
Statistica Sinica 29 (2019), 693-718
doi:https://doi.org/10.5705/ss.202015.0392

OPTIMAL MODEL AVERAGING ESTIMATION FOR

PARTIALLY LINEAR MODELS

Xinyu Zhang1,2 and Wendun Wang3,4

1Qingdao University,
2Chinese Academy of Sciences,

3Erasmus University Rotterdam and
4Tinbergen Institute

Abstract: This article studies optimal model averaging for partially linear models

with heteroscedasticity. A Mallows-type criterion is proposed to choose the weight.

The resulting model averaging estimator is proved to be asymptotically optimal un-

der some regularity conditions. Simulation experiments suggest that the proposed

model averaging method is superior to other commonly used model selection and

averaging methods. The proposed procedure is further applied to study Japan’s

sovereign credit default swap spreads.
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1. Introduction

Linear regression models have been predominantly popular in a variety of

applications, including biology, economics, psychology, and machine learning.

Important reasons may be its simplicity and the clear interpretation of the esti-

mation results. An increasing number of studies have noted that the relationship

between the response variable and covariates is not always linear. To list a few

examples, Barro (1996) found that democracy can influence economic develop-

ment in a nonlinear pattern; Henderson,Papageorgiou and Parmeter (2012) and

Su and Lu (2013) found a nonlinear effect of initial state on the economic growth

rate; Liang, Wang and Carroll (2007), in a study on the effectiveness of antiretro-

viral medicines, showed that the HIV viral load depends nonlinearly on treatment

time. Ignoring nonlinearity can result in incorrect estimates and inferences, fur-

ther resulting in misleading explanations and bad decisions. Thus, ignoring the

nonlinear effect of global stock markets on the local market may lead to a lack

of awareness of financial contagion; And estimating a linear relationship between
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inflation and economic growth can lead to inappropriate inflation-targeting poli-

cies.

Partially linear models (PLMs) have received extensive attention in theoret-

ical and applied statistics due to their flexible specification. They allow for both

linear and nonparametric relations between covariates and the response variable.

This type of specification is also frequently used when the primary interest is

in the linear component, whereas the relation between the mean response and

additional covariates is not easily parameterized. The superiority of the partially

linear model over the standard linear models is that it does not require the para-

metric assumption for all covariates and allows one to capture potential nonlinear

effects. This model is sometimes preferred over the fully nonparametric models

since it preserves the advantages of linear models, e.g., an easy interpretation of

the linear covariates, and suffers less from the dimensionality curse. PLMs are

used in a wide range of applications in the literature; see, for example, Engle

et al. (1986) for an economic application and Liang, Wang and Carroll (2007) for

a medical application.

Various methods have been proposed to estimate PLMs, for example, smooth-

ing splines Engle et al. (1986); Heckman (1986), kernel smoothing Speckman

(1988); Robinson (1988), local polynomial estimation Hamilton and Truong (1997),

and penalized splines Ruppert, Wand and Carroll (2003). See Härdle, Liang and

Gao (2000) for a comprehensive survey. These estimation methods are all based

on the assumption that a correctly specified model is given. In practice, however,

researchers are ignorant of the true model. One needs to decide which covari-

ates are in the model (covariate uncertainty), and further whether to assign a

covariate in the linear or nonparametric component given that it is in the model

(structure uncertainty). The specification of covariates and the model structure

is of fundamental importance as it greatly influences the estimation and predic-

tion results. These two types of uncertainty are generally referred to as model

uncertainty.

Typical methods to address model uncertainty involve testing and/or select-

ing the best model using data-driven approaches. The most popular method may

be to use an information criterion (IC), such as the Akaike information criterion

(AIC) or the Bayesian information criterion (BIC). To decide which variables to

include in the PLMs, Ni, Zhang and Zhang (2009), Bunea (2004), and Xie and

Huang (2009), among others, have proposed several variable selection methods.

To further determine the structure of the model, which covariates to include

in the (non)linear function, a commonly used method is to test the linear null
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hypotheses against nonlinear alternatives for each covariate. Such tests, how-

ever, often have low power when the number of covariates is large Zhang, Cheng

and Liu (2011). In addition, these testing and selection methods perform model

selection and estimation in separate steps. Thus the uncertainty in the model

selection procedure is ignored in the estimation step, making it difficult to study

the properties of the final estimator Danilov and Magnus (2004); Magnus, Wang

and Zhang (2016). Zhang, Cheng and Liu (2011) provided a model selection

approach based on smoothing spline ANOVA to automatically and consistently

distinguish linear and nonlinear component. This method is useful if the goal is

to identify the correct model structure, but if the research purpose is to estimate

the parameters or to make predictions, it seems more plausible to take into ac-

count all (potentially) useful models. However, the model selection approaches

can be rather “risky” since they require “putting all our inferential eggs in one

unevenly woven basket” Longford (2005).

In this paper we follow a different approach. Instead of selecting one model,

we address model uncertainty by appropriately averaging the estimates from

different models. As an alternative to model selection, model averaging can sub-

stantially reduce risk Hansen (2014). It is an integrated process that accounts

for both the model uncertainty and estimation uncertainty. Model averaging

has long been a popular approach within the Bayesian paradigm; see, for exam-

ple, Hoeting et al. (1999) for a comprehensive review. In recent years, optimal

model averaging methods have been actively developed, including Mallows model

averaging Hansen (2007), the OPT method Liang et al. (2011), jackknife model

averaging (JMA) Hansen and Racine (2012), heteroskedasticity-robust model av-

eraging Liu and Okui (2013), optimal averaging method for linear mixed-effects

models Zhang, Zou and Liang (2014), and optimal averaging quantile estimators

Lu and Su (2015). These methods are asymptotically optimal in the sense that

they minimize the predictive squared error in the large sample case, but they

mainly focus on linear models. To the best of our knowledge, there are no opti-

mal model averaging estimators for PLMs. The main purpose of this paper is to

fill this gap.

Our model averaging approach can simultaneously incorporate the covariate

and structure uncertainty in PLMs, which is not much studied in the PLM liter-

ature. Heteroscedastic random errors are also allowed. To show the optimality of

our method, we first assume that the covariance matrix of errors is known, and

propose a Mallows-type weight choice criterion, which is an unbiased estimator

of the expected predictive squared error up to a constant. We prove that the
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weights obtained by minimizing this criterion are asymptotically optimal under

some regularity conditions. Next, we replace the unknown covariance matrix

with its estimated counterpart, and show that the plugged-in criterion still leads

to asymptotically optimal weights.

