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Abstract: Various estimators have been proposed to estimate conditional expectiles,

including those from multiple linear expectile regression, local polynomial expectile

regression, boosted expectile regression, and so on. It is a common practice that

several plausible candidate estimators are fitted and a final estimator is selected

from the candidate list. In this article, we advocate the use of an exponential

weighting scheme to adaptively aggregate the candidate estimators into a final esti-

mator. We show oracle inequalities for the aggregated estimator. Simulations and

data examples demonstrate that the aggregated estimator could have substantial

gain in accuracy under both squared and asymmetric squared errors.
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1. Introduction

Expectiles (Newey and Powell (1987)) are informative location measures of

probability distributions. For each τ ∈ (0, 1), the τth expectile of a probability

distribution F is the quantity eτ that satisfies∫ eτ

−∞
|x− eτ | dF (x) = τ

∫ ∞
−∞
|x− eτ |dF (x). (1.1)

Let Eτ be the expectile operator at level τ such that Eτ (F ) = eτ . For any random

variable Y ∼ F, we write Eτ (Y ) = Eτ (F ). It can be shown that the 0.5th expectile

coincides with the mean, E0.5(F ) =
∫∞
−∞ x dF (x), and moreover, all the expectiles

exist as long as the mean is finite. Expectiles have a clear financial meaning:

Eτ (F ) is the amount of money that should be added to a position in order to

have a pre-specified gain-loss ratio (Bernardo and Ledoit (2000)). Specifically,

suppose Y ∼ F and let x+ = max(x, 0) and x− = max(−x, 0). From (1.1), one

has
E(Y − eτ )+
E(Y − eτ )−

=
1− τ
τ

, (1.2)
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where E(Y − eτ )+ and E(Y − eτ )− can be interpreted as the expected mag-

nitudes of the gain and loss, respectively, and (1 − τ)/τ the targeted gain-

loss ratio. When
∫∞
−∞ x

2 dF (x) < ∞, expectiles can be obtained via Eτ (F ) =

arg mina∈R
∫∞
−∞Ψτ (x − a) dF (x), where Ψτ (u) = |τ − I(u < 0)|u2 is the asym-

metric squared error loss and I(·) represents the indicator function. The special

role of expectiles in risk management has been recognized by many researchers

recently (Kuan, Yeh and Hsu (2009); Taylor (2008); Bellini et al. (2014); Bellini

and Di Bernardino (2017)). In risk management, Value at Risk (VaR) and ex-

pected shortfall (ES) are the two most popular risk measures in use. However,

VaR lacks the desired property of coherence (Artzner et al. (1999)). Specifically,

VaR is not sub-additive, which contradicts the diversification principle that merg-

ing portfolios together should reduce the risk. ES is coherent (Acerbi and Tasche

(2002)), but nevertheless fails to enjoy elicitability (Gneiting (2011)), another

desired property of risk measures for which meaningful point forecasts and fore-

cast performance comparisons are possible. Expectiles are the only risk measure

that is both coherent and elicitable (Ziegel (2016); Bellini and Bignozzi (2015)).

Expectile regression estimates the conditional expectiles of a response vari-

able given a set of covariates and is a useful extension to mean regression. It has

been widely applied to finance, demography, and education; see Taylor (2008);

Schnabel and Eilers (2009a); Sobotka et al. (2013b). Since its advent (Aigner

et al. (1976)), a variety of expectile regression methods have been proposed. Mul-

tiple linear expectile regression was systematically studied in Newey and Powell

(1987). Nonparametric and semi-parametric expectile estimation methods have

also been considered in the literature to allow for more flexibility. Among oth-

ers, Yao and Tong (1996) provided kernel smoothing estimators of the condi-

tional expectiles based on local polynomial regression. Their work was extended

by Guo and Härdle (2012), where simultaneous confidence bands were established

for the expectile functions. A nonparametric expectile estimation method based

on spline smoothing was introduced in Schnabel and Eilers (2009b) and, similar

to that, Sobotka et al. (2013a) proposed a semi-parametric expectile estimation

approach using splines. Yang and Zou (2015) proposed a nonparametric multi-

ple expectile regression method using gradient boosting with regression tree base

learners.

With the availability of various expectile regression methods, a practical

problem is to choose the right method for the data at hand. The topic of model

selection in the context of mean regression has been heavily studied in the litera-

ture. For example, much work has been devoted to the so-called model selection
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information criteria such as AIC (Akaike (1974)) and BIC (Schwarz (1978)). To

our knowledge, there is no AIC- or BIC-like model selection criterion for expec-

tile regression that has been justified theoretically. Moreover, these information

criteria are often not applicable when comparing a parametric model with a

nonparametric alternative. As such, cross-validation has been widely applied

in practice and can be used in the context of expectile regression. The model

selection process by information criteria or cross-validation is always stochas-

tic. Consequently, the uncertainty in model selection is inherently a part of the

stochastic error in the final chosen model. When the model selection uncertainty

is large, the selected model tends to suffer.

When several plausible expectile regression estimators are available, instead

of trying to select the best one, a good alternative approach is aggregation. In

the literature, this idea is also known as model averaging or model combining.

There are multiple ways to do aggregation. One popular approach is the Bayesian

model averaging. We refer the interested readers to a review article by Hoeting

et al. (1999) on Bayesian model averaging. In this article, we take an exponen-

tial weighting scheme to combine different expectile regression estimators. Our

estimator is a weighted average of these candidate estimators and the weight of

each candidate estimator is inversely proportional to the exponential of its cu-

mulative empirical prediction risk. Such an exponential weighting scheme has

a solid information-theoretic justification in the context of conditional mean re-

gression. See, for example, Yang (2001, 2004) and Catoni and Picard (2004).

