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Abstract: A restrictive assumption in change point analysis is “stationarity under

the null hypothesis of no change-point”, which is crucial for asymptotic theory but

not very realistic from a practical point of view. For example, if change point

analysis for correlations is performed, it is not necessarily clear that the mean,

marginal variance or higher order moments are constant, even if there is no change

in the correlation. This paper develops change point analysis for the correlation

structures under less restrictive assumptions. In contrast to previous work, our

approach does not require that the mean, variance and fourth order joint cumulants

are constant under the null hypothesis. Moreover, we also address the problem of

detecting relevant change points.
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1. Introduction

Change point analysis is a well studied subject in the statistical and econo-

metric literature. Since the seminal work on detecting structural breaks in the

mean of Page (1954) a powerful methodology has been developed to detect vari-

ous types of change points in time series (see for example Aue and Horváth (2013)

and Jandhyala et al. (2013) for recent reviews of the literature). Several authors

have argued that, in applications, besides the mean the detection of changes in

the variance or the correlation structure of a time series is of importance. Typ-

ical examples include the discrimination between stages of high and low asset

volatility or the detection of changes in the parameters of an AR(p) model in

order to obtain superior forecasting procedures. Wichern, Miller and Hsu (1976)

studied the change point problem for the variance in a first order autoregres-

sive model. These authors pointed out that - even if log-return data exhibits a

stationary behavior in the mean - the variability is often not constant and as a

consequence any conclusions based on the assumption of homoscedasticity could

be misleading. Abraham and Wei (1984) and Baufays and Rasson (1985) used a
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Bayesian and an ML approach to find change points in AR-models. Inclán and

Tiao (1994) proposed a nonparametric CUSUM-type test for changes in the vari-

ance of an independent identically distributed sequence and Lee and Park (2001)

derived corresponding results applicable to linear processes (see also Chen and

Gupta (1997) who used the Schwarz information criterion. Galeano and Peña

(2007) and Aue et al. (2009) suggested nonparametric tests for structural breaks

in the variance matrix of a multivariate time series. There exist also several

papers discusssing change point analysis in the second order structure of a time

series. For example, Berkes, Gombay and Horvath (2009) and Killick, Eckley

and Jonathan (2013) considered the more classical problem of a change point

in a correlation at fixed lag. Davis, Lee and Rodriguez-Yam (2006) and Preuss,

Puchstein and Dette (2015) proposed methods for detecting multiple breaks in

piecewise stationary processes.

This list of references is by no means complete but an important and common

feature of the cited references and most of the literature on testing for structural

breaks in the covariance or correlation structure (at different lags) consists in the

fact that the model is formulated such that the stochastic process under the null

hypothesis of “no change-point” is stationary. This assumption is crucial to derive

(asymptotic) critical values for the corresponding testing procedures using strong

approximations or invariance principles. On the other hand this assumption

drastically restricts the applicability of the methodology. For example, Inclán

and Tiao (1994) and Aue et al. (2009) assume for the construction of a testing

procedure for the hypothesis for change point in the variance that the mean

of the sequence under consideration does not change in time (as the variance

under the null hypothesis). A similar assumption was made by Wied, Krämer

and Dehling (2012) in the context of testing for a constant correlation, where

the authors suggested a CUSUM-type statistic for a change in the correlation

of a stationary time series if at the same time the means and variances do not

change. However, from a practical point of view, assumptions of this type are

very restrictive and there might be many situations where one is interested in a

change of the correlation even if the mean and the variances change gradually in

time. In this case the classical approach is not applicable.

The present paper is devoted to the construction of change point tests for the

second-order characteristics of a non-stationary time series, in particular changes

in the lag-k correlation. In Section 2 we introduce piecewise locally stationary

processes as considered by Zhou (2013) who investigated the properties of the

classical CUSUM test for the mean under non-stationarity. Section 3 is devoted
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to the “classical” change point problem for a (vector) of correlations at different

lags in a piecewise locally stationary process. In the simplest case of one lag-1

autocorrelation, say ρi = Corr(Xi, Xi+1) the hypothesis can be formulated as

H0 : ρi = ρj for all i, j = 1, . . . , n versus H1 : ρi 6= ρj for some i 6= j. (1.1)

We propose a CUSUM approach based on nonparametric residuals and prove

weak convergence of the corresponding CUSUM statistic. It turns out that the

limiting distribution depends in a complicated way on the dependence structure

of the piecewise locally stationary process, and for this reason a wild bootstrap

approach is developed and its consistency is proved. The methodology is very

general and applicable in many situations where the assumptions of classical tests

are not satisfied. In particular, we neither assume that the mean, variance or

higher order joint cumulants of the non-stationary sequence are constant nor that

the change in the variance and the lag-k correlation occur at the same location.

Furthermore, we show that the stochastic errors produced in the nonparametric

estimation of the mean and variance function are asymptotically negligible in

the second-order CUSUM statistic. This result is of particular interest, and non-

trivial because the order of the stochastic errors of the nonparametric estimates

is larger than the 1/
√
n convergence rate of the CUSUM test.

The situation is more complicated if one is interested in such sophisticated

hypotheses as precise hypotheses (see Berger and Delampady (1987)). Here (in

the simplest case) one assumes the existence of a change point k ∈ {1, . . . , n}
such that

v1 = ρ1 = · · · = ρk 6= v2 = ρk+1 = · · · = ρn, (1.2)

and is interested in hypotheses of the form

H0 : ∆ := |v2 − v1| ≤ δ versus H1 : ∆ := |v2 − v1| > δ (1.3)

for some pre-specified constant δ > 0. Throughout this paper we call hypothe-

ses of the form (1.1) “classical” in order to distinguish these from the precise

hypotheses of the form (1.3). Although hypotheses of the form (1.3) have been

discussed in other fields (see Chow and Liu (1992) and McBride (1999)) the

problem of testing precise hypotheses has only recently been considered by Dette

and Wied (2016) in the context of change point analysis. These authors point

out that in many cases a modification of the statistical analysis might not be

necessary if a change point has been identified but the difference between the

parameters before and after the change-point is rather small. In particular, in-

ference might be robust under “small” changes of the parameters and changing
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decisions (such as trading strategies or modifying a manufacturing process) are

expensive and should therefore only be performed if changes have serious con-

sequences. Testing a hypothesis of the form (1.3) to detect a structural break

also avoids the consistency problem mentioned in Berkson (1938): any test will

detect negligible changes in the parameter if the sample size is sufficiently large.

Dette and Wied (2016) call the hypotheses of the form (1.3) hypotheses of a non-

relevant (null hypothesis) and relevant change point (alternative) and, according

to their argumentation, only relevant change points should be detected, because

one has to distinguish scientific from statistical significance.

Although the testing problem in the form (1.3) is appealing, the construction

of corresponding tests faces several mathematical challenges. In particular, even

under the null hypothesis of a non-relevant change point one has to deal with

the problem of non-stationarity. For example, Dette and Wied (2016) developed

a CUSUM-type test for the hypotheses in (1.3) which is only applicable under

the assumption that the time series before and after the change point is strictly

stationary. In the context of change point analysis for correlations this means

that the mean and the variances of the process have to be constant before and

after the change point. From a practical point of view this assumption seems to

be very strong and not very realistic.

Section 4 is devoted to the problem of testing the hypothesis of a non-relevant

change in the several correlations at different lags. We use the CUSUM approach

proposed in Dette and Wied (2016) to obtain a test for the hypothesis (1.3)

and its analogue in the case of lag-k correlations. Asymptotic normality of a

corresponding L2-type statistic is established and a wild bootstrap method is

developed that addresses the particular structure of the hypotheses in relevant

change point analysis. To our best knowledge resampling procedures for this type

of change point analysis in non-stationary nonparametric problems have not been

considered in the literature. The finite sample properties of the new procedures

are investigated by means of a simulation study in Section 5. In Section 6 we

analyze the USD/CAD exchange rate series and illustrate the usefulness of the

proposed methodology in identifying second order change points in modeling

volatilities. All proofs and technical details are deferred to an online supplement

(see also Dette, Wu and Zhou (2015)).