One can formulate this study as an extension of linear regression model aver-

aging to partially linear models. However, we emphasize that such an extension

is by no means straightforward and routine because the existing methods, such as

Mallows model averaging, typically do not involve kernel smoothing. Our work

is apparently the first to study the optimal averaging that involves kernels. One

of our main contributions is in providing an optimal weight choice in a kernel

smoothing framework.

Our work is also related to that of Xu, Wang and Huang (2014), who con-

sidered frequentist model averaging and post-model-selection inference in an ad-

ditive partially linear model. Under the local misspecification setup, their aver-

aging estimator is consistent but may not be optimal. We differ from their study

by relaxing the local misspecification assumption, thereby allowing all candidate

models to be possibly misspecified, and we study the optimal averaging estima-

tor. Moreover, they focus on parameter estimation, while we are interested in

prediction. Another related work is Zhao, Cheng and Liu (2016), which mod-

eled massive heterogeneous data in a partially linear framework. To estimate

the commonality parameter, they proposed to average commonality estimators

obtained from heterogeneous sub-populations. While the averaging idea is sim-

ilar, our candidate estimators are obtained from the same sample but different

models, whereas theirs are from the same model but different sub-populations.

We compare the proposed model averaging estimator with popular model

selection and averaging estimators for PLMs. Our simulation study considers

two cases. In the first case, only the linear component is uncertain, and the

candidate models differ in their inclusion of linear variables. In addition to linear

component uncertainty, the second case considers the situation where there is also

uncertainty in choosing which covariates to include in the (non)linear function. In

both cases, the proposed estimator performs best in most of the cases, especially

when R2 is moderate and low. When R2 is particularly high, our model averaging

estimator is not as good as information-criterion-based methods in the second

case. We applied our method to study Japan’s sovereign credit default swap

spreads. We found that allowing for nonlinearity indeed provides several new

insights. For example, the effect of the global stock market performance on

the local market is strengthened in the volatile period, suggesting the existence
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of financial contagion. The out-of-sample prediction exercise further illustrates

the advantage of partially linear models over linear models, and we generally

find better prediction performance for our estimator compared to other partially

linear model estimators.

The remainder of this paper is organized as follows. Section 2 introduces

our model averaging estimator and presents its asymptotic optimality. Section

3 investigates the finite sample performance of the proposed estimator. A data

example is studied in Section 4 and Section 5 provides some concluding remarks.

Technical proofs, additional simulation results, and additional tables and figure

for the data example can be found in our online supplement.

2. Model Averaging Estimation

2.1. Model and estimators

We consider the partially linear model (PLM)

yi =

∞∑
j=1

xijβj + g(Zi) + εi, i = 1, . . . , n, (2.1)

where Xi=(xi1, xi2, . . .) is a countably infinite random vector, Zi=(zi1, . . . , ziq)
T

is a random vector in some bounded domain D ⊂ IRq, g(·) is an unknown

function from IRp to IR1, and ε1, . . . , εn are heteroscedastic random errors with

E
(
εi|Xi,Zi

)
= 0 and E

(
ε2i |Xi,Zi

)
= σ2i . We denote the expectation of the re-

sponse variable as µi = E
(
yi|Xi,Zi

)
=
∑∞

j=1 xijβj + g(Zi).

Our goal is to estimate µi, which is of particular use for prediction, and this

is also the typical goal in the optimal model averaging literature (e.g., Hansen

(2007); Lu and Su (2015)).

For this purpose, we use Sn candidate PLMs to approximate (2.1), where Sn
is allowed to diverge to infinity as n→∞. The sth approximation (or candidate)

PLM is

yi = XT
(s),iβ(s) + g(s)

(
Z(s),i

)
+ b(s),i + εi, i = 1 . . . , n, (2.2)

where X(s),i is a vector in the linear component, Z(s),i is a vector in the nonpara-

metric component, gs(·) is an unknown function from IRqs to IR1, and b(s),i = µi−
XT

(s),iβ(s)−g(s)
(
Z(s),i

)
represents the approximation error in the sth model. Here,

the linear component X(s),i is allowed to contain variables in Zi and, reversely,

the nonparametric covariate Z(s),i could contain variables in Xi. Hence, (2.2)

permits two sources of uncertainty: the uncertainty of which variables to in-

clude in the model, and the uncertainty of whether a covariate should be in
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the linear or nonparametric component given that it is in the model. See,

for example, the second case in Section 3. Let X(s) =
(
X(s),1, . . . ,X(s),n

)T
,

Z(s) =
(
Z(s),1, . . . ,Z(s),n

)T
, g(s) =

{
g
(
Z(s),1

)
, . . . , g

(
Z(s),n

)}T
, ε = (ε1, . . . , εn)T,

y = (y1, . . . , yn)T, and µ = (µ1, . . . , µn)T.

Remark 1. Since estimating the coefficients of the linear component and the

non-parametric component is not the purpose of this paper, we do not need the

conditions for consistency or asymptotic normality of the coefficient estimates,

for example, the conditions in Section 1.3 of Härdle, Liang and Gao (2000).

To provide an optimal weighting scheme, we first need to estimate each can-

didate model. We follow Speckman (1988) and use kernel smoothing estimation.

One of the advantages of this method is its light computational burden, which

is crucial in our case since the number of candidate models is typically substan-

tial. To define Speckman’s (1988) estimator, let k(·) be a kernel function, hs
be a bandwidth, and khs

(·) = k(·/hs)/hs. Furthermore, let K(s) =
{
K(s),ij

}
be

an n × n smoother matrix with K(s),ij = khs

(
Z(s),i − Z(s),j

)
/
∑n

j∗=1 khs

(
Z(s),i −

Z(s),j∗
)
. The kernel smoothing estimator of β(s) and g(s) can then be obtained

as β̂(s) =
(
X̃T

(s)X̃(s)

)−1
X̃T

(s)

(
In −K(s)

)
y and ĝ(s) = K(s)

(
y − X(s)β̂(s)

)
, where

X̃(s) =
(
In − K(s)

)
X(s) and In is an n × n identity matrix. The estimator of

µ is then µ̂(s) = X(s)β̂(s) + ĝ(s) = X̃(s)

(
X̃T

(s)X̃(s)

)−1
X̃T

(s)

(
In −K(s)

)
y + K(s)y.