We prove an oracle inequality for the aggregated expectile regression estimator

by exponential weighting in terms of both prediction risk and squared error risk.

The theory implies that the aggregated expectile regression estimator at least be-

haves like the best candidate expectile regression estimator. We further compare

the aggregated estimator and the cross-validated estimator by extensive simula-

tions. It is shown that the aggregated estimator significantly outperforms the

cross-validated estimator when there is selection uncertainty.

The article is organized as follows. In the next section, we present the ag-

gregated expectile regression estimator and study its theoretical properties. The

applications of the aggregated expectile regression are introduced in Section 3

through several simulation examples. We apply the aggregated expectile regres-

sion to personal computer data and S&P 500 Index data in Section 4. Proofs are

given in the supplementary file.
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2. Aggregated Expectile Regression by Exponential Weighting

2.1. Setup and notation

Consider the standard regression setting with i.i.d. observations (yi,xi),

i = 1, . . . , n, where the xi = (xi1, . . . , xip)
T are p-dimensional covariate vectors

and the yi are scalar responses. Assume these observations are realizations of

the random pair (Y,X), where X = (X1, . . . , Xp) ∈ Rp and Y ∈ R. Let m(x) =

E(Y|X = x) and σ2(x) = var(Y |X = x). Assume both m(X) and σ(X) exist

and σ(X) > 0 almost surely. If ε = (Y −m(X))/σ(X), it follows that E(ε|X) = 0

and var(ε|X) = 1 almost surely. We write Y in terms of X and ε as

Y = m(X) + σ(X)ε. (2.1)

Here (2.1) does not mean that we restrict ourselves to additive models. A model

with multiplicative error, for instance, Y = f(X)ε, can be easily cast into (2.1)

as long as the conditional mean and variance functions of Y given X exist. De-

note the τth conditional expectile by eτ (x) = Eτ (Y |X = x), 0 < τ < 1. The

goal of expectile regression is to estimate eτ (x). For an estimator êτ (x) of the

expectile function eτ (x), the prediction risk and squared error risk of êτ (x) are

EΨτ (Y − êτ (X)) and E(êτ (X)− eτ (X))2, respectively. If the τth conditional ex-

pectile of ε given X is bτ (X), then eτ (X) = m(X) + σ(X)bτ (X). When eτ (x) is

approximately linear in x, the linear expectile regression is expected to perform

quite well. However, when a complicated nonlinear pattern exists in eτ (x), the

linear expectile regression can result in very large bias. As a remedy, nonparamet-

ric expectile regression methods can be used to accommodate the non-linearity.

Of course, nonparametric expectile regression often has higher estimation vari-

ance than the linear expectile regression.

2.2. The aggregation algorithm

Suppose we have a sequence of estimating procedures ∆ = {δj , j ≥ 1}, all

of which can provide estimates of eτ (x). Specifically, let us denote the estimate

of eτ (x) from procedure δj ∈ ∆ fitted on data with sample size n by êτ,j,n(x),

j ≥ 1. We allow the number of procedures to be either finite or countably infinite.

Following Yang (2001), we impose no special assumptions on the procedures:

they can be either model-based or non-model-based. The goal is to construct

an estimating procedure δa by adaptively aggregating this sequence of candidate

estimating procedures in the hope of achieving a small estimation risk. This

aggregation is carried out by Algorithm 1.

In Algorithm 1, n0 is often chosen such that both n0 and n−n0 are of the same



AGGREGATED EXPECTILE REGRESSION 675

Algorithm 1 The aggregated expectile regression by exponential weighting (AEREW)
– Single split.

1. Randomly split the data into two parts. Without loss of generality, denote the two
parts by D(0) = (yi,xi)

n0
i=1 and D(1) = (yi,xi)

n
i=n0+1 respectively, where D(0) is

used for training and D(1) is used for evaluation.

2. For each procedure δj , obtain the estimate êτ,j,n0(xi) of eτ (xi) for every xi ∈ D(1)

based on the training data D(0), n0 + 1 ≤ i ≤ n, j ≥ 1.

3. Set Wj,n0+1 = πj such that πj ≥ 0, j ≥ 1, and
∑∞
j=1 πj = 1. For j ≥ 1 and

n0 + 2 ≤ i ≤ n, calculate the weights

Wj,i =
πj exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j,n0(xk))

}
∑∞
j′=1 πj′ exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j′,n0

(xk))
} .

Obtain the aggregating procedure δa which estimates eτ (x) by

êτ,·,n(x) =

∞∑
j=1

(
n∑

i=n0+1

Wj,i

n− n0

)
êτ,j,n0(x).

order as n. See more discussion in the next subsection. The tuning parameter

λ is a properly chosen constant which controls the effect of the performance of

the candidate estimators on the weights. On one hand, when λ is very small,

Algorithm 1 will assign almost equal weights to the candidate estimators. In the

extreme case λ = 0, Algorithm 1 is merely a simple average of the candidate

estimators. On the other hand, when λ is large enough, Algorithm 1 puts almost

all the weights on the procedure with best performance upon evaluation on D(1).

We comment on the choice of λ in the next subsection.