2. Piecewise Locally Stationary Processes

We start writing some notations of frequent use. For an l-dimensional (ran-

dom) vector v = (v1, . . . , vl), l ≥ 1, let |v| = (
∑l

i=1 v
2
i )

1/2. A random vector
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V is said to be in Lq, q > 0, if E(|V|q) < ∞. In this case write ‖V‖q =

(E|V|q)1/q, and ‖V‖ = ‖V‖2. The symbol
D−→ means weak convergence of real-

valued random variables (convergence in distribution). For any interval I ⊂ R
and nonnegative integer q let Cq(I) be the set of q times continuously differen-

tiable functions f : I → R and C(I) = C0(I). Let {εi}i∈Z denote a sequence

of independent identically distributed (i.i.d.) random variables and denote by

Fi = σ(. . . , ε0, . . . , εi−1εi) the sigma field generated by {εj |j ≤ i}. We define

the sigma field F (j)
i = σ(. . . , εj−1ε

′
jεj+1, . . . , εi), where {ε′i}i∈Z is an independent

copy of {εi}i∈Z, and F∗i = F (0)
i for short. For any real number a, write bac be the

largest integer which ≤ a. Let 1(·) be the indicator function, sign(·) be the usual

sign function, such that sign(x) = 1(x ≥ 0) − 1(x < 0). Define 0/0 = 1. Let

a ∧ b denote min(a, b) for a, b ∈ R. Through out the paper we consider the case

that type I error α ≤ 0.05. We discuss autocorrelation in the rest of the paper,

and use the term “correlation” for “autocorrelation” for short. Our method can

be applied to cross correlation without further difficulty.

We consider the model

Yi = µ(ti) + ei, i = 1, . . . , n, (2.1)

where (for the sake of simplicity) ti = i/n (i = 1, . . . , n) and µ(·) is a smooth

function. Formally {Yi}ni=1 is a triangular array of random variables but we do

not reflect this fact in our notation. Change point problems for this model have

found considerable attention in the recent literature, where most of the work

refers to problems of detecting changes of the mean in the situation of centered

and independent identically distributed (i.i.d.) errors (even assumed to be Gaus-

sian in some cases) (see Müller (1992) for an early reference and Mallik et al.

(2011) and Mallik, Banerjee and Sen (2013) for more recent references). Vogt

and Dette (2015) proposed a generalized CUSUM approach to detect gradual

changes in model (2.1) using a different concept of local stationarity (see Vogt

(2012)).

In the present paper we consider non-stationary processes of the form (2.1)

and are interested in identifying abrupt changes in the correlations. More pre-

cisely we consider an error process {ei}ni=1 in (2.1) that is piecewise locally sta-

tionary (PLS) with r breaks for some r ∈ N. Formally, we use a definition for a

PLS process and the concept of “physical dependence measure for PLS” that is

given in Zhou (2013).

Definition 1. (1) The sequence {ei}ni=1 is called PLS with r break points if

there exist constants 0 = b0 < b1 < · · · < br < br+1 = 1 and nonlinear filters
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G0, G1, . . . , Gr, such that

ei = ei(ti),where ei(t) = Gj(t,Fi), if bj < ti ≤ bj+1,

where Fi = σ(. . . , ε0, . . . , εi−1, εi), and {εi}i∈Z is a sequence of i.i.d. random

variables.

(2) Assume that max1≤i≤n ‖ei‖p < ∞ for some p ≥ 1. Then for k > 0,

define the kth physical dependence measure in Lp-norm as

δp(k) = max
0≤i≤r

sup
bi<t≤bi+1

‖Gi(t,Fk)−Gi(t,F∗k )‖p,

where δp(k) = 0 if k < 0.

The PLS process is a natural non-stationary extension of many well known

statistical processes, with the dependence measure easy to calculate.

Example 1 (PLS linear process). For {εi}i∈Z take Fi = σ({εj |j ≤ i}), and

consider the process

Gj(t,Fi) =

∞∑
s=0

aj,s(t)εi−s, bj < t ≤ bj+1, 0 ≤ j ≤ r, (2.2)

where 0 = b0 < b1 < · · · < br+1 = 1 are unknown break points, aj,s(t) for

bj < t ≤ bj+1 0 ≤ j ≤ r, s ∈ Z are Lipchitz continuous functions. Straightfor-

ward calculations show that δp(k) = O(max0≤j≤r supbj<t≤bj+1
|aj,k(t)|) provided

‖ε0‖p < ∞. Model (2.2) is a time-varying MA process with possible abrupt

changes. For smooth time-varying MA process, it could be shown, for example

in Zhang and Wu (2012) that it well-approximates the locally stationary autore-

gressive processes that have been studied extensively in the literature (see for

example Dahlhaus (1997) among others).

Example 2 (PLS nonlinear process). For {εi}i∈Z take Fi = σ({εj |j ≤ i})
and consider the process

Gj(t,Fi) = Rj(t, Gj(t,Fi−1), εi), bj < t ≤ bj+1, 0 ≤ j ≤ r, (2.3)

where 0 = b0 < b1 < · · · < br+1 = 1 are unknown break points. Many important

nonlinear time series have the form Xi = R(Xi−1εi). Typical examples include

(G)ARCH models (see Bollerslev (1986)), threshold models (see Tong (1990))

and bilinear models. It can be shown similarly to Zhou and Wu (2009) that,

under some mild conditions, δp(k) = O(χk) for some χ ∈ (0, 1), and that χ can

be evaluated as

χ := max
0≤j≤r

sup
t∈(bj ,bj+1)

sup
x 6=y

‖Rj(t, x, ε0)−Rj(t, y, ε0)‖p
|x− y|

. (2.4)

For our asymptotic analysis we list some conditions.
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(A1) The process {ei}ni=1 is PLS and piecewise stochastic Lipschitz continuous

with r break points: there exists a constant C > 0 such that, for all i ∈
{0, . . . , r} and all t, s ∈ (bi, bi+1],

‖Gi(t,F0)−Gi(s,F0)‖ι ≤ C|t− s|

holds for ι ≥ 8. In addition, E[ei] = 0 for all 1 ≤ i ≤ n, and there is a

variance function σ2(·) : [0, 1] → R+, such that σ2i := σ2(ti) = Var(ei), for

i = 1, . . . , n.

(A2) The second derivative µ̈(·) of the function µ(·) in model (2.1) exists and is

Lipschitz continuous on the interval [0, 1].

(A3) max0≤i≤r supt∈(bi,bi+1] ‖Gi(t,F0)‖ι <∞ for some ι ≥ 8.

(A4) δι(k) = O(χk) for some χ ∈ (0, 1) and some ι ≥ 8.

Remark 1. a) The bound of max1≤i≤n ‖ei‖p in Definition 1 does not depend on

n. This simplifies the assumptions and the proofs in the subsequent discussion.

It is also possible to develop corresponding results for an n-dependent bound

with added complications in the technical arguments.

b) For the sake of brevity we use the condition ι ≥ 8 in (A3) and (A4). Using

additional technical arguments it can be shown that our methodology is still valid

for innovations with a heavier tail (see also Section 5 for some simulation results

with heavy-tailed distributions).

c) The process {e2i }ni=1 of squared errors is also PLS. Simple calculations show

that {e2i }ni=1 satisfies the assumptions (A1), (A3), (A4) with ι ≥ 4.

3. Tests for Changes in Correlations

Suppose that we observe data {Yi}ni=1 according to model (2.1) where the

process {ei}ni=1 is PLS and µ(·) is an unknown deterministic trend. We are

interested in testing nonparametrically the “classical” hypothesis of a change

point in the correlations. The important difference to previous work on this

subject (see for example Inclán and Tiao (1994) or Aue et al. (2009)) is that in

general the process is NOT assumed to be stationary under the null hypothesis of

no change point. This means - for example - that the approach proposed here can

be used to test the hypotheses (1.1) where the mean is not constant. The price

for this type of flexibility is that critical values of the asymptotic distribution of

the CUSUM statistic are not directly available. For this we develop a bootstrap

CUSUM-type test for the “classical” hypotheses of a change point in correlations
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based on residuals from a local linear fit. For the definition of the local linear

estimator we assume that the corresponding kernel function, say K, is symmetric

with support [−1, 1] satisfying
∫
K(x)dx = 1, and define for b > 0 the function

Kb(·) = K( ·b). We assume that K ∈ C2([−1, 1]). and, for convenience, we set

ei = 0, êi = 0 if i > n, where n is the sample size.

Consider the problem of testing whether there are changes in correlations

ρi,k := Corr
(
Yi, Yi+k

)
for some pre-specified lag-k’s, with

H0 : ρi,k = ρj,k = ρk for all i, j = 1, . . . , n, k = r1, . . . , rl, (3.1)

H1 : There exists 1 ≤ s ≤ l and i 6= j such that ρi,rs 6= ρj,rs , (3.2)

where the integers r1 < r2 < · · · < rl define the lags of interest. A test for the

classical hypothesis for stationary processes can be derived by similar arguments

as given in Wied, Krämer and Dehling (2012) under the additional assumption

that the mean and variance are not changing. However, statistical inference

regarding changes the correlation structure in a locally stationary framework

(including non constant mean or variance) requires estimates of the mean and

variances. For this purpose consider the CUSUM statistic

T̂n = max
1≤i≤n

∣∣∣∣Ŝi − i

n
Ŝn

∣∣∣∣, (3.3)

where Ŝi = (Ŝ
(r1)
i , . . . , Ŝ

(rl)
i ), Ŝ

(j)
i =

∑i
s=1 êsês+j/σ̂

2(ts), ês = Ys−µ̂bn(ts), ês+j =

Ys+j − µ̂bn(ts+j), and µ̂bn(·) is the local linear estimator of the function µ(·) with

bandwidth bn,

(µ̂bn(t), ˆ̇µbn(t)) = argmin
β0,β1

n∑
i=1

{
Yi − β0 − β1(ti − t)

}2
Kbn(ti − t) (3.4)

(see Fan and Gijbels (1996)).