Letting P̃(s) = X̃(s)

(
X̃T

(s)X̃(s)

)−1
X̃T

(s) and P(s) = P̃(s)

(
In −K(s)

)
+ K(s), we can

write µ̂(s) = P(s)y. Because of the curse of dimensionality, qs (the dimension of

Z(s)) cannot be large.

With the estimators of each model readily available, we can obtain the

model averaging estimator of µ as µ̂(w) =
∑Sn

s=1wsµ̂(s) = P(w)y, where w =

(w1, . . . , wSn
)T is the weight vector belonging to the set W =

{
w ∈ [0, 1]Sn :∑Sn

s=1ws = 1
}

and P(w) =
∑Sn

s=1wsP(s).

Remark 2. Although heteroscedasticity is allowed in the data generating pro-

cess (2.1), we do not immediately take it into account when estimating each

candidate model (using kernel smoothing). Instead, we incorporate heteroscedas-

ticity when estimating the unknown variance-covariance matrix (for the weight

estimation). This is a typical treatment in the literature on model averaging un-

der heteroscedasticity, such as Hansen and Racine (2012), Liu and Okui (2013),

and Zhang, Zou and Carroll (2015); an estimator that incorporates heteroscedas-

ticity for each candidate model is not necessarily more efficient than an estimator

that fails to do so, and the latter is computationally much simpler and faster.
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2.2. Weight choice criterion and asymptotic optimality

Write the predictive squared loss as Ln(w) = ‖µ̂(w)−µ‖2 and the expected

loss as

Rn(w) = E{Ln(w)} = ‖P(w)µ− µ‖2 + trace
{

P(w)ΩPT(w)
}
, (2.3)

where Ω = diag
(
σ21, . . . , σ

2
n

)
. To select the optimal weights in the sense of mini-

mizing Ln, we propose to minimize the Mallows-type criterion

Cn(w) = ‖µ̂(w)− y‖2 + 2trace{P(w)Ω}, (2.4)

as we can show that Rn(w) = E{Cn(w)}−trace(Ω), where trace(Ω) is unrelated

to w. Therefore, if we know Ω, the weights can be obtained as

ŵ = argminw∈WCn(w). (2.5)

Averaging using this weight choice is called Mallows averaging of partially

linear models (MAPLM). The optimality of such a weight choice holds under

some regularity conditions. Let ξn = infw∈W Rn(w) and let wo
s be a weight

vector with the sth element equal to one and other elements zero (model selection

weight). Let max
i

indicate maximization over i ∈ {1, . . . , n}, where all limiting

properties here and throughout the text hold for n→∞.

Condition 1. maxi
∑n

j=1

∣∣K(s),ij

∣∣ = O(1) and maxj
∑n

i=1

∣∣K(s),ij

∣∣ = O(1) uni-

formly for s ∈ {1, . . . , Sn}, almost surely.

Condition 2. For some integer G ≥ 1, maxiE
(
ε4Gi
∣∣Xi,Zi

)
< ∞ and Snξ

−2G
n∑Sn

s=1{Rn(wo
s)}G → 0 almost surely.

Condition 1 is assumption (i) of Speckman (1988), which bounds the kernel.

Condition 2 requires ξn → ∞, so that there is no finite approximating model

whose bias is zero (Hansen and Racine (2012) and Liu and Okui (2013)). This

condition also constrains the rates of Sn and Rn

(
wo

s

)
going to the infinity, and

is widely used in other model averaging studies; see, for example, Wan, Zhang

and Zou (2010), Liu and Okui (2013), and Ando and Li (2014).

Theorem 1. Under Conditions 1–2 we have that, as n→∞,

Ln

(
ŵ
)

infw∈W Ln(w)
→ 1 in probability. (2.6)

Theorem 1 shows that the model averaging procedure using ŵ is asymp-

totically optimal in the sense that the resulting squared loss is asymptotically

identical to that of the infeasible best possible model averaging estimator. The

proof of Theorem 1 (see the online supplement) takes advantage of several in-



700 ZHANG AND WANG

equalities involving kernels, and it provides a technical innovation for studying

the optimal model averaging in a kernel smoothing framework.

So far we have assumed that the covariance matrix Ω is known. This is not

generally the case, and the criterion (2.4) is therefore computationally infeasible.

To obtain a feasible criterion, we estimate Ω based on the residuals from the

largest model indexed by s∗ = arg maxs∈{1,...,Sn}(ps + qs),

Ω̂(s∗) = diag
(
ε̂2s∗,1, . . . , ε̂

2
s∗,n

)
, (2.7)

where (ε̂s∗,1, . . . , ε̂s∗,n)T = y − µ̂(s∗) = y −P(s∗)y. The idea of using the largest

model to estimate the variance parameter or covariance matrix is also advocated

by Hansen (2007) and Liu and Okui (2013). We distinguish two cases here. If the

candidate models have the same nonparametric component but only differ in the

inclusion of linear covariates, the largest model is unambiguously the one with

all linear covariates included. In the more general case with uncertainty in both

linear and nonparametric components, the model with the largest dimension is

not uniquely defined since the models with the same dimension can differ in the

structure of linear and nonparametric components. Therefore, we propose to use

the the largest linear model to estimate Ω in this case. Although the largest

linear model is nested in the largest nonlinear model, including a large number

of covariates in the nonlinear component leads to a highly inaccurate estimate

of this component due to the curse of dimensionality. The inaccurate estimate

further results in a poor estimator of error variance. In most applications, the

dimension of the nonlinear component is typically low; see, for example, Yatchew

and No (2001) and Liang (2006). Hence, the estimated error variance obtained

from the largest linear model is a decent approximation. If the largest nonlinear

model is of low dimension, it might make more sense to use it to estimate the

error variance.