In Algorithm 1, the weights Wj,i, n0 + 1 ≤ i ≤ n, j ≥ 1, depend on the order

of the observations from the random partition. Multiple splits can be carried

out, as shown in Algorithm 2, to avoid large variance in the weights. From the

computational point of view, these multiple splits can be carried out in parallel

to accelerate the computation. We recommend Algorithm 2 for practical use and,

according to our empirical studies, the algorithm often works quite well when the

number of splits B is taken to be several hundred.

2.3. Oracle inequalities for AEREW

Here we provide oracle inequalities for AEREW in terms of statistical risk
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Algorithm 2 The aggregated expectile regression by exponential weighting (AEREW)
– Multiple splits.

1. Randomly split the data into two parts. Without loss of generality, denote the two
parts by D(0) = (yi,xi)

n0
i=1 and D(1) = (yi,xi)

n
i=n0+1 respectively, where D(0) is

used for training and D(1) is used for evaluation.

2. For each procedure δj , obtain the estimate êτ,j,n0(xi) of eτ (xi) for every xi ∈ D(1)

using the training data D(0) for fitting, n0 + 1 ≤ i ≤ n, j ≥ 1.

3. Set Wj,n0+1 = πj such that πj ≥ 0, j ≥ 1, and
∑∞
j=1 πj = 1. For j ≥ 1 and

n0 + 2 ≤ i ≤ n, calculate the weights

Wj,i =
πj exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j,n0(xk))

}
∑∞
j′=1 πj′ exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j′,n0

(xk))
} .

4. Repeat the above three steps (B−1) more times. Denote the estimates and weights

from the kth random split by ê
(k)
τ,j,n0

(x) and W
(k)
j,i , n0+1 ≤ i ≤ n, j ≥ 1, 1 ≤ k ≤ B,

respectively. Obtain the aggregating procedure δBa which estimates eτ (x) by

êBτ,·,n(x) =

∞∑
j=1

n∑
i=n0+1

B∑
k=1

W
(k)
j,i

B(n− n0)
ê
(k)
τ,j,n0

(x).

bounds under squared and asymmetric squared error losses. We need some no-

tation. Let c = min(τ, 1 − τ) and c̄ = max(τ, 1 − τ). For a random variable Z,

define the sub-exponential norm of Z by ‖Z‖SEXP ≡ supk≥1 k
−1(E|Z|k)1/k. If

‖Z‖SEXP is finite, we call Z a sub-exponential random variable (see, e.g., Ver-

shynin (2010)).

Consider the following conditions.

(C1) With probability one, supi,j |êτ,j,i(X) − eτ (X)| ≤ Aτ and |eτ (X)| ≤ Bτ ,

where Aτ , Bτ ∈ (0,∞) are positive constants depending on τ.

(C2) With probability one, |σ(X)| ≤ C0, where C0 ∈ (0,∞) is a positive constant.

(C3) With probability one, the sub-exponential norm of ε given X is bounded by

a positive constant K ∈ (0,∞).

Let Kτ = 2c̄(K + Bτ ) and Dτ = 4eKτ , where e = exp(1), and let M0(t) =

2 exp(2e2K2
τ t

2) and M2(t) = 16
√

2 exp(4e2K2
τ t

2).

Theorem 1. Under (C1) – (C3), if the tuning parameter λ satisfies
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λ ≤ min

{
1

2C0AτDτ
,

c exp
(
−c̄Aτ (C0Dτ )−1

)
C2
0M2(D

−1
τ ) + 16c̄2AτM0(D

−1
τ )

}
, (2.2)

the risk of the aggregated estimator by AEREW (Algorithm 1 and Algorithm 2

under loss Ψτ satisfies

EΨτ (Y − êτ,·,n(X)) ≤ inf
j≥1

{
log(1/πj)

λ(n− n0)
+ EΨτ (Y − êτ,j,n0

(X))

}
, (2.3)

and the risk of the aggregated estimator under the squared error loss satisfies

E(êτ,·,n(X)− eτ (X))2 ≤ inf
j≥1

{
log(1/πj)

λc(n− n0)
+
c̄

c
E(êτ,j,n0

(X)− eτ (X))2

}
, (2.4)

where (X, Y ) is taken to be a random observation from (2.1) that is independent

of the observations (Xi, Yi)
n
i=1.

Remark 1. Conditions (C1) – (C2) are mild and can be satisfied with high

probability if m(X) and σ2(X) are bounded almost surely. This assumption is

fairly common in related work on aggregation.

Remark 2. The class of sub-exponential random variables covers all random

variables for which the moment generating function exists in a neighborhood of

zero and encompasses common error distributions. As a consequence, condition

(C3) does not restrict the response Y to be bounded; this condition is often

assumed in the machine learning literature for simplicity.

Remark 3. From (2.3), the aggregated estimator achieves a prediction risk that

is smaller than the smallest prediction risk offered by the candidate estimators,

plus an additional risk term. If there are M candidate estimators all of which are

assigned equal prior weights, the extra risk term in (2.3) is log(M)/{λ(n− n0)}.
Although λ has the upper bound as (2.2), it needs a lower bound to make the

extra term log(M)/λ(n− n0) much smaller than EΨτ (Y − eτ (X)). Typically,

EΨτ (Y − êτ,j,n0
(X)) converges to EΨτ (Y − eτ (X)) at rate n−10 for parametric

estimators and at a slower rate than n−10 for nonparametric estimators. So if

one only cares about the absolute prediction risk, then we only need to require

log(M)/λ(n− n0)� 1. If n0 is chosen such that both n0 and n−n0 are of order

n, then as long as λ ≥ O(log(M)) the extra risk term log(M)/λ(n− n0) does not

affect the rate of convergence, and the aggregated estimator by AEREW achieves

the same rate of convergence as the best candidate estimator. We recommend

using max(1, blog(M)c) as the default value for λ. In our numerical experiments

this default choice worked very well and we found the performance of AEREW
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to be insensitive to the choice of λ over a fairly wide range.