We allow the variance to possibly have a structural break at a point, say t̃v
that need not coincide with the location of the change point in any of the lag-k

correlations. We assume that σ̈2(·) is Lipschitz continuous on the intervals (0, t̃v)

and (t̃v, 1) and that there exists a constant ζ > 0, such that t̃v ∈ [ζ, 1 − ζ]. We

define an estimator, say t∗n, of the change point t̃v in the variance by

t∗n =
argmaxbnζc≤i≤n−bnζc+1 |M(i)|

n
, (3.5)

where

M(i) =
1

L

(
i∑

j=i−L+1

ê2j −
i+L−1∑
j=i

ê2j

)
(3.6)

and L ∈ N is a regularization parameter that increases with n. The maximum
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in (3.5) is not taken over the full range 1 ≤ i ≤ n, as recommended in Andrews

(1993) (see also Qu (2008)). We estimate σ2(ti) by σ̂2(ti) = σ̂2cn,bn(ti, nt
∗
n), where

for k = 1, . . . , n

σ̂2cn,bn(t, k) = σ̂2cn,bn(t, k−)1

(
t ≤ k

n

)
+ σ̂2cn,bn(t, k+)1

(
t >

k

n

)
and(
σ̂2cn,bn(t, k−),

̂̇
σ2cn,bn(t, k−)

)
= argmin

β0,β1

k∑
i=1

{
ê2i − β0 − β1(ti − t)

}2
Kcn(ti − t),

(
σ̂2cn,bn(t, k+),

̂̇
σ2cn,bn(t, k+)

)
= argmin

β0,β1

n∑
i=k+1

{
ê2i − β0 − β1(ti − t)

}2
Kcn(ti − t).

(3.7)
We take the (non-observable) analogue of Ŝ

(j)
i to be

S
(j)
i =

i∑
s=1

W (j)
s , (3.8)

where W
(j)
s = eses+j/σ(ts)σ(ts+j), and consider the random variable

Tn = max
1≤i≤n−rl

∣∣∣Si − i

n
Sn

∣∣∣, (3.9)

where Si = (S
(r1)
i , . . . , S

(rl)
i ). It is easy to see that W

(j)
i is Fi+j measurable and

that the process (W
(j)
i )n−ji=1 is PLS. Moreover, {W (k)

i k = r1, . . . , rl}1≤i≤n−rl can

be modeled by an l-dimensional PLS process. Take q as the number of break

points, 0 = v0 < v1 < · · · < vq+1 = 1 as the corresponding locations of the breaks,

and H as the corresponding nonlinear filters, (W
(r1)
i , . . . ,W

(rl)
i )T = Hj(ti,Fi+rl)

if vj < ti ≤ vj+1, 0 ≤ j ≤ q.
The following result shows that t∗n is a consistent estimate of t̃v; its proof

can be found in Section A.1 of the online supplement.

Lemma 1. Assume that nb6n → 0, nb3n → ∞ and that (A1) - (A4) are satisfied

with ι > 8. Suppose that the variance function is twice differentiable on the

intervals (0, t̃v) and (t̃v, 1), such that the second derivative σ̈2(·) is Lipschitz

continuous (here t̃v is the location of the change point of the variance such that

ζ ≤ t̃v ≤ 1 − ζ). Then the estimator t∗n defined in (3.5) satisfies t∗n − t̃v =

op(n
−(1−4/ι) log n).

Remark 2. The rate of convergence of the estimator t∗n is arbitrarily close to

the optimal rate n−1 subject to a logarithmic factor if (A1) and (A4) hold for

any ι > 0.
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The rates of convergence of the estimators (3.4) and (3.7) are of the order

n−2/5 under suitable bandwidth conditions. Thus, a naive plug-in argument of

µ̂(ti) does not lead to the crucial result that

|T̂n − Tn| = op(
√
n), (3.10)

that is required for constructing the hypothesis testing procedure. In the Ap-

pendix we demonstrate that the estimate (3.10) is in fact valid using delicate

arguments to overcome the slow rate of convergence of the non-parametric fit.

Then the weak convergence of the statistic T̂n/
√
n follows from the weak conver-

gence of Tn/
√
n, which can be established under an additional assumption.

(A5) The long run variance function

κ2(t) =

∞∑
k=−∞

cov(Hi(t,Fk),Hi(t,F0)) ∈ Rl×l if t ∈ (vi, vi+1] 0 ≤ i ≤ q,

(3.11)

and κ2(0) := limt↓0 λmin(κ2(t)) exists with inft∈[0,1] λmin(κ2(t)) > 0, where

for any positive semi-definite matrix A, λmin(A) denotes the minimal eigen-

value of matrix A.

The proof of the following result is deferred to the online appendix.

Theorem 1. Assume that bn → 0, cn/bn → 0, cnb
−2
n →∞, nc4n → 0, nb6nc

−1/2
n →

0, nb4nc
1/2
n → ∞ and suppose that (A1) - (A5) are satisfied with ι ≥ 8. Assume

that the variance σ2(t) > 0. Suppose that one of the the following conditions is

satisfied.

(i) σ2(·) is twice differentiable on [0, 1] and the second derivative σ̈2(·) is Lips-

chitz continuous.

(ii) σ2(·) has one abrupt change point t̃v ∈ [ζ, 1− ζ], and on the intervals [0, t̃v)

and (t̃v, 1], σ2(t) is twice differentiable and the second derivative σ̈2(·) is

Lipschitz continuous.

Then under the null hypothesis (3.1) we have

1√
n
T̂n

D−→ K1 := sup
t∈(0,1)

|U(t)− tU(1)|, (3.12)

where {U(t)}t∈[0,1] is a zero mean l-dimensional Gaussian process with covariance

function

γ(t, s) =

∫ min(t,s)

0
κ2(r)dr. (3.13)

As a consequence of Theorem 1 we obtain - in principle - an asymptotic
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level α test for the hypothesis (1.1) by rejecting H0, whenever 1/
√
nT̂n > q1−α

where q1−α is the (1 − α)-quantile of the distribution of the random variable

K1 in (3.12). However, under non-stationarity (more precisely under the PLS

assumption), the function κ2(t) defined in (3.11) and, as a consequence, the

covariance structure of the Gaussian process {U(t) − tU(1)}t∈[0,1] involves the

complicated dependence structure of the data generating process.

Due to the PLS structure, the covariance structure of the Gaussian process

U(·) and the quantiles of the limiting distribution in Theorem 3.1 are hard to

estimate. As an alternative, a data-driven critical value will be derived using a

wild bootstrap method to mimic the distributional properties of the Gaussian

process U(·). Following Zhou (2013) we define for a fixed window size, say m,

the quantities

Φ̂i,m =
1√

m(n−m+ 1)

i∑
j=1

(
Ŝj,m −

m

n
Ŝn

)
Rj , i = 1, . . . , n−m+ 1, (3.14)

where Ŝj,m = (S
(r1)
j,m , . . . , S

(rl)
j,m)T , Ŝn = Ŝ1,n, Ŝ

(k)
j,m =

∑j+m−1
r=j êrêr+k/σ̂

2(tr), and

{Ri}i∈Z is a sequence of i.i.d. standard normal distributed random variables

independent of {εi}i∈Z.

Theorem 2. If the conditions of Theorem 1 are satisfied and, for m → ∞,

assume m/
√
n→ 0,

√
m
{
c2n + (1/

√
ncn + b2n + 1/

√
nbn)c

−1/4
n

}
log n→ 0 (con-

ditional on Fn in probability)

Mn = max
m+1≤i≤n−m+1

∣∣∣Φ̂i,m −
i

n−m+ 1
Φ̂n−m+1,m

∣∣∣ D−→ K1,

where the random variable K1 is defined in (3.12).

Theorem 2 provides an asymptotic level α test for the hypothesis of constant

correlations in model (2.1) with critical values obtained by resampling. The

proof is deferred to the online supplement. The details of generating the critical

values and performing the test are summarized in an algorithm.

Algorithm 1.

[1] Calculate the statistic T̂n at (3.3).