By replacing Ω with its estimator Ω̂, the feasible criterion becomes

Ĉn(w) = ‖µ̂(w)− y‖2 + 2trace
{

P(w)Ω̂(s∗)

}
, (2.8)

and the weights can be obtained as

w̃ = arg min
w∈W

Ĉn(w). (2.9)

Let H =
(
µ̂(1) − y, . . . , µ̂(Sn) − y

)
and b =

{
trace

(
P(1)Ω̂(s∗)

)
, . . . , trace

(
P(Sn)

Ω̂(s∗)

)}T
. We can rewrite Ĉn(w) as Ĉn(w) = wTHTHw + 2wTb, a quadratic

function of w, and the optimization can be done by standard software packages,

such as quadprog in Matlab, which are generally effective and efficient even when

Sn is large.
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We now show that the weights obtained by minimizing the feasible cri-

terion (2.8) are still asymptotically optimal. Denote ρ
(s)
ii as the ith diagonal

element of P(s). Let max
s

(min
s

) represent maximization (minimization) over

s ∈ {1, . . . , Sn}, p̃ = max
s
ps, and h = min

s
hs. Assume the following conditions

hold almost surely.

Condition 3. ‖µ‖2 = O(n).

Condition 4. trace
(
K(s)

)
= O

(
h−1

)
uniformly for s ∈ {1, . . . , Sn}.

Condition 5. There exists a constant c such that
∣∣ρ(s)ii

∣∣ ≤ cn−1
∣∣trace(P(s))

∣∣ for

all s ∈ {1, . . . , Sn}.
Condition 6. n−1h−2 = O(1) and n−1p̃2 = O(1).

Condition 3 concerns the sum of n elements of µ and is commonly used

in linear regression models; see, for example, Wan, Zhang and Zou (2010) and

Liang et al. (2011). Condition 4 is a natural extension of Condition (h) of Speck-

man (1988). Condition 5 is commonly used to ensure the asymptotic optimality

of cross-validation; see, for example, Andrews (1991) and Hansen and Racine

(2012). The first part of Condition 6 regards the bandwidth and is less restric-

tive than the n−1h−2 = o(1) required in Theorem 2 of Speckman (1988). The

second part of Condition 6, the same as Condition (12) of Wan, Zhang and Zou

(2010), allows the ps’s to increase as n→∞, but restricts their increasing rates.

Further explanations of these conditions are provided in the online supplement.

Theorem 2. Under Conditions 1–6 we have that, as n→∞,

Ln(w̃)

infw∈W Ln(w)
→ 1 in probability. (2.10)

The proof of Theorem 2 is provided in the online supplement.

Remark 3. The question of how to choose the optimal bandwidth hs in each

candidate model remains. While this question is of interest, it is especially dif-

ficult in our case because each candidate model is just an approximation of the

true model and therefore includes approximation error. In our numerical exam-

ples, the bandwidth hs is chosen by minimizing the generalized cross-validation

criterion. As an alternative, we also consider bandwidth selection using cross-

validation, a popular criterion in the presence of heteroscedasticity. The simu-

lation results show that the two criteria lead to almost identical relative perfor-

mance of their competing methods, but cross-validation is computationally much

more expensive than generalized cross-validation.

Remark 4. Theorem 2 holds no matter whether Ω is estimated by the largest
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partially linear model or the largest linear model, as long as the number of

covariates is fixed. An alternative strategy to estimate Ω is based on the averaged

residuals ε̂(w) = {ε̂1(w), . . . , ε̂n(w)}T = y − µ̂(w). The motivation of this

strategy is to avoid placing too much confidence in a single model. The use of

the averaged residuals does not affect the validity of Theorem 2 and produces

similar numerical results. Detailed results of this alternative estimation strategy

and proofs of this remark are available upon request.

3. Simulation Study

3.1. Data generation process

Our setting is similar to the infinite-order regression of Hansen (2007) except

that we have a nonlinear function in addition to the linear component. Specif-

ically, we generated the data by yi = µi + εi =
∑500

j=1 βjxij + g(Zi) + εi, where

the Xi = {xi1, . . . , xi500}T were multivariate normal with mean 0 and covari-

ance 0.5|j1−j2| between xij1 and xij2 . The corresponding coefficients were set

as βj = 1/j. For simplicity, we considered a nonlinear function of two corre-

lated variables, g(Zi) = g(zi1, zi2), and we generated zi1 = 0.3u1 + 0.7u2 and

zi2 = 0.7u1+0.3u2 where u1 and u2 were independent and uniformly distributed.

Two variants of nonlinear functions were studied: g1(Zi) = exp(zi1) + z2i2 and

g2(Zi) = 2(zi1 − 0.5)3 + sin(zi2). The errors were normally distributed and het-

eroscedastic as εi ∼ N
(
0, η2x2i2

)
. We changed the value of η, so that R2 =

var (µ1, . . . , µn) /var (y1, . . . , yn) varies from 0.1 to 0.9, where var(·) denotes the

sample variance. Since all covariates were correlated with each other, R2 cannot

be easily written as a function of η. We therefore numerically computed R2

based on each chosen η. The sample size was set to n = 50, 100, and 200, and

the results for n = 400 are given in Section S5 of the online supplement.

In applications, the model is typically a simplified version of the data gener-

ating process with a number of variables omitted, either because of ignorance or

because of data limitations. To mimic this situation, we omitted zi2 and some

components of Xi from every candidate model. We considered two cases of model

uncertainty. In the first case, it was a priori known which variables belonged to

the nonparametric component (based on existing theory or the research question

of interest), but the specification of the linear component was uncertain. In this

case, all candidate models shared a common nonparametric function of zi1 (with

zi2 being omitted), and their linear components were a subset of {xi1, . . . , xi5}T

(with the remaining xij ’s being omitted). We required each candidate model to
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include at least one linear covariate, leading to 25 − 1 = 31 candidate models.

In the second case, there was no a priori knowledge about which covariates

should be chosen as parametric regressors and which belonged to the nonpara-

metric component. Therefore, in addition to the uncertainty of which variables to

include, there was also uncertainty about whether a covariate should be included

in the linear or nonparametric component. When the number of covariates in-

creases, the number of candidate models increases even more dramatically than in

the first case. To facilitate the computation, we assumed that only four covariates

(xi1, xi2, xi3, zi1) were observed, whereas the others were omitted. In contrast to

the first case, the candidate models here allow a subset of (xi1, xi2, xi3, zi1) in

the nonparametric function, and the remaining can be included in the linear

component or not in the model at all. Again, we required each candidate model

to contain at least one linear and one nonparametric covariate. This leads to(
4
3

)
(23 − 1) +

(
4
2

)
(22 − 1) +

(
4
1

)
= 50 candidate models. More simulation designs,

such as a diverging number of candidate models, data with a larger degree of

nonlinearity and autoregressive errors, are presented in the supplement. The

results are essentially the same.