2.4. Extension to time series data

We have focused on i.i.d. data but, in practice, time series data are frequently

collected. The aggregation algorithm (Algorithm 1) can be readily modified to

combine expectile estimators from time series data. Specifically, consider a time

series Y1, Y2, . . . and let Xi be the vector of explanatory variables related to Yi at

time i ≥ 1. Our goal is to estimate the conditional expectiles of Yi given Xi and

earlier data Zi−1 = (Yk,Xk)
i−1
k=1. Assume Yi = mi+σiεi, where mi and σ2i are the

conditional mean and variance functions of Yi given Xi = xi and Zi−1 = zi−1,

and εi satisfies E(εi|Xi, Z
i−1) = 0 and var(εi|Xi, Z

i−1) = 1 almost surely. Denote

the τth conditional expectile function of Yi given Xi = xi and Zi−1 = zi−1 by

eτ,i, i ≥ 1. Let êτ,j,i be the estimator of eτ,i from procedure δj ∈ ∆ using data

xi and zi−1, j ≥ 1, i ≥ 1. Algorithm 3 is an algorithm for combining expectile

estimators for time series.

Algorithm 3 The aggregated expectile regression by exponential weighting – Time
series (AEREW-ts).

1. Spare the first n0 observations zn0 = (yi,xi)
n0
i=1 for initial estimation.

2. For i = n0 + 1, . . . , n and procedure δj , j ≥ 1, obtain the estimate êτ,j,i of eτ,i
using data xi and zi−1.

3. Set Λj,n0+1 = πj such that πj ≥ 0, j ≥ 1, and
∑∞
j=1 πj = 1, For j ≥ 1 and

n0 + 2 ≤ i ≤ n, calculate the weights

Λj,i =
πj exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j,k)

}
∑∞
j′=1 πj′ exp

{
−λ
∑i−1
k=n0+1 Ψτ (yk − êτ,j′,k)

} .
Obtain the aggregating procedure δa which estimates eτ,i by

êτ,·,i =

∞∑
j=1

Λj,iêτ,j,i, i ≥ n0 + 1.

We need conditions for the time series case.

(C1’) With probability one, supi,j |êτ,j,i − eτ,i| ≤ Aτ and supi |eτ,i| ≤ Bτ , where

Aτ , Bτ ∈ (0,∞) are positive constants depending on τ.

(C2’) With probability one, |σi| ≤ C0 for all i ≥ 1, where C0 ∈ (0,∞) is a
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positive constant.

(C3’) With probability one, the sub-exponential norm of εi given Xi and Zi−1 is

bounded by a positive constant K ∈ (0,∞) for all i ≥ 1.

Theorem 2. Under (C1’) – (C3’), if the tuning parameter λ satisfies (2.2), the

mean average risk of the aggregated estimator by AEREW-ts (Algorithm 3) under

loss Ψτ satisfies

1

n− n0

n∑
i=n0+1

EΨτ (yi − êτ,·,i)

≤ inf
j≥1

{
log(1/πj)

λ(n− n0)
+

1

n− n0

n∑
i=n0+1

EΨτ (yi − êτ,j,i)

}
,

(2.5)

and the mean average risk of the aggregated estimator under the squared error

loss satisfies

1

n− n0

n∑
i=n0+1

E(êτ,·,i − eτ,i)2

≤ inf
j≥1

{
log(1/πj)

λc(n− n0)
+

c̄/c

n− n0
E(êτ,j,i − eτ,i)2

}
.

(2.6)

3. Applications and Simulation Examples

In this section, we demonstrate several useful applications of aggregation in

expectile regression. These applications are illustrated through two simulation

examples.

3.1. Local expectile regression: bandwidth selection or aggregation?

When there is a single covariate, nonparametric expectile regression can be

done via the local fitting scheme of Yao and Tong (1996). They argued that

the local linear fit automatically corrects the boundary effects inherited from the

local constant fit (see also Fan (1992)) and the estimator of the derivative plays

an important role in monitoring the reliability of non-linear prediction and in

detecting chaos. To be specific, given a random sample (Yi, Xi)
n
i=1, the local

linear estimators of eτ (x) = Eτ (Y |X = x) and e′τ (x) = deτ (x)/dx are defined as(
êτ (x;h), ê′τ (x;h)

)
=

arg min
a,b∈

n∑
i=1

Ψτ (Yi − a− b(Xi − x))
1

h
K

(
Xi − x
h

)
,

(3.1)



680 GU AND ZOU

where K(·) is the kernel density and h > 0 is the bandwidth. Though many kernel

densities are available for the local linear regressions, we choose the Gaussian

kernel K(u) = (2π)−1/2 exp(−u2/2) for illustrative purposes.

The choice of h reflects the trade-off between the bias and variance of the

estimators and has a high impact on the performance of the prediction. The

theoretically optimal bandwidth is h = Cτn
−1/5 where Cτ depends on unknown

quantities (Yao and Tong (1996)). In practice, we can select the bandwidth

through cross-validation. See Heidenreich et al. (2013) for a recent review of

bandwidth selection methods.

Alternatively, we can combine the kernel estimators at different bandwidths.