[2] Generate B conditionally i.i.d copies {Φ̂(r)
i,m}

n−m+1
i=1 (r = 1, . . . , B) of the

random variables {Φ̂i,m}n−m+1
i=1 defined in (3.14) and calculate

Mr = max
m+1≤i≤n−m+1

∣∣∣Φ̂(r)
i,m −

i

n−m+ 1
Φ̂

(r)
n−m+1,m

∣∣∣.
[3] If M(1) ≤ M(2) ≤ ... ≤ M(B) denote the order statistics of M1, . . . ,MB, null
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hypothesis of constant correlations is rejected at level α when

T̂n/
√
n > MbB(1−α)c. (3.15)

The p-value of this test is given by 1− B∗

B , where B∗ = max{r : M(r) ≤ T̂n/
√
n}.

Remark 3. (1) If the sequence bn is of order n−1/5 and m is of order n1/3, then

the bandwidth conditions of Theorem 3.2 hold if the sequence cn is of order n−β,

where β ∈ (1/4 2/5).

(2) It follows by similar arguments as in the proof of Theorem 2, Proposition

3 of Zhou (2013) and Lemma B.1 and Lemma B.2 in the online supplement,

that the bootstrap test (3.15) is consistent. For 1 ≤ s ≤ l, write ρrs(ti) = ρi,rs ,

ρ(·) = (ρr1(·), . . . ρrl(·))T . It can be shown that the bootstrap is able to detect

local alternatives of the form ρ(·) = ρ0 + n−1/2f(·), where f(·) is a nonconstant

piecewise Lipschitz continuous l−dimensional vector function.

4. Relevant Changes of Correlations

After a change point has been detected and localized a modification of the

statistical analysis is necessary, one that addresses the different features of the

data generating process before and after the change point. Dette and Wied

(2016) pointed out that, in many cases, such a modification might not be neces-

sary if the difference between the parameters before and after the change point

is rather small. Inference might be robust with respect to small changes of the

correlation structure, but changing decisions (such as trading strategies or mod-

ifying a manufacturing process) might be very expensive and only be performed

if changes would have serious consequences. Here we investigate the hypothesis

(1.3) of a non-relevant change point for correlations in a general non-stationary

context under the assumption of PLS.

Consider model (2.1) and suppose that there exist time points tk ∈ (0, 1),

k = r1, . . . , rl, such that

ρ
(k)
1 = ρ1,k = · · · = ρbntkc,k ρ

(k)
2 = ρbntkc+1,k = · · · = ρn,k.

We are interested in testing the hypotheses

H0 : |ρ(k)1 − ρ
(k)
2 | ≤ δk for all k = r1, . . . , rl (4.1)

H1 : There exists a lag k ∈ {r1, . . . , rl} such that |ρ(k)1 − ρ
(k)
2 | > δk, (4.2)

where δr1 , . . . , δrl are given thresholds. Problems of this type have recently been

discussed in Dette and Wied (2016) under assumptions that are not practically

tenable. In the PLS framework, these assumptions will be relaxed. However,
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under these more general assumptions, the construction of a test and the inves-

tigation of its asymptotic properties is substantially more difficult, as described

in the following paragraphs.

We denote by, for 1 ≤ s ≤ l, ∆rs = ρ
(rs)
2 − ρ(rs)1 the (unknown) difference

before and after the change point and assume here that, under the null hypothesis

of a non-relevant change in the correlations, the variance function σ2(·) has either

no jumps or has a jump at a point, say t̃v, that need not coincide with any of

the change point tk in the correlation structure. We define the CUSUM process,

for k = r1, . . . , rl, by

V̂(k)n (s) =
1

n

bnsc∑
j=1

êj êj+k
σ̂2(tj)

− bnsc
n

n∑
j=1

êj êj+k
σ̂2(tj)

, (4.3)

where êi = Yi− µ̂bn(ti) denotes the nonparametric residuals from the local linear

fit while using the convention that êi = 0 for i > n. The estimator for the change

point of the correlation structure at lag-k is taken to be

t̂(k)n =
argmax1≤m≤n{V̂

(k)
n (m/n)}2

n
. (4.4)

The statistic t̂
(k)
n depends on the estimator t∗n for the change point in the variance

as defined in (3.5). The estimator is consistent (a proof can be found in the online

supplement.)

Lemma 2. Suppose that one of the following conditions holds.

(i) Conditions of Lemma 1 are satisfied.

(ii) σ2(·) is twice differentiable on [0, 1] and the second derivative σ̈2(·) is Lips-

chitz continuous.

In addition, suppose the conditions for the bandwidths bn and cn of Theorem 3.1

hold. Then for any k = rs, 1 ≤ s ≤ l, the estimate t̂
(k)
n of the change point in the

correlation structure at lag-k defined by (4.4) satisfies

t̂(k)n
D−→ T (k)

max if |∆k| = 0, (4.5)

|t̂(k)n − tk| = Op(n
−υ), if |∆k| > 0, (4.6)

for some υ ∈ (1/2, 2/3), where T
(k)
max is a [0, 1]-valued random variable.

The test for the hypothesis of a non-relevant change is based on the statistic

T̂ (k),r
n =

3(
t̂
(k)
n

)2 (
1− t̂(k)n

)2 ∫ 1

0
{V̂(k)n (s)}2ds, (4.7)
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where the the process {V̂(k)n (s), 0 ≤ s ≤ 1} is defined in (4.3). We show that

T̂
(rs),r
n is a consistent estimator of ∆2

rs = (ρ
(rs)
1 − ρ

(rs)
2 )2 for s = 1, . . . , l, and

provide its asymptotic distribution.

Theorem 3. Assume that the conditions for the bandwidths bn and cn of Theo-

rem 3.1 hold and that (A1) - (A4) are satisfied with ι ≥ 16.

(i) If ∆k 6= 0 for k = r1, . . . , rl, then{
√
n
T̂
(rs),r
n −∆2

rs

|∆rs |

}l
s=1

D−→ Z :=

{
Z(rs) ∆rs

|∆rs |

}l
s=1

, (4.8)

where

Z(rs) :=
6

trs
2(1− trs)2

∫ 1

0

{
U(s)(u)− uU(s)(1)

}
(utrs − u ∧ trs) du, (4.9)

with the process {U(u)}u∈[0,1] =
{{

U(1)(u), . . . ,U(l)(u)
}T}

u∈[0,1] as defined

in Theorem 3.1.

(ii) If ∆rs = 0 for some 1 ≤ s ≤ l, then T̂
(rs),r
n = OP (1/n), the sth coordinate

of the process on the left side of (4.8) degenerates.

A careful inspection of the proof of Theorem 3 shows that (4.8) remains that

for any estimator of the change point in the correlation structure that satisfies

(4.5) and (4.6) (for υ > 1/2) for any given fixed lag-k’s. Theorem 3 yields an

asymptotic level α test for the hypothesis (4.1) of a non-relevant change in the

correlation structure by rejecting H0, whenever

T̂n,max := max
1≤s≤l

T̂
(rs),r
n − δ2rs

δrs
>
v̄1−α√
n
, (4.10)

where v̄1−α denotes the (1−α)-quantile of the distribution of the random variable

max
1≤s≤l

(
Z(rs) ∆rs

|∆rs |

)
,

Z(rs) as defined in (4.9). This distribution is a maximum of l-variate centered nor-

mal distributions with a covariance depending on the data generating process in

a complicated way, in particular on the long run variance as (3.11). We construct

a bootstrap procedure for generating the critical values with the asymptotically

correct nominal level.

Recall the definition of the estimator t̂
(k)
n of the change point in the correla-

tion structure in (4.4). Consider the statistics
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∆̂
(k)
n,1 =

1

bnt̂(k)n c

bnt̂(k)
n c∑

j=1

êj êj+k
σ̂2n(tj)

, ∆̂
(k)
n,2 =

1

n− bnt̂(k)n c

n∑
j=bnt̂(k)

n c+1

êj êj+k
σ̂2n(tj)

and take

∆̂(k)
n = ∆̂

(k)
n,2 − ∆̂

(k)
n,1 (4.11)

as an estimator of the difference ∆k = ρ
(k)
2 − ρ

(k)
1 . We have consistency of ∆̂

(k)
n .

(The proof is deferred to the online supplement.)

Lemma 3. If the conditions of Theorem 3 hold, then

∆̂(k)
n −∆k = Op

(
log n√
n

)
for k = r1, . . . , rl.

Let

Â
(k)
j =

êj êj+k
σ̂2(tj)

− ∆̂(k)
n 1(j ≥ bnt̂(k)n c), (4.12)

and let {Rj}j∈Z be a sequence of i.i.d. standard normal distributed random vari-

ables independent of {Fi}i∈Z. We introduce the partial sums Ŝ
A,(k)
j,m =

∑j+m−1
r=j

Â
(k)
r , Ŝ

A,(k)
n =

∑n
r=1 Â

(k)
r and define ŜAj,m = (Ŝ

A,(r1)
j,m , . . . , Ŝ

A,(rl)
j,m ), ŜAn =

(
Ŝ
A,(r1)
n ,

. . . , Ŝ
A,(rl)
n

)
,

Φ̂A
i,m =

1√
m(n−m+ 1)

i∑
j=1

(
ŜAj,m −

m

n
ŜAn

)
Rj . (4.13)

Let Φ̂
A,(s)
i,m be the sth component of Φ̂A

i,m. Then the following result is proved in

Section A.3 of the online supplement.