3.2. Estimation and comparison

We estimate each candidate model using the quadric kernel k(v) = 15/16
(
1−

v2
)2
I(|v| ≤ 1), where I(·) is an indicator function. With only linear compo-

nent uncertainty, the covariance matrix Ω is estimated using the partially linear

model containing all observable linear covariates. In the second case it is es-

timated from the largest linear model (with all observable variables included

linearly and no nonparametric component). We mainly compared MAPLM with

four alternative estimation methods for PLMs, two selection methods and two

averaging methods. The two model selection methods were based on AIC and

BIC, and they selected the model with the smallest information criterion, AICs =

log
(
σ̂2s
)

+ 2n−1trace
(
P(s)

)
and BICs = log

(
σ̂2s
)

+ n−1trace
(
P(s)

)
log(n), where

σ̂2s = n−1‖y − µ̂(s)‖2. The two model averaging methods were smoothed AIC

(SAIC) and smoothed BIC (SBIC) Buckland, Burnham and Augustin (1997).

The weight of model s was constructed as wAIC
s = exp(−AICs/2)/

∑S
s=1 exp(−

AICs/2) and wBIC
s = exp(−BICs/2)/

∑S
s=1 exp(−BICs/2).

To evaluate these methods, we computed the mean squared error (MSE) of

the predictive variable as 500−1
∑500

r=1 ‖µ̂(r) −µ‖2, where 500 was the number of

replications and µ̂(r) denotes the estimator of µ in the rth replication. For conve-

nient comparison, all MSEs were normalized by dividing by the MSE produced
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by AIC model selection.

3.3. Results

In general, the model averaging methods outperform the selection methods.

The superiority of the averaging methods is particularly obvious when R2 is small.

As R2 increases, the difference between model selection and averaging decreases.

The performance of the averaging methods when R2 is small and moderate is

especially good because identifying the best model is difficult in the presence of

substantial noise. In that case, the model chosen by a selection procedure can be

far from ideal which, unsurprisingly, leads to inaccurate estimates. By contrast,

model averaging does not rely on a single model and thus provides protection

against choosing a poor model. This observation is also in line with Yuan and

Yang (2005) and Zhang, Wan and Zhou (2012). When R2 is large, model selection

is sometimes preferred because the minimal noise in the data allows the selection

criterion to choose the correct model.

Figure 1 presents the results when there is uncertainty in only the linear com-

ponent specification. Our method yields the smallest MSE in almost all cases,

but the information-criterion model averaging sometimes has a marginal advan-

tage when R2 is very large. Most of the figures show that the advantage of our

method increases as R2 decreases. The good performance of MAPLM is partly

because the optimality of MAPLM does not rely on the correct specification of

candidate models. The comparison of the methods for different sample sizes

shows that when we have a relatively small or moderate sample size (n = 50 and

100), MAPLM outperforms all the competing methods over the whole range of

R2. When the sample size is relatively large (n = 200), MAPLM still dominates

the other methods for a wide range of R2, but the difference between MAPLM

and SAIC decreases. All the methods perform almost equally well when the sam-

ple size is large and R2 is 0.9. Further examination suggests that the methods

tend to select or impose a large weight on the same model when there is little

noise in the model and the sample size is large. This similarity can be partly

explained by the fact that the bias-variance tradeoff is not so significant in this

situation, so model selection is able to choose the correct model.

Figure 2 compares the estimation results when there is structure uncertainty

in addition to uncertainty in covariate inclusion. In this case, both linear and

nonparametric components vary over the candidate models. MAPLM produces

much lower MSE than its rivals in all cases when R2 is equal to or less than

0.7, which again demonstrates that our model averaging approach is preferred
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1

1

Figure 1. Mean square error comparison: Uncertainty only in the linear component.

when the model is characterized by substantial noise and identifying the best

model is difficult, as in most practical applications. The poorer performance of

MAPLM under particularly large R2 is mainly a result of allowing for far more

uncertainty than necessary in this case, which prevents MAPLM from assigning

a very large weight to the best model. Specifically, on one hand, allowing for

more uncertainty (in both the linear and nonlinear components) than in the first

case causes MAPLM to average over a larger model space, which generates a

larger number of weight parameters to estimate. On the other hand, when the

data are highly informative
(
with large R2

)
, there often exists a best model, and

the IC are capable of selecting this model.

Model selection and averaging using AIC and SAIC lead to largely similar

results, and so do BIC versus SBIC. These results indicate that if there is a dom-

inant model that significantly outperforms the others, it is often the one with

the most covariates in the nonparametric component. This further suggests that

IC tend to select the most general model whenever possible, because nonpara-

metric estimation typically fits better than least squares estimation. However,

the dominant model is not necessarily the best in all cases. When the data are

characterized by substantial noise, a large nonparametric model mainly fits the

noise; thus, the IC-based methods perform much worse than MAPLM. When the
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Figure 2. Mean square error comparison: Uncertainty in both components.

data are highly informative, the dominant model coincides with the best model,

leading to the better performance of the IC-based methods than MAPLM.

To see how much harm can be caused by ignoring nonlinearity, we also com-

pare our method with linear model averaging (LMA) that considers all candidate

models to be fully linear. Theoretically, LMA should work better when the model

is linear or the degree of nonlinearity is small since nonparametric estimation con-

verges much slower and is generally less efficient than least squares estimation. As

the degree of nonlinearity increases, the better fit achieved by nonparametric es-

timation dominates its efficiency loss and slow convergence; thus MAPLM should

outperform LMA under these conditions. Our simulation results (presented in

the supplement) under different degrees of nonlinearity confirm this theoretical

argument. Moreover, we find that LMA slightly outperforms MAPLM when R2

and the sample size are small. As R2 and the sample size increase, MAPLM

quickly demonstrates its significant superiority over LMA. Detailed simulation

designs, results, and explanations are provided in the online supplement.
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4. Empirical Application

We apply our method to study Japan’s sovereign credit default swap (CDS)

spreads. A CDS contract is an insurance contract against the credit event spec-

ified in the contract. Its spread is the insurance premium that the buyer under

protection has to pay, and it reflects investors’ expectations about a country’s

sovereign credit risk. The likelihood of default typically depends on the country’s

willingness (rather than ability) to repay, and the government often makes the

repayment decision based on a cost-benefit analysis using the information of the

country’s macroeconomic fundamentals. Japan’s sovereign CDS spreads are of

worldwide interest since Japan has long been characterized by its high govern-

ment debt. The ratio of gross government debt to GDP reached 237.9% in 2012,

the highest in the world. Furthermore, Japan is the world’s third largest econ-

omy, and its financial market plays an important role in international finance.