Specifically, for a sequence of candidate bandwidths h1, . . . , hM , we obtain the

local linear fit êτ (x;hj) for each bandwidth hj , 1 ≤ j ≤ M and combine these

estimators using AEREW.

We illustrate this application through a simulation study. Consider the fol-

lowing heteroscedastic model

Y = 0.5
{
X + 2 exp(−16X2)

}
+
{

0.4 exp(−2X2) + 0.2
}
ε, (3.2)

where the scalar covariate X is independent of the random error ε. Moreover,

suppose X ∼ Uniform(−2, 2) and ε ∼ Laplace(0, 1/
√

2). The density of ε is

fε(u) = exp(−
√

2|u|)/
√

2. Note that ε is a sub-exponential random variable

satisfying E(ε) = 0 and var(ε) = 1. A similar model to (3.2) was considered

in Fan and Yao (1998) under a different error distribution. For the simulation

study, a training set of n = 200 observations was randomly generated from

model (3.2) and local linear regressions (3.1) were fitted to the training data

with five candidate bandwidths h = (0.1, 0.3, 0.5, 0.7, 0.9)× (200)−1/5.

To demonstrate the benefit of aggregation and compare it with cross-validation

in bandwidth selection, we applied a five-fold cross-validation to select the best

bandwidth and combined the five local linear expectile regression estimators us-

ing AEREW (Algorithm 2), for which B = 200 splits were conducted with the

splitting size n0 = 160 and prior weights πj = 1/5, 1 ≤ j ≤ 5. We set λ = 1. To

compare the estimation performance of different procedures, we independently

simulated a test set of n1 = 10,000 observations from model (3.2) and calculated

two performance measures based on the test data. Assume the true expectile

function is eτ (·) and its estimate from a specific procedure is êτ (·). The esti-

mated prediction risk and the estimated squared deviation (MSD) measures for
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êτ (·) are

risk(τ) =
1

n1

n1∑
i=1

Ψτ (Yi − êτ (Xi)), and

MSD(τ) =

√√√√ 1

n1

n1∑
i=1

(êτ (Xi)− eτ (Xi))2.

(3.3)

For model (3.2), the true expectile function was eτ (x) = 0.5{x+2 exp(−16x2)}+

{0.4exp(−2x2)+0.2}bτ , with bτ = Eτ (ε) the τth expectile of the Laplace random

error. The simulations were repeated M = 100 times in this setting. For illus-

trative purposes, we also present the proportion pCV of each candidate estimator

being selected by the five-fold cross-validation among these 100 runs. The results

are summarized in Table 1.

In Table 1, the performance measures were calculated by averaging over the

100 replicates and their respective standard errors are reported in the parenthe-

ses. From Table 1, the optimal bandwidths are different for different expectile

levels. Smaller bandwidths are preferred for expectile levels around 0.5, and for

expectile levels τ close to 0 and 1, slightly larger bandwidths are favored. In

Table 1, AEREW compares quite favorably with the five-fold cross-validation.

Indeed, AEREW outperforms the cross-validation for all expectile levels other

than 0.5 and its performance there is very close to or even better than that of

the best candidate estimator. The cross-validation gives slightly better estima-

tion for the mean function (τ = 0.5) than AEREW, but still AEREW performs

quite well in this case. Thus, when cross-validation is uncertain about the best

estimator (several estimators have reasonably large pCV values), AEREW can

outperform the cross-validated estimator.

3.2. Multiple expectile regression: parametric or nonparametric?

We consider the application of AEREW to multiple expectile regression

where more than one covariate is available. For such models, the local linear

etimator, such as (3.1), is not very useful when there are more than five covari-

ates. In the current toolbox for multidimensional expectile regression, we have

multiple linear expectile regression (Newey and Powell (1987); Efron (1991)) and

regression-tree based nonparametric gradient boosting (Yang and Zou (2015)).

The question is which method to use. It is well known that nonparametric re-

gression is quite flexible to accommodate non-linearity, but loses efficiency when

the linear parametric model is correctly specified. In the case of expectile regres-
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Table 1. Estimated prediction risks and MSDs of local linear regressions with five candi-
date bandwidths, the five-fold cross-validated kernel estimator, and AEREW (λ = 1) for
the heteroscedastic model (3.2). The numbers listed are averages over 100 independent
runs with their respective standard errors reported in the parentheses. The proportion
of each candidate estimator being selected by the five-fold cross-validation among these
100 runs is reported by pCV. All numbers are of order 10−2 except those corresponding
to pCV.

Bandwidth (h)
Cross-validation Aggregation

τ Measures 0.0347 0.104 0.173 0.243 0.312

0.05

risk
3.71 2.98 2.90 2.90 2.92 2.93 2.89

(0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MSD
25.16 16.56 15.11 15.72 16.48 16.03 14.67
(0.31) (0.39) (0.36) (0.30) (0.25) (0.33) (0.32)

pCV 0.00 0.23 0.23 0.12 0.42 – –

0.10

risk
4.98 4.13 4.06 4.12 4.20 4.17 4.07

(0.06) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)

MSD
22.30 13.93 13.05 14.42 15.83 14.49 13.04
(0.39) (0.37) (0.31) (0.24) (0.20) (0.40) (0.29)

pCV 0.03 0.34 0.28 0.14 0.21 – –

0.25

risk
6.69 5.82 5.85 6.05 6.26 5.88 5.86

(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD
17.60 10.22 10.71 13.10 15.25 10.99 10.84
(0.39) (0.22) (0.20) (0.18) (0.16) (0.29) (0.21)

pCV 0.00 0.41 0.46 0.03 0.10 – –

0.50

risk
7.63 6.72 6.78 7.04 7.37 6.78 6.81

(0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD
16.05 8.96 9.58 12.10 14.55 9.54 9.92
(0.32) (0.23) (0.21) (0.17) (0.15) (0.25) (0.22)

pCV 0.00 0.54 0.42 0.03 0.01 – –

0.75

risk
6.76 5.88 5.92 6.13 6.41 5.96 5.94

(0.10) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03)