Theorem 4. Suppose the conditions of Theorem 3 hold and that m → ∞,

m log n/
√
n → 0,

√
m
{
c2n + (1/

√
ncn + b2n + 1/

√
nbn)c

−1/4
n

}
log n → 0. If for

1 ≤ s ≤ l,

M r,(rs)
n =

1

n

6

{t̂(rs)n }2{1− t̂(rs)n }2∑
m+1≤i≤n−m+1

{
Φ̂
A,(s)
i,m − i

n−m+ 1
Φ̂
A,(s)
n−m+1,m

}{
it̂
(rs)
n

n
− i

n
∧ t̂(rs)n

}
then (conditional on Fn in probability)

(M r,(r1)
n , . . . ,M r,(rl)

n )T
D−→ Z̃ := {Z(rs)}ls=1 (4.14)

where the random variables {Z(rs)}ls=1 are defined in Theorem 3.
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The bootstrap test for the hypothesis (1.3) of a non-relevant change in the

correlation structure results as follows.

Algorithm 2.

[1] Calculate the statistics T̂
(ru),r
n defined in (4.7) for u = 1, . . . , l. For given

δ = (δr1 , . . . , δrl)
T , calculate T̂n,max by (4.10).

[2] Generate B conditionally i.i.d copies {Φ̂A
i,m,r}

n−m+1
i=1 (r = 1, 2, . . . , B) of the

sequence {Φ̂A
i,m}

n−m+1
i=1 defined in (4.13). Calculate MA

r := max1≤u≤l(M
A,(ru)
n,r )

where, for 1 ≤ u ≤ l,

MA,(ru)
n,r =

1

n

6sign(∆̂
(ru)
n )

{t̂(ru)n }2{1− t̂(ru)n }2
n−m+1∑
i=m+1

{
Φ̂
A,(u)
i,m,r −

i

n−m+ 1
Φ̂
A,(u)
n−m+1,m,r

}{
it̂
(ru)
n

n
− i

n
∧ t̂(ru)n

}
.

[3] If MA
(1) ≤ MA

(2) ≤ · · · ≤ MA
(B) denote the order statistics of MA

1 , . . . ,M
A
B ,

reject the null hypothesis (1.3) of a non-relevant change in the correlations at

level α if

T̂n,max >
MA

(bB(1−α)c)√
n

. (4.15)

The p-value of this test is given by 1 − B∗/B, where B∗ = max{r : MA
(r)/
√
n ≤

T̂n,max}.
If only one lag is considered, then the term sign(∆̂

(ru)
n ) in the definition of

M
A,(ru)
n,r can be dropped by the symmetry of a centered Gaussian process.

Remark 4. We investigate the power of the test (4.15). Let v̄rs,1−α be the (1−α)-

quantile of the distribution of the random variable max{Z(rs)sign(∆rs)}ls=1. If

∆2
r1 > δ2r1 , then we obtain from Theorem 3 an approximation for the power of

the test (4.10) as

βn(δ,∆) : = P

(
T̂n,max >

v̄1−α√
n

)
≥ P

(
T̂ (r1),r
n > δ2r1 +

v̄1−αδr1√
n

)

= P

(
√
n
T̂
(r1),r
n −∆2

r1

|∆r1 |
>
√
n
δ2r1 −∆2

r1

|∆r1 |
+
v̄1−αδr1
|∆r1 |

)

≈ 1−Ψr1

(
√
n
δ2r1 −∆2

r1

|∆r1 |
+
v̄1−αδr1
|∆r1 |

)
, (4.16)

where Ψr1 is the distribution function of the random variable Z(r1) (in fact a

centered normal distribution). Therefore, under the alternative of a relevant
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change for some lag r1, ∆2
r1 > δ2r1 , we have βn(δ,∆) → 1 as n → ∞, which

provides the consistency of the test (4.15). Under the null hypothesis 0 < ∆2
rs ≤

δ2rs for 1 ≤ s ≤ l, we have

1− βn(δ,∆) = P

(
T̂n,max ≤

v̄1−α√
n

)
(4.17)

= P

(
max
1≤s≤l

(
∆rs

δrs
Z(rs) +

√
n

∆2
rs − δ

2
rs

δrs

)
≤ v̄1−α

){
1 + o(1)

}
(4.18)

Consequently, if 0 < ∆2
rs ≤ δ

2
rs (1 ≤ s ≤ l) and

if l∗ := #
{
s ∈ {1, . . . , l} | |∆rs | = δrs

}
denotes the number of coordinates where the “true” difference between the lag-rs
correlations is at the boundary of the null hypothesis, we have

lim
n→∞

βn(δ,∆)


= 0 if l∗ = 0,

= α if l∗ = l,

< α if 1 ≤ l∗ ≤ l − 1.

(4.19)

If there exist some lags, without loss of generality r1, . . . , rk, with ∆ri = 0

(1 ≤ i ≤ k) and k < l, then it follows that T̂
(ri),r
n = OP (1/n) for all 1 ≤ i ≤ k,

and it is easy to see that a result similar to (4.19) holds. Moreover, if ∆rs = 0 for

all s = 1, . . . , l, then T̂
(rs),r
n = OP (1/n) for s = 1, . . . , l and limn→∞ βn(δ,∆) = 0

(since α ≤ 0.5 and v̄1−α > 0). Summarizing these calculations shows that the

test (4.15) has, in fact, asymptotic level α.

We can also use (4.16) to investigate the power as a function of the parameter

δ in the hypothesis (1.3): for sufficiently large n the power βn(δ,∆) is approx-

imately 1 if δ → 0 and
√
nδ → ∞, and approximately 0 if δ → ∞. Moreover,

it is easy to see that all statements mentioned in this remark hold also for the

bootstrap test defined by (4.15).

Remark 5. In applications of the test (4.15) for a non-relevant change in the

correlation, the thresholds ∆rs are usually very small, and this can lead to a

less accurate approximation of the nominal level. Consider, for example, the

univariate test for a relevant change in the lag-1 correlation. We obtain from the

proof of in Theorem 3 for the estimating object of statistic defined in (4.7) the

stochastic expansion (omitting the subscript)

√
n(T 2

n −∆2) =
6∆

t2(1− t)2

∫
{U(s)− sU(1)}(st− s ∧ t)ds
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+
3√

nt2(1− t)2

∫
{U(s)− sU(1)}2ds+ op(n

−1/2), (4.20)

where t is the jump time in lag-1 correlation and the process {U(t)}t∈[0,1] is

defined in Theorem 1 The second term vanishes asymptotically. However, when

∆ is small and the sample size is not too large, the first and second term on the

right hand side of (4.20) could be comparable in size. The bootstrap methodology

proposed in this paper provides us with a convenient way to solve this problem.

We propose to replace T̂n,max in (4.10) by max1≤u≤l{T̂
(ru),r
n −δ2ru}, and to replace

the statistic M
A,(ru)
n,r in step [2] of Algorithm 2 by the statistic

MA,(ru)
n,r =

1

n

6sign(∆̂
(ru)
n )δru

{t̂(ru)n }2{1− t̂(ru)n }2
n−m+1∑
i=m+1

{
Φ̂
A,(u)
i,m,r −

i

n−m+ 1
Φ̂
A,(u)
n−m+1,m,r

}{
it̂
(ru)
n

n
− i

n
∧ t̂(ru)n

}
+NA

n,ru

where

NA,(ru)
n,r =

1

n3/2
3

{t̂(ru)n }2{1− t̂(ru)n }2

n−m+1∑
i=m+1

{
Φ̂
A,(u)
i,m,r −

i

n−m+ 1
Φ̂
A,(u)
n−m+1,m,r

}2

.

Remark 6. Straightforward calculation shows that the computational time com-

plexity of Algorithms 1 and 2 is O(Bn+α(n)), where n is the length of time series,

α(n) is the time cost of obtaining {êi}1≤i≤n and {σ̂2(ti)}1≤i≤n which depends on

the particular optimization method that users choose, and B is the number of

bootstrap replications that is mainly determined by the nominal level. As a rule

of thumb, for a nominal level of 5%, our experience shows that B = 2,000 is suf-

ficient, though we use B = 4,000 and 8,000 in our simulations and data analysis,

respectively.

