

Note that a consistent estimator Σ̂ΣΣ(k1,...,km);f0 can be obtained by substituting

K(s, t) in (3.2) by its empirical counterpart

K̂(s, t) :=
1

n

n∑
i=1

sin(sθi) sin(tθi).

Indeed the law of large numbers directly implies that Σ̂ΣΣ(k1,...,km);f0−ΣΣΣ(k1,...,km);f0 =
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oP(1) as n → ∞ under the null (and, therefore, under contiguous alternatives).

Test statistics similar to (3.3) have been suggested by Koutrouvelis (1985) for

conventional (non-circular) distributions; see also Csörgő and Heathcote (1987).

In addition note that if m = 1 and k1 = r say, the test coincides with that

proposed by Ley and Verdebout (2014) which is locally and asymptotically most

powerful in the Le Cam sense under r sine-skewed alternatives. If more that

one component is selected in B
(n)
(k1,...,km), then the local most powerfulness against

a particular alternative, as in Abe and Pewsey (2011) and Ley and Verdebout

(2014) is lost. However as we explain now, the test remains locally and asymp-

totically maximin under more general local alternatives.

The alternatives to reflective symmetry considered in Abe and Pewsey (2011)

and Ley and Verdebout (2014) are characterized by densities of the form

fλ(t) := f0(t)(1 + λ sin(kt)), t ∈ [−π, π), k ∈ N, λ ∈ [−1, 1], (3.4)

where f0 belongs to the class F0, defined in Section 2. Within this family of

distributions, the null hypothesis of reflective symmetry coincides with the subset

of distributions with λ = 0.

Now, as explained in the previous section, we have that E[sin(rθ1)] = 0 for

any r ∈ N under reflective symmetry. As a result, more general alternatives are

absolutely continuous distributions, with densities of the form

fλλλ(t) := f0(t)

(
1 +

m∑
i=1

λki sin(kit)

)
t ∈ [−π, π), (3.5)

where (k1, . . . , km) ∈ Nm is anm-tuple of distinct integers and λλλ := (λk1 , . . . , λkm)

∈ Cm := [−1/m, 1/m]m is a multivariate skewness parameter. Note that λλλ ∈ Cm

guarantees that fλλλ in (3.5) is a (positive) density function. In the remainder

of the paper we write P
(n)
λλλ;f0

for the joint distribution of an n-tuple θ1, . . . , θn
of circular random variables with common density (3.5). Testing for symmetry

against such alternatives is more difficult because it becomes a multivariate prob-

lem owing to the parameter space attached to the underlying probability space

being multidimensional. More precisely, we can test for symmetry against these

alternatives by considering the problem H0 : λλλ = 0 against H1 : λλλ 6= 0. Here

we show that when based on the m-tuple (k1, . . . , km), W
(n)
(k1,...,km) is locally and

asymptotically maximin under local alternatives of the form P
(n)

n−1/2`̀̀(n);f0
for some

bounded sequence `̀̀(n) = (`
(n)
k1
, . . . , `

(n)
km

) ∈ Rm such that n−1/2`̀̀(n) ∈ Cm. A test

φ∗ is called maximin in the class Cα of level-α tests for H0 against H1 if (i) φ∗
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has level α and (ii) the power of φ∗ is such that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

We have the following result.

Proposition 2. Assume that θ1, . . . , θn is an i.i.d. sequence such that under

P
(n)
0;f0

with f0 in F0, ΣΣΣ(k1,...,km);f0 has full rank and Σ̂ΣΣ(k1,...,km);f0 −ΣΣΣ(k1,...,km);f0 is

oP(1) as n → ∞. Furthermore, let `̀̀(n) = (`
(n)
k1
, . . . , `

(n)
km

) be a bounded sequence

of Rm such that (i) n−1/2`̀̀(n) ∈ Cm ,and (ii) `̀̀(n) converges to `̀̀ := limn→∞ `̀̀
(n).