A crisis in Japan could damage investors’ confidence in the government debt of

many other heavily indebted industrial countries.

In this section, we first examine how macroeconomic indicators affect Japan’s

CDS spreads and then study the predictability of these indicators. We focus on

the CDS contract written on the credit event “complete restructuring”, which is

the most popular credit event insured by a sovereign CDS contract, and we con-

sider the contract maturity of five years, following Longstaff et al. (2011). Our po-

tential macroeconomic determinants include three domestic variables that reflect

domestic economic performance: the domestic stock market return (measured

by the Dow Jones Japan Total Stock Market Total Return Index), its volatility,

and the nominal Yen-US Dollar exchange rate. We also follow Longstaff et al.

(2011) and consider three global-market determinants: the global stock market

return (measured by the Morgan Stanley Capital International US Total Return

Index), US treasury yield (with the constant maturity of five years), and the

global default risk premium (approximated by US investment-grade corporate

bond spreads). See Longstaff et al. (2011) and Qian, Wang and Ji (2017) for

details of the variable construction. We focus on the post-earthquake sample

from March 12, 2011 (one day after the Tohuku earthquake) to October 10, 2012

to avoid significant structural breaks, and the number of observations is 388. All

data are first-differenced based on a preliminary unit root analysis and then nor-

malized. The change in Japan’s sovereign CDS spreads (before normalization)

is plotted in the left panel of Figure S.6 of the online supplement, and its sam-

ple autocorrelation function is plotted in the right panel. These two plots show
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Table 1. Estimation results of linear models.

OLS LMA OLS LMA
Domestic stock

return
−1.5182*** −1.2790***

Domestic stock
volatility

0.6165*** 0.0576

(0.1752) (0.3189) (0.1758) (0.7208)
Foreign

exchange rate
−0.3250* −0.3777***

Global stock
return

1.0107*** 0.9842***

(0.1727) (0.1839) (0.1733) (0.2188)
US treasury

yield
−0.3672** −0.3649**

Global default
risk premium

−0.0774 −0.0230

(0.1750) (0.2349) (0.1689) (0.0948)
Notes: Standard errors are in parentheses. ***, **, and * denote significance at
1%, 5%, and 10%, respectively. The significance of LMA is based on bootstrap
confidence intervals with 200 random samplings.

that the differenced series does not exhibit strong serial correlation. Table S.1 of

the online supplement provides the descriptive statistics of the first-differenced

sovereign CDS spreads and potential determinants.

4.1. Linear model specification

The existing literature on sovereign CDS spreads mostly considers linear

models in which all the determinants are assumed to have a linear effect on

the spreads; see, for example, Longstaff et al. (2011) and Dieckmann and Plank

(2011). We initially follow this convention to estimate the effect of our six poten-

tial determinants using linear models. We consider ordinary least squares (OLS)

estimation and linear model averaging using the heteroscedastic-robust Mallows

criterion (HRCp). Linear model averaging treats all determinants linearly, but it

takes into account the uncertainty of whether a determinant is included in the

model.

Table 1 presents the estimation results of the linear models. Since all de-

terminants are normalized, the size of the coefficients reflects the relative impor-

tance. We first focus on the least squares estimation results. The least squares

estimates show that the domestic stock return, its volatility, and the global stock

return are the three most important determinants and have a significant effect on

Japan’s CDS spread. More specifically, the domestic stock return, as a measure

of local economic performance, has a strongly negative effect. The domestic stock

return can affect the CDS spread by influencing the government’s willingness to

implement fiscal reforms, and effective fiscal reform is typically regarded as an

important tool to reduce default risk. Therefore, when the domestic economy is
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weak, policy makers are less willing to implement reforms because the reforms

can impose extra pressure on the distressed economy. This failure to enact re-

forms thus increases the sovereign CDS spreads. The strong and negative effect

of domestic stock returns is in line with the literature (see, e.g., Longstaff et al.

(2011) and Dieckmann and Plank (2011)). The domestic stock market volatility

is positively associated with sovereign CDS spreads, which is in line with the

economic theory that higher volatility indicates a less stable economic status and

thus a higher probability of default. The other important determinant is the

global stock return, which has a positive effect on Japan’s sovereign CDS spread.

Theoretically, the global stock market return may impose two opposite impacts

on sovereign CDS spreads. The negative effect is due to the fact that good global

economic performance can positively influence the Japanese government’s will-

ingness to repay, thus lowering the sovereign CDS spread. On the other hand,

a good global economy would also encourage investment in general, thereby in-

creasing the CDS spread. The overall impact of the global stock return depends

on which effect is dominant. It is likely that one effect is more prominent in some

situations but dominated by the other effect in other situations. This potential

heterogeneity cannot be captured by linear models.

Less significant but still important determinants include the foreign exchange

rate and US treasury yield. The negative effect of the foreign exchange rate

is expected because a low Yen-US Dollar exchange rate reflects weakness in

Japan’s current economic situation and less external demand, which leads to

higher sovereign CDS spread. The negative relationship between US treasury

yield and Japan’s CDS spread is also intuitive because a high treasury yield sig-

nals good economic performance in the US, which can positively influence Japan’s

economy and encourage repayment by the Japanese government.

We compare the estimates obtained from least squares and model averaging

and find that the signs of all the estimated coefficients are the same for both

methods. Nevertheless, model averaging produces quite different estimates for

some determinants, such as the domestic stock return, its volatility, and the

global default risk premium, which suggests that there is a large degree of model

uncertainty.

4.2. Partially linear specification

Next, we examine whether the widely used linearity assumption is appropri-

ate here. The verification is based on both economic theory and statistical tools.