Remark 7. For the change point test defined in Algorithm 1 the alternative

hypothesis allows for multiple change points and one could use a similar ap-

proach as in Section 5 of Qu (2008). For the test of relevant change points

defined in Algorithm 2 we propose to proceed in two steps: we use Algorithm

1 and the binary segmentation technique to deal with multiple change points

(see Vostrikova (1981)); if this procedure identifies the potential relevant change

points 0 = t0 < t1 < · · · < ts < ts+1 = 1, we perform a test for a relevant change

point in every two consecutive intervals (tl, tl+2] for 0 ≤ l ≤ s− 1.

Remark 8. The behaviour of the test statistics may not be close to the lim-

iting distribution when the sequence is short, especially under piecewise local
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Figure 1. Typical sample paths of the processes corresponding to model (I) - (IV ).

stationarity. As a result, the finite performance of those tests only based on the

limiting distribution may not be satisfactory under non-stationarity. Thanks to

the bootstrap procedure, our proposed method works reasonably well and is not

very sensitive to the length of the sequence. This is also justified by the simu-

lation results for sample sizes 300, 500, 800 in Section C.3 of the supplementary

material. As a rule of thumb, we recommend our method when the length of

sequence is larger than 300.

5. Finite Sample Properties

In this section we investigate the finite sample properties of the proposed

tests by means of a simulation study. In all examples considered we used the

quadratic mean function µ(t) = 8{−(t − 0.5)2 + 0.25} and a sequence of in-

dependent identically random variables {εj}j∈Z in the definition of the errors

ei = Gj(ti,Fi) in model (2.1) where Fi = σ(. . . , ε0, . . . , εi), if not mentioned

otherwise. The dependence structures differ by choice of the nonlinear filters

Gj . The sample size was n = 500 and all results were based on 4,000 simulation

runs. In each run, the critical values were generated by B = 4,000 bootstrap

replications. We use the Epanechnikov kernel; We analyzed the impact of dif-

ferent kernel functions on the performance of the tests and saw no substantial
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differences. Some of these investigations are summarized in Section C.2 of the

supplementary material.

5.1. Change point tests for correlations

We investigate properties of the tests for changes in the lag-1 and lag-2

correlations. For this purpose we consider these models.

(I) G(t,Fi) = H(t,Fi)
√

1− (t− 0.5)2/2, where H(t,Fi) = 0.2H(t,Fi−1) + εi.

(II,IIt) G(t,Fi) = H(t,Fi)
√
c(t)/2 for t ≤ 0.5, and G(t,Fi) = H(t,Fi)

√
d(t)/2

for t > 0.5, where c(t) = 1− (t− 0.5)2, d(t) = 1− 1/2 sin t, and H(t,Fi) =

0.2H(t,Fi−1) + εi.

(III,IIIt)G(t,Fi) = H(t,Fi)
√

1− (t− 0.5)2/2, whereH(t,Fi) = 0.1H(t,Fi−1)+
εi for t ≤ 0.5, and H(t,Fi) = 0.4H(t,Fi−1) + εi for t > 0.5.

(IV) G(t,Fi) = H(t,Fi)
√

1− (t− 0.5)2/2, where H(t,Fi) = 0.5H(t,Fi−1) +

0.1H(t,Fi−2)+εi for t ≤ 0.5, and H(t,Fi) = 0.3H(t,Fi−1)+0.2H(t,Fi−2)+

εi for t > 0.5.

For models (I) (II) (III) (IV) the innovations were εi ∼i.i.d. N(0, 1), and for

model (IIt) and (IIIt), εi ∼i.i.d. t(5)/
√

5/3. Model (I) was for locally stationary

processes. The variance of the process was time-varying, but the correlation re-

mained constant. Model (II,IIt), (III,IIIt) and model (IV) were piecewise locally

stationary processes, where the variances had an abrupt change. Before and af-

ter the jump, the variance varied smoothly. The correlations of model (I) and

(II,IIt) were constant, while the correlations of model (III,IIIt,IV) had a break at

t = 0.5 and were used to illustrate the approximation of the nominal level of the

test for the hypothesis of a non-relevant change point, as discussed at the end of

this section. Model (IV) is a tvAR(2) model with a change in the lag-1 and lag-2

scaled AR coefficients. Typical trajectories corresponding to these processes are

depicted in Figure 1.

Change point analysis on the basis of the tests proposed in Section 3 and 4

requires the choices of two bandwidths in the local linear estimates of the mean

and variance. We used a generalized cross validation method (GCV) introduced

by Zhou and Wu (2010) to select the bandwidth for estimating the mean function.

Then we applied this cross validation procedure again to select the bandwidth

for estimating the variance function. The parameters L and ζ in the estimator

(3.5) were chosen as L = b3n1/3c and ζ = 0.2, respectively. For the choice of
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window size m in Section 3 and 4 we used the minimal volatility method (MV)

in Zhou (2013).

For the nominal level we display in Table 1 the rejection probabilities of

the test for the hypothesis (3.1) of a “classical” change point, where various

bandwidths bn from the interval [0.075, 0.225] were considered. At each fixed bn,

the bandwidth cn for estimating the variance was calculated by cross validation.

The last row of the table shows the simulated rejection probabilities for the case

that both bandwidths bn and cn were calculated by cross validation. In the 1st-

3rd column we display results of the test (3.15) for models I, II and IIt, where we

used lag-1 correlation. The 4th column (denoted by II∗) corresponds to model II,

where lag-1 and lag-2 correlations were used simultaneously in the test (3.15). We

observed a reasonable approximation of the nominal level, only slightly affected

by the choice of the bandwidth bn. Moreover, generalized cross validation yielded

a good approximation of the nominal level in all cases under consideration.

In Table 2 we show corresponding results for the test (4.15) of a non-relevant

change point, where in all cases the simulated type I error was calculated for

a boundary point of the null hypothesis. Thus l∗ = l in (4.19) and, by the

discussion in Remark 4.1 the nominal level of the test should be close to α at

this point. In the 1st and 2nd columns we show the simulated type I error of the

test (4.15) for a relevant change in lag-1 correlation with δ = ∆ = 0.3 for Models

III and IIIt, respectively. In the 3rd column of Table 2 we display the simulated

level of the test for the hypotheses (4.1) for a relevant change in lag-1 and lag-2

correlations for model III, where δ1 = ∆1 = 0.3 and δ2 = ∆2 = 0.15, respectively.

Finally, the 4th column shows corresponding results for the locally stationary

AR(2) model (IV) where again lag-1 and lag-2 correlations were considered (here

(δ1, δ2) = (∆1,∆2) = (0.18, 0.065)). Once again, all displayed results correspond

to the boundary, and at interior points of the null hypothesis the type I error of

the test (4.15) is usually smaller (see the discussion in Remark 4.

Figure 2 shows the simulated rejection probabilities of the tests for the hy-

pothesis (4.1) of a non-relevant change in the lag-1 correlation for model III as a

function of the parameter δ ∈ [0, 2∆]. The significance level was chosen as 0.1.

As expected the probability of rejection decreases with δ (see also the discussion

in Remark 4. More simulation results for different sample sizes can be found in

Section C.3 of the supplementary material.

Importantly, the symmetry of the innovations do not affect the asymptotic

properties of the tests, since the rates of Gaussian approximations of partial sums

from skewed random variables are of the same order as in the symmetric case. To
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Table 1. Simulated Type I error of the test for the classical hypothesis (3.1) of a change
in the correlation for various bandwidths and the bandwidth calculated by generalized
cross validation (last line). Columns 1–3: test (3.15) based on the lag-1 correlation for
Models I, II and IIt. Column 4: test (3.15) based on lag-1 and lag-2 correlations for
Model II.

model I II IIt II*
bn/α 5% 10% 5% 10% 5% 10% 5% 10%
0.075 5.625 11.6 4.375 9.6 4.825 10.025 4.725 10.35
0.1 5.2 10.8 4.3 9.775 4.9 10.925 5.325 10.675
0.125 4.025 9.35 4.05 9.275 4.075 8.875 4.425 8.95
0.15 4.575 10.075 3.75 8.4 4.35 9.75 3.95 9.45
0.175 4.1 8.675 3.85 8.75 3.65 8.4 4.175 9.05
0.2 3.725 8.6 3.575 8.15 3.525 8.225 3.825 8.35
0.225 3.925 8.675 3.2 8.025 4.025 8.65 3.95 8.625
GCV 4.275 9.625 4.575 9.425 4.25 9.475 4.75 9.8

Table 2. Simulated Type I error of the test for the hypothesis (4.1) of a relevant change
in the correlation for various bandwidths and the bandwidth calculated by generalized
cross validation (last line). Columns 1 and 2: tests based on the lag-1 correlation for
Models III and IIIt. Column 3 and 4: test based on lag-1 and lag-2 correlations for
Models III and IV.

model III IIIt III* IV
bn/α 5% 10% 5% 10% 5% 10% 5% 10%
0.075 5.275 9.575 6.65 10.775 4.925 9.9 5.6 10.85
0.1 6.2 10.825 6.325 10.575 5.45 10.475 5 9.825
0.125 6.05 11.3 6.425 11.125 5 10.025 4.875 9.55
0.15 5.8 10.25 6.575 11.075 5.25 10.35 4.025 8.325
0.175 5.775 10.1 6.075 10.8 4.85 10.275 4.175 8.5
0.2 5.775 9.425 5.575 9.9 4.775 10.1 4 8.925
0.225 5.3 10.15 5.45 9.95 4.525 9.425 3.75 8.2
GCV 5.45 9.9 5.875 10.55 5.45 10.675 4.875 9.6

investigate if there exist differences in the finite sample properties we took model

II and III, with the i.i.d. Gaussian innovations replaced by i.i.d. {χ2(5)−5}/
√

10

random variables. In Table 3 we display the simulated type I error of the test

(3.15) for a change point in the lag-1 correlation in model II and of the test

(4.15) for a relevant change point in the lag-1 correlation in model III. The

corresponding results for a symmetric error can be found in Tables 1 and 2; we

only observe minor differences in the approximation of the nominal level between

the symmetric and non-symmetric case.