Then, we have that

(i) W
(n)
(k1,...,km) is asymptotically chi-square with m degrees of freedom under

∪f0∈FP0;f0;

(ii) W
(n)
(k1,...,km) is asymptotically chi-square with m degrees of freedom and with

non-centrality parameter `̀̀′ΣΣΣ(k1,...,km);f0 `̀̀ under P
(n)

n−1/2`̀̀(n);f0
,

(iii) the test φ
(n)
MV;(k1,...,km) that rejects the null hypothesis when W

(n)
(k1,...,km) >

χ2
m;1−α is locally and asymptotically maximin when testing ∪f0∈FP0;f0 against

∪f0∈FPn−1/2`̀̀(n);f0
.

The results obtained in Proposition 2 extend those of Ley and Verdebout (2014)

which were obtained under simpler local alternatives of the form (3.4); point (iii)

of the proposition states that φ
(n)
MV;(k1,...,km) is locally and asymptotically maximin

under any reference density f0 ∈ F . Because k in (3.4) can not realistically

be selected a priori, following Proposition 2 above it is more appropriate to

perform the test φ
(n)
MV;(k1,...,km) which rejects the symmetry hypothesis H0 when

W
(n)
(k1,...,km) > χ2

m;1−α for some m-tuple (k1, . . . , km).

A reasonable criterion for the selection of the number m and the specific

location (k1, . . . , km) of the ECF arguments clearly remains an issue. In fact,

for the conventional (non-circular) ECF the problem dates back to Feigin and

Heathcote (1976) and Csörgő and Heathcote (1987) in the case of a single ar-

gument (m = 1). Feurverger and McDunnough (1981) provide a fundamental

contribution connecting the efficiency of the ECF estimation procedures with

the efficiency of the maximum likelihood. However this refers to point estima-

tion rather than testing and, moreover, assumes a fixed parametric model. On

the other hand, and in the context of hypothesis testing, the finite-sample re-

sults of Koutrouvelis (1980) and Epps and Singleton (1986) imply that although
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a larger m may be asymptotically preferable, it is advisable to use a value of

m := mn that depends on the sample size in an increasing fashion. Here we note

that selecting m > n typically yields an estimator Σ̂ΣΣ(k1,...,km);f0 that is singular

making it be impossible to perform the corresponding test in practice. Numeri-

cal problems may occur even when m ≤ n if m and n are of the same order of

magnitude.

The only theoretically viable solution to a related problem has been pro-

vided by Teinreiro (2009). This corresponds to the optimal choice of the weight

parameter a in our test in (4.2) below when the weight function w(r) is already

fixed. However, Teinreiro’s solution falls within the strict parametric context of

testing normality and depends heavily on the direction of departure from the null

hypothesis of normality. Such a choice is quite different to our context, which is

nonparametric, even under the null hypothesis. Furthermore it is too specific to

provide guidance in the present situation, but clearly shows the complexity of the

problem of choosing m and (k1, . . . , km). Now, in terms of asymptotics, a reason-

able approach is to select both m and the m-tuple (k1, . . . , km) to maximize the

local power under P
(n)

n−1/2`̀̀(n);f0
, that is, selecting m̃ and the m̃-tuple (k1, . . . , km̃)

such that `̀̀′ΣΣΣ(k1,...,km);f0 `̀̀ is maximal. As mentioned above, the problem is com-

plicated because the local power depends on the perturbation `̀̀ (which is also

m-dimensional) and on f0. One “ad-hoc” way of selecting (k1, . . . , km̃) is to take

(k1, . . . , km̃) = argmax∪m∈NKmtr(ΣΣΣ(k1,...,km);f0)/m, where Km is the set of all pos-

sible m-tuples of distinct natural numbers. Rather than providing a solution to

this difficult “non-parametric” problem, we instead offer some advice. Assume

that the density f0 is indexed by some positive concentration parameter κ, such

that when κ = 0, the distribution is uniform on S1 and when κ → ∞, the dis-

tribution tends to a point mass on the location parameter µ. Many well-known

densities, such as the von Mises densities, are of this type. For such a f
(κ)
0 , when