MSD
17.62 10.23 10.61 12.77 15.04 10.90 10.81
(0.51) (0.25) (0.23) (0.19) (0.16) (0.29) (0.23)

pCV 0.01 0.43 0.42 0.12 0.02 – –

0.90

risk
4.98 4.17 4.09 4.16 4.31 4.15 4.10

(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD
22.51 14.47 13.08 14.26 16.18 14.02 13.26
(0.35) (0.36) (0.32) (0.26) (0.20) (0.32) (0.31)

pCV 0.02 0.26 0.42 0.20 0.10 – –

0.95

risk
3.87 3.08 2.97 3.00 3.08 3.04 2.99

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD
26.78 18.41 16.18 16.62 18.20 17.37 16.16
(0.34) (0.45) (0.46) (0.43) (0.38) (0.45) (0.42)

pCV 0.00 0.29 0.30 0.25 0.16 – –

sion, when linear and nonlinear effects coexist in an underlying model, it is also

possible that the expectile function is nearly linear at certain expectile levels and

becomes highly nonlinear at other levels. When multiple expectile levels need
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to be inspected together, it is beneficial to consider adaptively aggregating both

parametric and nonparametric methods for better estimation.

As an illustration, consider the heteroscedastic model with multiple covari-

ates,

Y = XTβ + 2εexp(−0.35X2 − 1.1X4), (3.4)

where β = (1.5, 2.5, 1.0, 0.5, 2.0, 1.5)T, X = (X1, . . . , X6)
T ∼ N(0, I6), ε ∼

N(0, 1) and X is independent of ε. The true expectile function in this model

is XTβ + 2bτ exp(−0.35X2 − 1.1X4), where bτ is the τth expectile of N(0, 1).

Intuitively, for some expectile levels (such as those near 0.5), the performance of

parametric estimators may dominate that of nonparametric estimators, while the

opposite is true at the other expectile levels (such as those with large or small τ

values).

For the simulation study, we considered three candidate estimators. The

multiple linear expectile regression and nonparametric multiple expectile regres-

sion via gradient boosting arise as the two natural candidates. For illustrative

purposes, we also considered a slightly more complicated version of the linear ex-

pectile regression by including an additional interaction term between X2 and X4

besides the main effects X1, . . . , X6. We included such a linear interaction model

because we expect it to improve the estimation accuracy of the conditional ex-

pectiles at some levels. The simulations were repeated M = 100 times. For each

simulation, we first generated a training set of n = 500 observations and applied

the three aforementioned candidate estimators, plus a five-fold cross-validation

to select the best procedure, as well as an aggregation of the candidate esti-

mators using AEREW (Algorithm 2) to obtain the estimates. In AEREW, the

weights were averaged over B = 200 splits with split size n0 = 400 and equal

prior weights were assigned for the three candidate estimators for each split. We

set λ = 1. The estimated prediction risks and MSDs of (3.3) are reported in

Table 2 for independent test sets of n1 = 10,000 observations from model (3.4).

We also include the proportion pCV of each candidate estimator being selected

by cross-validation among the 100 independent simulations.

From Table 2, none of the three candidate estimator is universally better than

the others for all expectile levels. Indeed, when τ is in the middle of its range

(around 0.5), the linear expectile regression with only main effects compares fa-

vorably with the other two procedures. This is expected since the true expectile

function is mainly linear. For extreme expectile levels (τ away from 0.5), the

linear expectile regression with interaction and the gradient boosting outperform
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Table 2. Estimated prediction risks, MSDs and their respective standard errors (in
parentheses) of the linear expectile regression with only main effects, linear expectile
regression with interaction, nonparametric expectile regression via boosting, the five-
fold cross-validation and AEREW (λ = 1) for the heteroscedastic model (3.4) over 100
independent runs. The proportion of each candidate estimator being selected by the
cross-validation is summarized by pCV.

Individual
Cross-validation Aggregation

τ Measures Linear Interaction Boosting

0.05

Risk
53.58 49.07 53.39 49.56 47.71
(4.20) (4.03) (4.03) (4.06) (3.97)

MSD
12.08 10.88 11.74 10.95 10.39
(0.39) (0.39) (0.30) (0.39) (0.30)

pCV 0.06 0.87 0.07 – –

0.10

Risk
57.71 55.33 60.13 54.91 53.92
(2.86) (2.84) (2.82) (2.76) (2.74)

MSD
8.41 7.74 9.13 7.78 7.59

(0.21) (0.25) (0.20) (0.21) (0.18)
pCV 0.17 0.71 0.12 – –

0.25

Risk
64.87 66.14 69.06 65.86 62.99
(2.40) (3.21) (2.18) (3.20) (2.14)

MSD
4.49 4.44 5.77 4.45 4.14

(0.16) (0.24) (0.15) (0.24) (0.13)
pCV 0.48 0.47 0.05 – –

0.50

Risk
71.20 72.37 76.07 71.84 71.52
(2.41) (2.45) (2.45) (2.44) (2.41)