Remark 9. Throughout, the bandwidth bn is assumed to be the same over
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Figure 2. Simulated rejection probabilities of the test for lag-1 correlation as a function
of the threshold δ ∈ [0, 2∆] in the hypothesis (1.3) for Model III.

Table 3. Simulated type I error of the test (3.15) for a change point in the lag-1
correlation in model II and of the test (4.15) for a relevant change point test in lag-
1 correlation (at the boundary point of the null) in model III with {χ2(5) − 5}/

√
10

innovations. The last column represents the simulated Type I error if the bandwidth is
bn selected by GCV.

Model bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

II
5% 4.6 4.55 3.6 2.6 2.95 3.25 2.9 4.2

10% 10.35 8.95 8.7 7.15 7.65 7.35 6.8 9.3

III
5% 4.85 5.1 4.95 6.9 5.25 6 5.35 5.4

10% 8.9 8.85 9.7 11.7 9.9 10.35 9.85 9.95

the whole sequence. As pointed out by one referee, it might be of interest to

investigate a time-dependent bandwidth bn with respect to its potential to deal

with local stationarity. Using similar arguments as in Zhou and Wu (2009) we

can obtain the optimal time varying bandwidth as

bn(t) =

∣∣∣∣ κ̂(t)

σ̂(t)

∣∣∣∣ bn, (5.1)

where bn is the time invariant bandwidth obtained by the GCV method, κ̂2 and

σ̂2 are estimates of the long run variance and the variance of the random variables

ei, respectively. It is hard to accurately estimate κ2 in a PLS model due to the

unknown break points. In the case of local stationarity, an estimate of κ2 was
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Table 4. Simulated type I error of the test (3.15) for a change point in the lag-1
correlation in model I using the time varying bandwidth (5.1). The last column represents
the simulated Type I error if the bandwidth is bn selected by GCV.

Model I
bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

5% 5.05 4.9 4.3 3.95 4.2 3.15 3.55 4.15
10% 10.45 9.75 9.5 9.85 8.9 7.55 8 10.7

proposed by Zhou and Wu (2010) and we used this method to investigate the

differences between a local and global bandwidth in the locally stationary model

I. The simulated levels of the corresponding bootstrap tests are shown in Table

4 and we observe that the performance of the procedure with a time dependent

bandwidth is quite similar to the one using a constant bandwidth.

5.2. Some robustness considerations

As was pointed out by a referee it might be of interest to investigate the

approximation of the nominal level if the assumption of PLS is violated. For this

purpose we considered modifications of the models II and III introduced in the

previous section. Let {ηi, i ∈ Z} denote i.i.d. standard normal distributed and

{εi, i ∈ Z} denote i.i.d t-distributed random variables with 5 degrees of freedom,

normalized such that they have variance 1. We consider the processes

(II0) Gi = Hi

√
c(i/n)/2 for i/n ≤ 0.5, and Gi = Hi

√
d(i/n)/2 for i/n > 0.5,

where c(t) = 1 − (t − 0.5)2, d(t) = 1 − 1/2 sin t and Hi = 0.2Hi−1 + εi for

i/n ≤ 0.5, and Hi = 0.2Hi−1 + ηi for i/n > 0.5.

(III0) Gi = Hi

√
1− (i/n− 0.5)2/2, where Hi = 0.1Hi−1 +εi for i/n ≤ 0.5, and

Hi = 0.4Hi−1 + ηi for i/n > 0.5.

These models are not PLS in the sense of Definition 1. In Table 5 we show the

simulated type I error of the test (3.15) for a change point in the lag-1 correlation

in model II0 and of the test (4.15) for a relevant change point test in the lag-1

correlation in model III0. We observe reasonable approximations of the nominal

level in all cases under consideration.

In fact, it follows from Zhou (2012) that model II0 and III0 can be approx-

imated by the two PLS models

(II∗0 ). G(t,Fi) = H(t,Fi)
√
c(t)/2 for t ≤ 0.5, and G(t,Fi) = H(t,Fi)

√
d(t)/2

for t > 0.5, where c(t) = 1− (t− 0.5)2, d(t) = 1− (1/2) sin t and H(t,Fi) =

0.2H(t,Fi−1) + εi for t ≤ 0.5, and H(t,Fi) = 0.2H(t,Fi−1) + ηi for t > 0.5.
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Table 5. Simulated type I error of the test (3.15) for a change point in the lag-1
correlation in model II0 and of the test (4.15) for a relevant change point test in the
lag-1 correlation (at the boundary point of the null) in model III0. The last column
represents the simulated Type I error if the bandwidth is bn selected by GCV.

II0

bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV
5% 4.45 3.9 3.8 4.15 2.9 3 2.85 3.6

10% 9.8 9.2 9.2 8.4 7 7.55 6.7 8.55

III0
5% 6.25 5.75 5.9 5.2 6.2 6.05 4.7 4.6

10% 10.15 10 10.1 9.7 11.4 10.8 8.8 8.35

’ ’

’ ’

Figure 3. Simulated power. Upper left panel: test for a constant lag-1 correlation defined
in (3.15) (model (I’)). Upper right panel: test for constant lags-1 and lag-2 correlation
defined in (3.15) (model (I’)). Lower left panel: test for the hypothesis of a non-relevant
change in the lag-1 correlation defined in (4.15) (model (II’)). Lower right panel: test
for the hypothesis of a non-relevant change in the lag-1 and lag-2 correlation defined in
(4.15) (model (II’)).

(III∗0 ). G(t,Fi) = H(t,Fi)
√

1− (t− 0.5)2/2, where H(t,Fi) = 0.1H(t,Fi−1)+

εi for t ≤ 0.5, and H(t,Fi) = 0.4H(t,Fi−1) + ηi for t > 0.5,

where Fi = (η−∞ε−∞, . . . , η0, ε0, . . . , ηi, εi). In summary, the proposed test pro-

cedures work reasonably well as long as the underlying processes are not too

different from PLS processes. An important class of non-stationary processes

that are not PLS and cannot be handled by our methodology are the unit root

non-stationary processes.
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5.3. Power properties

In this section we investigate the power of the proposed tests in two scenarios.

Let {εi}i∈Z be i.i.d N(0,1).

(I’) G(t,Fi) = H(t,Fi)
√
c(t)/2 for t ≤ 0.5, and G(t,Fi) = H1(t,Fi)

√
c(t)/2 for

t > 0.5, where c(t) = 1− (t−0.5)2, H(t,Fi) = 0.2H(t,Fi−1)+εi for t ≤ 0.5,

and H(t,Fi) = (0.2− λ)H(t,Fi−1) + εi for t > 0.5.

(II’)G(t,Fi) = H(t,Fi)
√

1− (t− 0.5)2/2, whereH(t,Fi) = (0.1−λ)H(t,Fi−1)+
εi for t ≤ 0.5, and H(t,Fi) = 0.4H(t,Fi−1) + εi for t > 0.5.

Model (I’) is used to study the power of the test (3.15) for the “classical”

hypothesis of no change point in the correlation for various values of λ, where

λ = 0 corresponds to the null hypothesis of a constant correlation. In the upper

panel of Figure 3 we show the simulated power of the test for a constant lag-1

correlation while in the upper right panel corresponding results of the test for a

constant lag-1 and lag-2 correlations are displayed. We observe a decrease in

power, which can be explained by the observation, that in model (I’) the jump

size of the lag 2-correlation is |0.22 − (0.2 − λ)2|, which is not monotone with

respect to λ. The power properties of the test (4.15) of a change is investigated in

model (II’). In the lower left panel of Figure 3 we display the simulated rejection

probabilities for the hypotheses of a non-relevant change in the lag-1 correlation,

that is

H0 : ∆1 ≤ 0.3 versus H1 : ∆1 > 0.3,

where −0.6 ≤ λ ≤ 0 corresponds to the null hypothesis. In the lower right panel

we investigate the hypotheses for lag-1 and lag-2 correlations, that is

H0 : ∆1 ≤ 0.3 and ∆2 ≤ 0.15 versus H1 : ∆1 > 0.3 or ∆2 > 0.15,

where 0.1 −
√

0.31 ≤ λ ≤ 0 corresponds to the null hypothesis. We observe

a decrease in power (note again that, the jump size of the lag 2-correlation is

|0.42 − (0.1− λ)2|, which is not monotone with respect to λ). We conclude that

in all cases under consideration the proposed methodology can detect (relevant)

changes in the correlation structures with reasonable size.