κ = 0, then ΣΣΣ(k1,...,km);f
(κ)
0

= 2Im. Thus β(k1,...,km);f
(κ)
0

:= tr(ΣΣΣ(k1,...,km);f
(κ)
0

)/m is

constant for any choice of m and (k1, . . . , km). Therefore, for distributions with

small concentration, β(k1,...,km);f
(κ)
0

does vary much in which case it may be worth

staying with a small m. Now, as κ grows, the variability of the trigonometric

moments diminishes, especially for small order moments. Therefore it is more

natural to select more higher order moments than lower order moments when

the data are more concentrated.

In summary we note that the test φ
(n)
MV;(k1,...,km) still suffers from several

drawbacks:
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(i) Although the new test takes into account the ECF process over a fixed grid

of values (k1, . . . , km), there remains the problem of consistency against

general alternatives. Such consistency can be obtained by considering ar-

bitrarily large grids with m = mn that diverges to ∞. However, this is a

complex issue, as explained above.

(ii) The assumption of a known symmetry center is sometimes unrealistic.

In the next section, we consider testing procedures for reflective symmetry whose

objective is to resolve these drawbacks.

4. Tests in the Unknown Mean Direction Case

Let θ1, . . . , θn, be independent circular random variables with mean direction

µ, and consider the centered observations ϑi = θi − µ, for i = 1, . . . , n. A well-

known nonparametric estimate of the mean direction µ is given by

µ̂ := arctan

(∑n
i=1 sin θj∑n
i=1 cos θi

)
;

see Jammalamadaka and SenGupta (2001). The estimator µ̂ naturally yields

estimated versions of bn(r) in (3.1), given by

b̂n(r) = n−1/2
n∑
i=1

sin(rϑ̂i),

where ϑ̂i = θi− µ̂, i = 1, . . . , n. In the following result, we study the asymptotic

properties of b̂n(r) under the null hypothesis of symmetry. The proof of the result

requires the use of a discretized version of µ̂. More precisely it requires µ̂ to be

locally and asymptotically discrete: µ̂ only takes a bounded number of distinct

values in µ-centered intervals with O(n−1/2) radius. Note that this discretization

condition is a purely technical requirement (e.g. see (Ley et al. (2013); Hallin et

al. (2013), and Hallin, Paindaveine and Verdebout (2014))), with few practical

implications (in fixed-n practice, such discretizations are irrelevant because the

discretization radius can be taken arbitrarily large). Therefore, for the sake of

simplicity, we tacitly assume in the sequel that µ̂ is locally and asymptotically

discrete. Defining γ :=
√
α2
1 + β21 (see (2.2)), we have the following result.

Proposition 3. Assume that θ1, . . . , θn is an i.i.d. sequence of circular random

variables with density f ∈ Fµ. Then, as n→∞, the process {b̂n(r)}r∈N converges

in (finite-dimensional) distribution to a Gaussian process B̃(.) with mean zero
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and covariance kernel (see (2.3) for a definition of ᾱr)

K̃(s, t) = E[sin(sϑ1)(sin(tϑ1)]− γ−1sᾱsE[sin(ϑ1)(sin(tϑ1)]

− γ−1tᾱtE[sin(ϑ1) sin(sϑ1)] + γ−2stᾱsᾱtE[sin2(ϑ1)], (4.1)

where the expectations are taken under f ∈ Fµ.

As in the previous section, it follows directly from Proposition 3 that the vector

B̂
(n)
(k1,...,km) := (̂bn(k1), . . . , b̂n(km))

converges weakly to a centered multinormal distribution, with a covariance ma-

trix Σ̃ΣΣ(k1,...,km) determined by the kernel in (4.1). Note that in (4.1),

K̃(1, 1) =

(
1− ᾱ1

γ

)2

E[sin2(ϑ1)].

From standard trigonometry, we have

ᾱ1 = E [cos(θ1 − µ)] = cos(µ)E[cos(θ1)] + sin(µ)E[sin(θ1)]

= γ cos2(µ) + γ sin2(µ) = γ.