MSD
1.51 2.01 3.39 1.75 1.67

(0.07) (0.11) (0.10) (0.10) (0.08)
pCV 0.71 0.21 0.08 – –

0.75

Risk
67.78 67.34 70.07 67.62 66.62
(3.23) (3.18) (3.23) (3.19) (3.20)

MSD
4.34 4.18 5.06 4.29 4.07

(0.11) (0.13) (0.11) (0.12) (0.11)
pCV 0.47 0.43 0.10 – –

0.90

Risk
54.98 53.48 53.86 51.44 50.56
(3.26) (3.50) (3.09) (3.03) (3.05)

MSD
8.40 7.78 8.41 7.64 7.46

(0.26) (0.31) (0.17) (0.17) (0.17)
pCV 0.20 0.66 0.14 – –

0.95

Risk
46.76 43.32 45.91 43.83 42.22
(2.93) (2.84) (2.97) (2.95) (2.92)

MSD
11.50 10.40 10.88 10.46 10.00
(0.25) (0.24) (0.22) (0.23) (0.20)

pCV 0.12 0.70 0.18 – –
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the linear expectile regression with main effects only. From the patterns of pCV,

for expectile levels that are close to 0, 1, or 0.5, there is a clear dominating can-

didate estimator that is selected by cross-validation with high probability. For

moderate expectile levels, there are usually two competing candidate estimators

(see, e.g., τ = 0.25 and 0.75). AEREW outperforms the three candidate esti-

mators as well as the cross-validated estimator at all expectile levels. Moreover,

we observe a greater gain by using AEREW for moderate expectile levels when

cross-validation experiences difficulty in selecting a clear winner.

4. Data Examples

4.1. Personal computer data

We applied AEREW to a data set described in Stengos and Zacharias (2006).

It contains monthly price information of personal computers from January 1993

to November 1995 and was analyzed using a hedonic analysis. There are N =

6259 observations with 10 variables. The response variable is Price, and the

hedonic variables Speed, HD, RAM, Screen, CD, Multi, and Premium directly

describe the major hedonic characteristics that make up a computer. The other

two explanatory variables ADs and Trend are not directly related to the personal

computer characteristics, but are believed to be associated with the price (Stengos

and Zacharias (2006)). Therefore, we also included them in our analysis. After

inspecting the data, we decided to take the logarithmic transformation on all

continuous variables except Trend. We considered a hedonic analysis at different

price levels using expectile regression. Three candidate models were considered:

the multiple linear expectile regression with main effects only, the linear expectile

regression with main effects and two-way interactions, and the nonparametric

approach via boosting. We applied a five-fold cross-validation to select the best

procedure among the three candidates. Finally, we used AEREW to aggregate

the three candidate models.

For the analysis, we randomly sampled n = 3,129 observations from the

data to form a training set, on which the three candidate estimators were fitted

and a five-fold cross-validation was applied to select the best procedure. To

aggregate the candidate estimators through AEREW (Algorithm 2), we averaged

the weights over B = 200 splits with split size n0 = 2,503. Equal prior weights

were assigned and λ = 1 was set. The prediction risks (3.3), of the procedures,

were evaluated on the remaining n1 = 3,130 observations. This procedure was

repeated M = 100 times and the results are summarized in Table 3 and Figure
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Table 3. Estimated prediction risks of the linear expectile regression with main effects
only, the augmented linear expectile regression with interactions, the nonparametric
expectile regression via boosting, the five-fold cross-validation, and AEREW (λ = 1)
for the personal computer data. The measures are averaged over 100 random splits
of the data and their corresponding standard errors are included in the parentheses.
Proportions the candidate estimators being selected by the cross-validation are given by
pCV. All numbers are of order 10−3 except those corresponding to pCV.

Individual
Cross-validation Aggregation

τ Measure Linear Interaction Boosting

0.05
risk

2.074 1.905 2.066 1.905 1.787
(0.005) (0.005) (0.009) (0.005) (0.005)

pCV 0.00 1.00 0.00 – –

0.10
risk

3.327 3.069 3.046 3.065 2.778
(0.007) (0.006) (0.012) (0.009) (0.007)

pCV 0.00 0.53 0.47 – –

0.25
risk

5.634 5.166 4.733 4.733 4.519
(0.010) (0.009) (0.015) (0.015) (0.011)

pCV 0.00 0.00 1.00 – –

0.50
risk

6.973 6.294 5.558 5.558 5.427
(0.011) (0.010) (0.017) (0.017) (0.011)

pCV 0.00 0.00 1.00 – –

0.75
risk

5.946 5.236 4.721 4.721 4.581
(0.012) (0.010) (0.018) (0.018) (0.012)

pCV 0.00 0.00 1.00 – –

0.90
risk

3.728 3.203 3.066 3.086 2.896
(0.009) (0.007) (0.012) (0.013) (0.009)

pCV 0.00 0.13 0.87 – –

0.95
risk

2.436 2.070 2.126 2.071 1.916
(0.005) (0.005) (0.010) (0.006) (0.006)

pCV 0.00 0.91 0.09 – –

1. The proportions of the candidate estimators being selected by the five-fold

cross-validation are reported by pCV.