Remark 10. The power of the proposed tests depends sensitively on the choice

of the bandwidth bn. Ideally, if the errors are i.i.d or the series is strictly station-

ary, the optimal bandwidth can be calculated by an Edgeworth-expansion-based

method (see Gao and Gijbels (2008)) such that the power is optimized. However,

the extension of this approach to a PLS scenario is non-trivial, and is out of the
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Figure 4. Percentage change (left panel) and the squared percentage change (right panel)
of exchange rate of USD/CAD. The line in the right panel is the fitted mean for the
squared percentage change.

present scope but an interesting problem for future work. In the case of a sta-

tionary null hypothesis, we have also compared the power of our test presented

with algorithms specifically designed for stationary processes. We observed that

our approach has decent power; these results are presented in Section C.1 of the

supplementary material.

6. Data Analysis

We analyze the daily exchange rate of U.S. dollar/Canadian dollar from

Nov 18th, 2011 to Jun 24th, 2016. The data can be obtained from https:

//www.federalreserve.gov/releases/h10/hist/. The series contains 1,154

data points. During the period, USD/CAD has changed drastically in the range

(0.9710, 1.4592). The wide range of the exchange rate motivates us to further

investigate the robustness of the volatility of the percentage change of the series

during the period. Figure 4 shows the percentage change and squared percentage

change of the exchange rate data. The pattern of the squared percentage change

of exchange rate displays non-stationarity. For the test over the whole period,

the GCV method selects bn = 0.34 and cn = 0.3 and the MV method select

m = 18. For this section, the critical values were generated by 8,000 bootstrap

replications. We used the statistic (3.5) to estimate the abrupt change points in

https://www.federal reserve.gov/releases/h10/hist/.
https://www.federal reserve.gov/releases/h10/hist/.
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−
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Figure 5. P-values of the bootstrap test for a relevant change in the lag-1, lag-2 and lag-
(1, 2) correlations for the squared percentage change of USD/CAD for different values
of the threshold δ. The horizontal line marks the significance level 0.05.

the variance with ζ = 0.10 and L = 31, and identified a variance change point

t∗n = 795, which corresponds to Jan 15th, 2015.

Let Xt represent the squared percentage change at day t, and consider the

relationship between Xt and Xt−i, i = 1, 2, 3. We performed our test on lag 1,

2 and 3 simultaneously to check two null hypothesis: (i) all three correlations

are 0, (ii) all three correlations stay constant during the time considered. For

(ii), we use the testing procedure in Section 3. For testing (i), we modified the

test procedure in Section 3 by setting Tn in (3.9) as Tn = max1≤i≤n |Si|. The

test statistic is the corresponding quantity T̂n that replaces the error in Tn by

the local linear residuals. The critical value was generated by the bootstrap

sample of maxm+1≤i≤n−m+1 |Φ̂i,m| where Φ̂i,m is defined in (3.14). For null

hypothesis (i), the test statistics was 4.05, with simulated p-Value 1.2%. For null

hypothesis (ii), the test statistics was 2.09 with simulated p-value 4.5%. Hence

there is moderately strong evidence that there are non-zero and non-constant

correlations among the three lags.

We analyzed the correlation at lags 1,2,3 separately. We tested the con-

stancy in the lag-1 correlation for squared percentage change. The p-value for

the test of no change points in the lag-1 correlation was 7.6%. (see Table 6),
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Table 6. Tests for the existence of a change point in the lag-1 and lag-2 correlations of the
USD/CAD series, respectively. v∗α denotes the critical values obtained by the bootstrap
procedure. “Whole” represents the whole period, “Before” and “After” represent the
period before and after the detected change date.

lag 1-Correlation lag 2-Correlation
Whole Before After Whole Before After

Test Stat. 1.28* 0.50 0.99 1.38** 0.40 2.74
v∗90% 1.23 0.70 1.01 1.15 0.72 3.95
v∗95% 1.36 0.78 1.12 1.3 0.80 4.70
bn 0.34 0.18 0.54 0.34 0.29 0.15
m 18 9 22 18 18 12
cn 0.13 0.24 0.19 0.13 0.14 0.34

and the p-value for null hypothesis (i) of zero lag-1 correlation was 4.1%. Next

we used the statistic (4.4) to identify the location of the change point of the

first order correlation and found t̂n = 397, which corresponds to Jun 18th, 2013.

We investigated the existence of further changes in the lag-1 correlation before

and after the Jun 18th, 2013 and concluded that there are no further structural

breaks in the lag-1 correlation during the two periods at 5% significance level,

with the p-value 40% and 11%, respectively, for the first and second period. For

the first period, the test statistic for zero lag-1 correlation was 1.98 with p-value

< 1%. For the second period, the test statistic for zero lag-1 correlation was 2.25

with p-value 1.1%. The identified change point in the lag-1 correlation is close

to the date that USD/CAD significantly exceeded the boundary 1. Before this

date, the exchange rate was slightly fluctuating around 1, and after this point

the exchange rate increased over 1.4 and never returned to 1.

For lag-2, the testing result are also presented in Table 6. There p-value

for the test of hypothesis of zero lag-2 correlation is < 1%, while the p-value of

constant lag-2 correlation is 2.7%. The location of the jump time for the lag-2

correlation is 695 which corresponds to Aug 25, 2014. We also investigated the

lag-2 correlation before and after Aug 25, 2014. For the hypothesis of constant

lag-2 correlation, The p-values were 71% and 26% for the first and second period,

respectively. For the hypothesis of zero lag-2 correlation, the p-values were 1%

and 18% before and after the jump, respectively. The identified change point

in the lag-2 correlation is close to the date where the Crude oil price drastically

decreased from 100 USD per barrel to 50 USD per barrel. The oil price has a

great impact on the economy of Canada, which is one of the decisive factors of

the exchange rate.
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For lag-3, the test statistic for no changes in correlation was 0.96 with p-value

43.3%. The test statistic for zero lag-3 correlation was 1.11 with p-value 58.9%.

We conclude that correlations of the squared percentage changes concentrate in

lag-1 and lag-2, with change points existing in both lags. Interestingly, the time

of change for lag-1 and 2 correlations are different.

We further performed tests from Section 4 for relevant changes in lag-1, lag-2

correlations separately and jointly (the trajectory we considered was δ1 = δ2) for

the USD/CAD data. The estimates of the lag-1 correlation before and after the

break point were −0.056 and 0.079 while, for the lag-2 correlation, the estimates

before and after the jump were 0.092 and −0.034. The p-values of the tests for a

relevant change in the lag-1/lag-2 correlation for different values of the threshold

δ are displayed in Figure 5. At 5% significance level, we conclude that there are

relevant changes with size δ = 0.032 in the lag-1 correlation, δ = 0.024 in the

lag-2 correlation, and size δ = 0.026 in lag-1 or lag-2 correlation. The p-values

of the tests for relevant changes in the lag-1 or 2 correlation for different values

of the threshold δ for the USD/CAD are displayed in Figure 5.

The correlations of the squared series are closely related to the ARCH ef-

fect. For example, Baillie and Chung (2001) estimated the GARCH model via

the autocorrelations of the square of the process. Our method shows that the

USD/CAD from late 2011-mid 2016 may not be well fitted by a simple ARCH/

GARCH model due to the changes in the correlation structure. Further, the

negative first order correlation in the first period shows that USD/CAD from

late 2011-mid 2013 may not be well fitted by usual ARCH/GARH model, due to

their restriction of positive coefficients. Other models, for example the EGARCH

model should be considered. We have also identified very different pattern of

squared percentage changes of USD/CAD in the three lags considered: there is

weak evidence against the null hypothesis of constant lag-1 correlation, strong

evidence against constant lag-2 correlation, no evidence against constant lag-3

correlation, and strong evidence against constant lag-1, lag-2 and lag-3 correla-

tions. We have no evidence against zero lag-3 correlation, while we have strong

evidence against the hypotheses of zero lag-1 or lag-2 correlations.

Supplementary Materials

The supplementary materials contains the proofs of theorems and additional

simulation results.
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