Thus we readily obtain that K̃(1, 1) = 0. This is in line with the well-known

identity (see, e.g., (Pewsey (2002)))
n∑
i=1

sin(θi − µ̂) = 0,

which states that b̂n(1) is equal to zero for any n and, therefore, has no (asymp-

totic) variance. As a result, we recommend choosing a m-tuple of indices (k1, . . . ,

km), such that 1 /∈ (k1, . . . , km). Taking such an m-tuple and letting
̂̃
ΣΣΣ(k1,...,km)

denote a consistent estimator of Σ̃ΣΣ(k1,...,km) (as in the case of known µ, such an

estimator can be obtained by replacing expectations by empirical means and µ

with µ̂ in (4.1)), the test statistic

Ŵ
(n)
(k1,...,km) := (B̂

(n)
(k1,...,km))

′ ̂̃ΣΣΣ−1(k1,...,km)B̂
(n)
(k1,...,km)

is asymptotically chi-square with m degrees of freedom if 1 /∈ (k1, . . . , km), and

with m− 1 degrees of freedom if 1 ∈ (k1, . . . , km).

Now, even if the test that rejects the null for large values of Ŵ
(n)
(k1,...,km) is

asymptotically valid in the case of an unspecified µ, the consistent estimation of

Σ̃ΣΣ(k1,...,km) remains an issue when m is large, especially when m > n. Further-

more, the asymptotic properties of Ŵ
(n)
(k1,...,km) under local alternatives require a

careful study of the Fisher information for both the symmetry and the location

parameters which is beyond the scope of this paper.
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Therefore, we propose a test that takes into account the full empirical char-

acteristic process {b̂n(r)}r∈N. This test rejects the null hypothesis of reflective

symmetry for large values of

Tn,w =

∞∑
r=1

w(r)̂b2n(r), (4.2)

where w(r), r ≥ 1, is a sequence of positive weights. It follows easily from the

definition of b̂n(r) that

b̂2n(r) =
1

2n

 n∑
i,j=1

cos(rϑ̂−i,j,n)−
n∑

i,j=1

cos(rϑ̂+i,j,n)

 ,

where ϑ̂±i,j,n = ϑ̂i±ϑ̂j . Thus letting Cw(ϑ) :=
∑∞

r=1w(r) cos(rϑ), the test statistic

in (4.2) may be rewritten as

Tn,w =
1

2n

n∑
i,j=1

(
Cw(ϑ̂−i,j,n)− Cw(ϑ̂+i,j,n)

)
.

Although the test statistic Tn,w is defined using infinite sums, some choices

of the weights w(r) make Tn,w easy to compute. More precisely, following the

results in Gradshteyn and Ryzhik (1994), the sequences w(r) that provide closed

forms for Tn,w include w(r) = ar, |a| < 1, which yields

Cw(ϑ) =
1

2

(
1− a2

1− 2a cosϑ+ a2
− 1

)
and w(r) = e−ar, a > 0, which yields

Cw(ϑ) =
1

2

(
ea − e−a

ea + e−a − 2 cosϑ
− 1

)
.

The following proposition implies the strong (almost sure) consistency of the

test statistic Tn,w against fixed alternatives.

Proposition 4. Let Tn,w denote the the test statistic given in (4.2). Then

Tn,w
n
−→

∞∑
r=1

w(r) b2r := Tw, a.s. as n→∞. (4.3)

Because Tw = 0 only under the null hypothesis H0, (4.3) implies the strong

consistency of the test that rejects H0 for large values of Tn,w.

The main difficulty with Tn,w is that it is not distribution-free under the null.