First, from the theoretical perspective, the literature of sovereign CDS spreads
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generally does not provide firm theory about nonlinear effects for most covari-

ates aside from domestic and global stock returns. Qian, Wang and Ji (2017)

found that these two covariates play different roles in tranquil and turbulent

periods. Specifically, global stock returns are more prominent during turbulent

periods, and domestic stock returns are more prominent during tranquil peri-

ods. The nonlinear effect of global stock returns is also supported by extensive

literature on financial contagion, which suggests that the link between domestic

markets and the global market is often strengthened during periods of crisis; see,

e.g. Eichengreen, Rose and Wyplosz (1996) and Bae, Karolyi and Stulz (2003).

Therefore, it is reasonable to consider the potential nonlinear effect of global

stock returns.

Next, we verify the linearity of each determinant by assigning it to the non-

parametric component of partially linear models. We include one determinant

in the nonparametric component each time while keeping others in the linear

component. This process enables us to verify whether each determinant has

a nonlinear effect on Japan’s CDS spreads and also avoids the dimensionality

and computational issue of simultaneously considering many nonparametric co-

variates. Figure S.7 of the online supplement presents the nonparametric esti-

mates of each determinant using the proposed MAPLM, ĝ(ŵ) =
∑Sn

s=1 ŵsĝ(s),

where ĝ(s) is the nonparametric estimate obtained from each candidate model

and ŵ = (ŵ1, . . . , ŵSn
)T consists of weights estimated by MAPLM. The effects of

domestic stock market volatility and global default risk premium do not exhibit

a clear nonlinear pattern. They either have a relatively flat curve or fluctuate

around zero, suggesting that these effects are almost linear or highly insignifi-

cant. In contrast, domestic stock returns, the foreign exchange rate, global stock

returns, and US treasury yield show different degrees of nonlinearity.

Finally, we tested the linearity for each determinant using the test statistic

suggested by Li, Xu and Jin (2010). This test statistic verifies the null hypothesis

of the linearity of the nonparametric component by the fiducial method. There

it is proposed to first approximate the nonparametric component by a piecewise

linear function, so testing for linearity is transformed into testing for a linear re-

striction on the coefficient. The p-value of the test is then derived by the classic

fiducial method (c.f., Xu and Li (2006)). To validate this test in our case, we im-

plemented the test in the fixed full model, where only one determinant is included

in the nonparametric component each time and the remaining determinants are

included in the linear component. Therefore, no averaging is performed in this

testing procedure. Although it appears to be more general to test the linearity
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Table 2. Linearity test for each determinant.

p-value p-value
Domestic stock returns 0.1651 Domestic stock volatility 0.4810
Foreign exchange rate 0.0265 Global stock returns 0.0042
US treasury yield NA Global default risk premium 0.9548

of a covariate while assigning others to the nonparametric component, this is

difficult in practice because of a large number of covariates in the nonparametric

component. This results in poor estimates and unreliable test statistics in finite

samples. The p-values of the tests are reported in Table 2. We see that the test

fails to reject the null hypothesis of linearity for the domestic stock return, its

volatility, and global default risk premium. The reported p-values also confirm

that the effects of the foreign exchange rate and global stock returns cannot be

accurately approximated by linear functions. The test statistic for the US trea-

sury yield is not available because this variable takes only a few discrete values.

Thus, it is less clear whether one can assume a linear effect of the US treasury

yield.

Based on the nonparametric estimation results and the regression diagnos-

tics, we discuss the (potentially) nonlinear determinants and their economic im-

plications. First, the estimated effect of the foreign exchange rate has a steep

downward trend when the change in exchange rates is below average, but the

curve is relatively flat and close to zero as the change in exchange rates in-

creases. The negative relationship between the exchange rate and Japan’s CDS

spread is in line with the findings of the linear models. Nevertheless, the nonpara-

metric estimate shows that this relationship is much weaker when the exchange

rate is high. The estimated effect of global returns is characterized by a typ-

ical “U-shape”; the change in Japan’s CDS spreads is particularly high when

global returns are at their extremes; the negative effect of global stock returns

plays a more prominent role in a bear market while the positive effect is more

important when the global financial market is in a bull market. The curve is

much steeper when the global stock market is in a slump, suggesting that the

correlation between Japan’s credit market and the global stock market is much

stronger during periods of crisis. This result is in contrast to Longstaff et al.

(2011), who reported a weak and insignificant effect of global stock returns on

Japan. We argue that the insignificance is possibly a result of ignoring nonlin-

earity, such that the positive and negative effects offset each other, leading to an

ambiguous overall effect. Such a nonlinear effect of global stock returns provides
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Table 3. Estimates of the linear coefficients in the partially linear models.

MAPLM SAIC SBIC AIC BIC

Domestic −1.2771 −1.5595 −1.5635 −15658 −1.5938
stock returns (−2.37,−0.62) (−2.53,−0.65) (−2.52,−0.00) (−1.83,−1.30) (−1.87,−1.32)
Domestic 0.0000 0.5330 0.5135 0.5325 0.5928
stock vol (−0.56, 2.23) (−0.62, 2.28) (−0.68, 2.26) (0.23, 0.83) (0.28, 0.91)
US treasury −0.3246 −0.2441 −0.0858 −0.3292
yield (−0.78, 0.24) (−0.86, 0.29) (−0.88, 0.03) (−0.65,−0.01)
Global risk −0.1284 −0.0876 −0.0144
premium (−0.47, 0.05) (−0.52, 0.07) (−0.65, 0.02)

evidence of financial contagion from the global stock market to Japan’s sovereign

credit market that cannot be captured by linear models. The finding of financial

contagion is of particular importance for both policy makers and investors since

it implies that adapted policies and investment strategies should be implemented

under different situations. The curve of the US treasury yield is similar but less

nonlinear than that of the foreign exchange rate. We generally observe a negative

effect of the US treasury yield on Japan’s sovereign CDS spreads, in line with

the literature and our linear model estimates, but the effect is relatively stronger

when the change in treasury yield is extreme.