From Table 3 and Figure 1, at all expectile levels, the linear expectile re-

gression with interactions outperforms the linear expectile regression with main

effects only. The boosting estimator performs better for expectile levels in the

middle range, while the linear expectile regression with interactions is better for

extreme expectile levels. At the 0.10 level, boosting and the linear model with

interactions are comparable. This can be seen from the values of pCV. It is

clear that if we consider multiple expectile levels, there is no clear winner among

the candidate estimators. Here AEREW gives smaller prediction errors than all

candidates and the cross-validated estimator at all expectile levels in Table 3.
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Figure 1. Estimated prediction risks of the linear expectile regression with main effects
only, the augmented linear expectile regression with interactions, the nonparametric
expectile regression via gradient boosting, the five-fold cross-validation, and AEREW
(λ = 1) based on 100 independent runs for the personal computer data. On the x-axis
of each boxplot, “L” represents the linear expectile regression with main effects only, “I”
denotes the augmented linear expectile regression with interactions, and “B” stands for
the nonparametric expectile regression via gradient boosting. Each boxplot summarizes
the results for one expectile level τ ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}.

4.2. S&P 500 data

We demonstrate the application of the AEREW-ts algorithm in risk man-

agement through the S&P 500 data and show how the estimation performance of

conditional expectiles can be improved from combining several candidate models.



688 GU AND ZOU

In the financial markets, the expectiles are closely related to gain-loss ratios (1.2).

For example, theoretically, the corresponding gain-loss ratios of expectiles at lev-

els τ = 0.01, 0.05, and 0.10 are respectively, 99, 19 and 9. In our analysis, we

examined both estimation risks (in terms of the asymmetric squared error) and

realized gain-loss ratios of the estimated expectile functions. Two portfolios un-

der consideration were represented by the S&P 500 Index from October 14, 2008

to October 8, 2010 and from October 8, 2010 to May 1, 2017. In our analysis

we looked at the logarithmic returns of the two portfolios, that correspond to

time series containing, respectively, n = 500 and n′ = 1,650 trading days. The

candidates were the historical method which uses the sample expectile of the

most recent 100 observations to predict the conditional expectile of the current

observation (HS100), the linear expectile regression with a lag of 20 observa-

tions (Linear), and the boosted expectile regression with a lag of 20 observations

(Boosting). The linear and boosted expectile regression models can be cast as

Eτ (yt|yi, i < t) = f(yt−1, yt−2, . . . , yt−20), where f takes a linear or complicated

(nonparametric) form. We took n0 = 100 and applied the AEREW-ts algorithm

to aggregate the three candidate models using each of the time series separately.

The results are summarized in Table 4. Since in practice large gain-loss ratios

are of main interest, the levels τ = 0.01, 0.05, and 0.10 were considered.

For the first series, the linear expectile regression with lag 20 has the lowest

estimation risks among the candidates, while HS100 achieves the highest gain-

loss ratios. For the second series, the boosted expectile regression with lag 20 is

best in terms of both estimation risk and achieved gain-loss ratio. Thus, there is

no universally best method among the three candidates.

The AEREW-ts algorithm gives similar results under different λ values. This

observation is consistent with our findings in the simulation studies (more details

can be found in the supplementary file).

AEREW-ts achieves gain-loss ratios that are above the nominal levels in all

settings, while at the same time it maintains very small estimation risks. This

demonstrates the adaptivity of AEREW-ts to the best candidate and can even

have performance improvement over the best candidate. For time series data, it

is not very straightforward to use cross-validation, but our aggregation algorithm

can be readily applied.

5. Discussion

We discuss the connection and the difference between the aggregation pro-
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Table 4. Estimation risks and realized gain-loss ratios (G/L) of the linear expectile
regression with lag 20, the boosted expectile regression with lag 20, the historical method
and AEREW-ts (λ = 0.1, 1, 10) for the S&P 500 data.

Individual Aggregation (λ)
τ Measure Linear Boosting HS100 0.1 1 10

Series 1
0.01 Risk 0.88 0.97 1.41 0.98 0.98 0.98

G/L 99.00 80.41 147.51 135.04 135.02 134.81
0.05 Risk 3.06 3.29 3.97 3.22 3.22 3.22

G/L 19.00 17.03 29.39 23.05 23.05 23.00
0.10 Risk 4.72 5.08 5.70 4.92 4.92 4.91

G/L 9.00 7.87 13.28 10.22 10.22 10.20
Series 2

0.01 Risk 0.65 0.76 0.85 0.66 0.66 0.66
G/L 99.00 115.99 75.31 123.06 123.07 123.15

0.05 Risk 1.78 1.67 2.01 1.70 1.70 1.70
G/L 19.00 20.81 18.28 20.88 20.88 20.89

0.10 Risk 2.57 2.52 2.80 2.52 2.52 2.52
G/L 9.00 9.67 8.87 9.47 9.47 9.48

cedure considered here and those in Shan and Yang (2009) and Dalalyan and

Tsybakov (2007). Shan and Yang (2009) focuses on the aggregation of quantile

regression models, employing an asymmetric loss (the check loss). Both expectile

regression and quantile regression have important applications in risk manage-

ment. The expectile loss is strongly convex, while the check loss is not. We

could provide risk bounds under the squared error, but it is hard to do so for

quantile regression aggregation. Moreover, in the oracle inequality of Shan and

Yang (2009), the remainder term is of order (n− n0)−1/2, while the one in ours

is of order (n− n0)−1.
By setting τ = 0.5 in Theorem 1, we get similar risk bounds to those in The-

orem 2 of Dalalyan and Tsybakov (2007). The candidate procedures in Dalalyan

and Tsybakov (2007) are assumed to be deterministic and differ from our aggre-

gation procedure that can fit arbitrary models using training data, hence allowing

stochastic candidates.



690 GU AND ZOU

Supplementary Materials

The supplementary file contains proofs of the theorems and additional nu-

merical studies.
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