In fact, it may be argued that Tn,w is asymptotically distributed as
∑∞

r=1w(r)V (r),

where V (r) is the Gaussian process defined in Proposition 3. Following Neuhaus

and Zhu (1998), critical values of a test based on Tn,w can be obtained using per-
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mutational arguments. First, note that it follows from the proof of Proposition

3 that, for all r,

b̂n(r) = n−1/2
n∑
i=1

sin(rϑi)−
rE[cos(rϑ1)]√

E2[cos(θ1)] + E2[sin(θ1)]
n−1/2

n∑
i=1

sin(ϑi) + oP(1)

as n → ∞ under H0. Let e = (e1, . . . , en) be an i.i.d. sequence of random

variables such that ei = 1 with probability 0.5 and ei = −1 with probability 0.5.

Then define

b̃(e)n (r) :=n−1/2
n∑
i=1

(
sin(reiϑ̂i)−

r(
∑n

j=1 cos(rejϑ̂j))

((
∑n

j=1cos(ejϑ̂j))2+(
∑n

j=1sin(ejϑ̂j))2)1/2
sin(eiϑ̂i)

)
.

(4.4)

Using the data ϑ1, . . . , ϑn, the critical values of the test based on Tn,w at the

level α are approximated as follows:

(i) Generate M i.i.d. random sequences of n-dimensional vectors e1, . . . , eM
distributed as e above;

(ii) For all j = 1, . . . ,M , compute Qj :=
∑m

r=1w(r)(b̃
(ej)
n (r))2, for large m;

(iii) As the critical value, select the empirical 1− α quantile of Q1, . . . , QM .

5. Simulations

In this section, our objective is to compare the properties of the proposed

procedures with those of other well-known tests for the same problem. We per-

form two sets of simulations: one in the specified-µ situation and one in the

unspecified-µ situation.

For the first problem, which consists in testing for reflective symmetry around

a known center, we generate N = 2,500 mutually independent samples of i.i.d.

circular random variables

θ
(ρ)
`;j , ρ = 1, . . . , 6, ` = 0, . . . , 3, j = 1, . . . , n = 100,

following various skewed distributions with concentration one and mean direction

zero as in Abe and Pewsey (2011) and Ley and Verdebout (2014). The θ
(1)
`;j ’s are

von Mises 1-sine-skewed (obtained by taking k = 1 in (3.4)), with skewness

parameter λ = `/25; the θ
(2)
`;j ’s are von Mises 2-sine-skewed (obtained by taking

k = 2 in (3.4)), with skewness parameter λ = `/25; the θ
(3)
`;j ’s are von Mises

4-sine-skewed (obtained by taking k = 4 in (3.4)), with skewness parameter

λ = `/25 and the θ
(4)
`;j ’s are von Mises 6-sine-skewed (obtained by taking k =
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Figure 1. Power curves of (i) the Ley and Verdebout (2014) locally and asymptotically
optimal test against 1-sine-skewed-von Mises alternatives (dot-dashed line), (ii) our test

φ
(n)
MV;(1,2,3) (solid line), (iii) our test φ

(n)
MV;(1,...,5) (dashed line), and (iv) the modified runs

test of Pewsey (2004) (dotted line). The sample size is n = 100.

6 in (3.4)), with skewness parameter λ = `/25. The θ
(5)
`;j ’s and the θ

(6)
`;j ’s are

skewed Möbius distributions, as in Kato and Jones (2010) based on von Mises

with concentration one and skewness parameter λ = `/50 respectively with r =

0.25 and r = 0.5 respectively (see (Kato and Jones (2010)) for details). The

value ` = 0 always yields a reflectively symmetric distribution belonging to the

null hypothesis whereas the values ` = 1, 2 and 3 provide distributions that are

increasingly skew-symmetric.

The resulting rejection frequencies of the following tests for reflective sym-

metry, all at the nominal level 5% are plotted in Figures 1 and 2: the optimal

1-sine-skewed test of Ley and Verdebout (2014); the modified runs test of Pewsey
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Figure 2. Power curves of (i) the Ley and Verdebout (2014) locally and asymptotically
optimal test against 1-sine-skewed-von Mises alternatives (dot-dashed line), (ii) our test

φ
(n)
MV;(1,2,3) (solid line), (iii) our test φ

(n)
MV;(1,...,5) (dashed line), and (iv) the modified runs

test of Pewsey (2004) (dotted line). The sample size is n = 100.