Table 3 reports the estimates of the linear coefficients of the partially lin-

ear model with foreign exchange rate and global stock returns in the nonlinear

component. To compute these estimates, we let X be the matrix of the linear

covariates of the full model (which contains the domestic stock return and its

volatility, US treasury yield, and global default risk premium) and Π(s) be a

projection matrix such that X(s) = XΠ(s). Then, the model averaging estimates

of the linear coefficients can be obtained by β̂(ŵ) =
∑Sn

s=1 ŵsΠ(s)β̂(s), similar

to Hansen (2007)’s model averaging estimator. Since no standard inference the-

ories are available for the optimal model averaging estimates, we provide 99%

bootstrap confidence intervals for the model averaging estimates. The confidence

intervals of AIC and BIC were computed with the selected model based on The-

orem 4 of Speckman (1988), ignoring the uncertainty in the selection procedure.

The domestic stock return has the strongest negative association with the change

in sovereign CDS spreads, as in the linear model; however, compared to the linear

models, the estimated effect of the US treasury yield is weak and less significant

in the PLMs.

To check whether our empirical results are sensitive to the predetermination

of nonlinear covariates, we did estimation and prediction (discussed in the next
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section) under different specifications of nonlinear covariates. The results are

generally quite robust.

4.3. Out-of-sample prediction

We examined the pseudo out-of-sample predicability of Japan’s CDS spreads

using six alternative methods: three model averaging methods (MAPLM, SAIC,

and SBIC) and two model selection methods (AIC and BIC) for the partially

linear models, and one linear model averaging method.

The linear model averaging is based on HRCp, as above. It considers candi-

date models with at least one determinant included, so it averages over 26−1 can-

didate models. For PLM averaging, the most general specification is to consider

all possibilities, a determinant can be in the linear component, in the nonlinear

component, or not in the model. This can bring in a dimensionality problem

by including too many determinants in the nonlinear component. We assigned

determinants to the nonlinear component only when necessary. Based on the

PLM discussion in Section 4.2, it seems reasonable to presume a linear relation-

ship between Japan’s CDS spreads and the global default risk premium and the

domestic stock market return and its volatility. It is also clear that the foreign

exchange rate and global stock returns have a nonlinear impact on Japan’s CDS

spread; thus it is necessary to include these two determinants in the nonlinear

component when they are included in the model. As for the US treasury yield,

since its effect only exhibits a moderate degree of nonlinearity and the formal

linearity test is not informative, we are less certain whether to assign this variable

to the linear or nonlinear component. Allowing this ambiguous determinant to

enter the nonlinear component leads to a more complete model space but may

cause extra difficulties. There is no a priori knowledge of how to make an ap-

propriate tradeoff between a more complete model space and the dimensionality

curse. Therefore, we compared the prediction performance of six methods in two

scenarios. In Scenario I, we allowed only the foreign exchange rate and global

stock return to be in the nonlinear component. Thus, the foreign exchange rate

and global stock return can either not be included in the model or be in the

nonlinear component of the model. The remaining determinants are either not

in the model or in the linear component. Scenario II differs from Scenario I in

that we also allowed the US treasury yield to enter the nonlinear component,

resulting in three possibilities for the uncertain determinant of the US treasury

yield: not included in the model, included in the linear component, or included

in the nonlinear component. We split the sample into two sub-samples, one for
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Table 4. Mean square prediction error of Japan’s CDS spreads.

Prediction sample MAPLM SAIC SBIC AIC BIC
Scenario I 5% 0.8608 0.9360 0.9278 0.9403 0.9253

10% 0.8490 1.0162 1.0181 1.0256 1.0190
15% 0.9708 1.0950 1.0830 1.1007 1.1106
20% 0.9927 1.0933 1.1111 1.0751 1.1107

Scenario II 5% 0.8865 0.9723 0.9264 0.9673 0.9253
10% 0.7903 0.9410 1.0175 0.9308 1.0190
15% 0.8119 0.9814 0.8542 0.9652 0.7770
20% 0.8697 0.9695 1.1073 0.9530 1.1107

estimation and the other for prediction and evaluation. We considered estima-

tion samples varying from 80% to 95% of the whole period; thus the prediction

sample ranged from 20% to 5% correspondingly.

Table 4 presents the mean square prediction error (MSPE) of five PLM

methods. All values are normalized by dividing by the MSPE of the linear model

averaging method. Our MAPLM produces the lowest MSPE for all prediction

samples in Scenario I. In Scenario II, MAPLM is the best in most cases, except

when the prediction sample is 15%. In all cases, MAPLM outperforms the linear

Mallows averaging, demonstrating that incorporating the necessary nonlinearity

improves the prediction performance. Since the performance of linear model av-

eraging is invariant to the scenario, we can also compare the predictability of

MAPLM in the two scenarios. Interestingly, we observe that allowing the US

treasury yield to enter the nonlinear component improves the prediction perfor-

mance for all methods when the prediction sample is larger than 5%. However,

when we have a small prediction sample, a smaller model space is better. Av-

eraging over a larger model space may offset the additional noise by better di-

versification. When the prediction sample is large, the diversification gain from

averaging over a larger model space is substantial and dominates the estimation

inaccuracy. This is not the case when the prediction sample is small because the

predicted values obtained from different candidate models are more accurate and

more similar to each other; thus, the diversification gain is smaller.

5. Concluding Remarks

At least three issues deserve future research. First, the computational bur-

den of our method would be substantial when the number of candidate models

is large; therefore, a model screening step prior to model averaging is desirable.

Second, although the dimension ps is allowed to increase with the sample size
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n, it must be smaller than n and its increasing rate is restricted by the second

part of Condition 6. How to develop an optimal model averaging method for

high- or ultrahigh-dimensional PLMs is an interesting open question. Finally,

if the research interest is to consistently estimate the linear and/or nonlinear

component rather than to make predictions, a consistent model averaging esti-

mator and post-model-averaging inference are desired. See, for example, Hjort

and Claeskens (2003), Zhang and Liang (2011) and Xu, Wang and Huang (2014).

In these studies, a crucial assumption of local misspecification is required, and

the weights also need to have an explicit form. By contrast, we do not utilize

the local misspecification framework, and our weight estimates do not have an

explicit form. The development of model averaging estimators for the linear

and nonlinear components without local misspecification and analytical weights

warrants further investigation.

Supplementary Materials

OnlineSupp.pdf describes the technical proofs and provides more explana-

tions on the conditions, additional simulation studies, as well as additional figures

and tables for the empirical application.
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