(2004); the test φ
(n)
MV;(1,2,3) based on W

(n)
(1,2,3); and the test φ

(n)
MV;(1,...,5) based on

W
(n)
(1,...,5). Figures 1 and 2 reveal the following features: (i) all of the tests reach

the correct asymptotic level; (ii) as expected, the optimal 1-sine-skewed test of

Ley and Verdebout (2014) is optimal under 1-sine-skewed alternatives, but is

dominated by the tests φ
(n)
MV;(1,...,3) and φ

(n)
MV;(1,...,5) under all other alternatives;

and (iii) φ
(n)
MV;(1,...,5) still behaves correctly under 4-sine-skewed alternatives, while

the same is not true for the test based on φ
(n)
MV;(1,...,3). The modified runs test

of Pewsey (2004) behaves similarly under the sine-skewed alternatives consid-

ered. Under skewed Möbius distributions, both the optimal 1-sine-skewed test

and φ
(n)
MV;(1,...,3) behave well.

In a second simulation, we compare the following tests for reflective symme-

try around an unspecified symmetry center: the Pewsey (2002) test; our tests

φ̂
(n)
MV;(2,3) and φ̂

(n)
MV;(2,...,5), based on the asymptotic critical values of Ŵ(2,3) and

Ŵ(2,...,5), respectively; and the tests φTn,1 and φTn,2 , based on Tn,w with weights

w1(r) = 0.5r and w2(r) = e−r/2, respectively. The critical values of Tn,w are

computed using the bootstrap procedure described below Proposition 4, with

M = 10,000 and m = 40.

As for the first simulation scheme, we generate N = 1,500 mutually inde-
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Figure 3. Power curves of the Pewsey (2002) test (dotted line), φ̂
(n)
MV;(2,3) (solid line),

φ̂
(n)
MV;(2,...,5) (dashed line), φTn,1 (dot-dashed line) and φTn,2 (long-dashed line). The

sample size is n = 100.
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Figure 4. Power curves of the Pewsey (2002) test (dotted line), φ̂
(n)
MV;(2,3) (solid line),

φ̂
(n)
MV;(2,...,5) (dashed line), φTn,1 (dot-dashed line) and φTn,2 (long-dashed line). The

sample size is n = 200.

pendent samples of i.i.d. of circular random variables

θ
(ρ)
`;j , ρ = 1, 2, ` = 0, . . . , 3, j = 1, . . . , n,

with sine-skewed von Mises distributions with concentration one and mean di-

rection zero. The θ
(1)
`;j ’s are 2-sine-skewed (obtained by taking k = 2 in (3.4)),
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Figure 5. Raw circular plot of the Jander (1957) data set recorded during an orientation
experiment with 730 red wood ants. Each dot represents the direction chosen by five
ants.

with skewness parameter λ = `/25; and the θ
(2)
`;j ’s are 4-sine-skewed (obtained

by taking k = 4 in (3.4)) with skewness parameter λ = `/25. The rejection

frequencies of the five tests, all performed at the nominal level 5% are plotted

in Figure 3 for n = 100 and in Figure 4 for n = 200. The comparisons between

the Pewsey (2002) test and the tests φ̂
(n)
MV;(2,3), and φ̂

(n)
MV;(2,...,5) are very similar

to the case of a specified µ. However, note that the tests φTn,1 and φTn,2 behave

nicely in both cases, clearly detecting alternatives of the same magnitude as the

other tests (deviations with rate 1/
√
n from the null). All of the tests are slightly

conservative for n = 100, but improve with the higher sample size n = 200.

6. Real-data illustration

In this section, we illustrate the testing procedures described in the previous

section using a well-known data set from an animal orientation experiment. This

data set consists of the directions of 730 red wood ants originally placed in the

center of an arena, with a black target positioned at an angle of 180◦ from the

zero direction; see Figure 5. The question of interest is whether the directions

chosen by the ants are symmetrically distributed around the median direction

represented by the black target. The data set analyzed in Abe and Pewsey (2011)

and Ley and Verdebout (2014) was originally created by Jander (1957).

Ley and Verdebout (2014) found that the locally and asymptotically most

powerful (LAMP) test against 1-sine-skewed alternatives has a p-value of 0.778

and that the LAMP test against 2-sine-skewed alternatives has a p-value of 0.011.

We compute our tests based on W
(n)
(1,2), W

(n)
(1,2,3), and W

(n)
(1,...,5), which have p-values

0.012, 0.013 and 0.022 respectively. Thus the tests yield rejection of the null

hypothesis of reflective symmetry at the nominal level 0.05.

Because we focus on the symmetry around the black target, the problem can
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be viewed as a test for symmetry around a specified direction. Nevertheless we

perform the tests based on the statistics Ŵ
(n)
(1,2,3) and Ŵ

(n)
(1,...,5), and also perform

the tests φTn,1 and φTn,2 based on Tn,w with weights w1(r) = 0.5r and w2(r) =

e−r/2, respectively; see Section 4 for details. The test based on Ŵ
(n)
(1,2,3) has a

p-value of 0.054, and the test based on Ŵ
(n)
(1,...,5) has a p-value of 0.046. Therefore

at the nominal level 0.05, one test rejects the null but the other does not. The

two tests φTn,1 and φTn,2 also reject the null (the critical values are computed

using the bootstrap procedure described below Proposition 4, with M = 10,000

and m = 40).

7. Conclusion and Discussion

We suggest several tests for reflective symmetry based on the ECF. In the

fixed location case, the new tests are locally and asymptotically optimal in the

maxmin sense against certain alternatives. In the unknown location case, we

suggested modifications of these optimal procedures as well as a new test that is

consistent against each fixed alternative non-symmetric circular distribution. The

finite-sample behavior is investigated via a simulation study, and the suggested

tests are shown to perform well in comparison with other powerful symmetry

procedures.

The following offer possible directions for future work. First the methods

can be extended to dimension p ≥ 2 using the tangent-normal decomposition

X = (X′µµµ)µµµ+ (I−µµµµµµ′)X,

where (I − µµµµµµ′)X follows a distribution that is spherically symmetric around

zero under the assumption of rotational symmetry. Then, a test for rotational

symmetry can be developed using a test for spherical symmetry of (I − µµµµµµ′)X
similarly to Henze, Hlávka and Meintanis (2013). Second goodness-of-fit tests

can be developed for circular distributions based on quadratic forms analogous

to those of Section 3 and Section 4. Then, the corresponding test statistics would

include both the real part αr and the imaginary part βr of the CF.
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Appendix: Proofs

Proof of Proposition 2. First, note that Point (i) follows from Proposition 1.

For Points (ii) and (iii), we start the proof by showing that the sequence of models

{P(n)
λλλ;f0
} is locally and asymptotically normal in the vicinity of symmetry. First,

note that

log
dP

(n)

n−1/2`̀̀(n);f0

dP
(n)
0;f0

=

n∑
i=1

log(1 + n−1/2(`̀̀(n))′S
(n)
i ), (A.1)

where S
(n)
i := (sin(k1θi), . . . , sin(kmθi))

′. From (A.1), the boundedness of S
(n)
i

and log(1 + v) = v − (1/2)v2 + o(v2), it follows that

log
dP

(n)

n−1/2`̀̀(n);f0

dP
(n)
0;f0

= (`̀̀(n))′∆∆∆(n) − 1

2
(`̀̀(n))′ΣΣΣ(k1,...,km);f0 `̀̀

(n) + oP(1) (A.2)

as n → ∞ under P0;f0 , where ∆∆∆(n) := n−1/2
∑n

i=1 S
(n)
i is asymptotically normal

with mean zero and covariance ΣΣΣ(k1,...,km);f0 still under P0;f0 . Therefore it follows

from (A.2) that the sequence of models {P(n)
λλλ;f0
} is locally and asymptotically

normal. Now, from the local asymptotic normality, a locally and asymptoti-

cally maximin test for H0 : λλλ = 0 against H1 : λλλ 6= 0 rejects the null when

(∆∆∆(n))′ΣΣΣ−1(k1,...,km);f0
∆∆∆(n) exceeds the alpha upper quantile of the chi-square distri-

bution with m degrees of freedom. Because

Wn = (∆∆∆(n))′Σ̂ΣΣ
−1
(k1,...,km);f0∆∆∆

(n) = (∆∆∆(n))′ΣΣΣ−1(k1,...,km);f0
∆∆∆(n) + oP(1),

Point (iii) follows. We now turn to Point (ii). It follows directly from (A.2) that

((∆∆∆(n))′, log(dPn−1/2`̀̀(n);f0
)/dP0;f0) is asymptotically normal with mean (0′, (−1/2)

`̀̀′ΣΣΣ(k1,...,km); f0`̀̀) and variance(
ΣΣΣ(k1,...,km);f0 ΣΣΣ(k1,...,km);f0 `̀̀

`̀̀′ΣΣΣ(k1,...,km);f0 `̀̀
′ΣΣΣ(k1,...,km);f0 `̀̀

)
under P0;f0 . Point (ii) then follows by applying Le Cam’s third Lemma.

Proof of Proposition 3. First, note that

b̂n(r) = n−1/2
n∑
j=1

(sin(rϑ̂j)− sin(rϑj) + sin(rϑj))

= Wn(r) + Vn(r),

where

Vn(r) := n−1/2
n∑
j=1

sin(rϑj)
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and

Wn(r) := n−1/2
n∑
j=1

(sin(rϑ̂j)− sin(rϑj)).

Under H0, E[sin(rϑj)] = 0. Thus the central limit theorem directly implies

that Vn(r) converges weakly to a Gaussian random variable with mean zero and

variance E[sin2(rϑj)]. Now, for Wn(r), assume for a moment that µ̂ is discretized

so that n1/2(µ̂ − µ) can be replaced by a deterministic sequence in Wn(r); see

for instance Kreiss (1987) or Hallin, Paindaveine and Verdebout (2014). Then,

a Taylor series development directly yields

Wn(r) = −rE[cos(rϑj)]n
1/2(µ̂− µ) + oP(1)

as n → ∞. To obtain the asymptotic normality of Vn(r) + Wn(r), we need to

examine the asymptotic joint distribution of n1/2(µ̂− µ) and Vn(r).

Now, applying the delta method, we easily obtain that

n1/2(µ̂− µ) = λ−1n−1/2
n∑
i=1

sin(ϑi) + oP(1)

as n→∞, where λ =
√

E2[cos(θ1)] + E2[sin(θ1)]. In summary, we obtain that(
Vn(r)

Wn(r)

)
=

(
n−1/2

∑n
j=1 sin(r(ϑj))

−r(E[cos(r(ϑj))])/(λ)n−1/2
∑n

j=1 sin(ϑj)

)
+ oP(1)

as n → ∞. Thus the vector Bm,n := (b̂n(k1), . . . , b̂n(km))′, for some fixed m, is

such that

Bm,n=

n
−1/2∑n

j=1 sin(k1ϑj)
...

n−1/2
∑n

j=1 sin(kmϑj)

−λ−1
 k1E[cos(k1ϑj)]

...

kmE[cos(kmϑj)]

n−1/2 n∑
i=1

sin(ϑi)+oP(1).

Thus Bm,n is asymptotically normal with mean zero and covariance matrix ΣΣΣ =

(Σst), where Σst = K̃(s, t). The result follows.

Proof of Proposition 4. From the strong law of large numbers, we have, for

r ≥ 1,

n−1/2b̂n(r) −→ b(r), a.s. as n→∞.

Therefore (4.3) follows. Moreover from Proposition 1, the almost sure limit Tw
on the right–hand side of (4.3) is positive unless H0 holds. This in turn, implies

that

Tn,w −→∞, a.s. as n→∞,
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under any fixed non-symmetric alternative distribution.
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