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S1 Proofs

Proof of Lemma 1. Let T and P denote the test statistic and the

corresponding p-value for testing H, respectively. When testing H, a type

3 error occurs if H is rejected and θT < 0. Then, the type 3 error rate is

given by Pr(P ≤ α, θT < 0).

When θ > 0, we have

Pr(P ≤ α, θT < 0) = Pr(2F0(T ) ≤ α, T < 0)

= Pr
(
T ≤ F−1

0

(α
2

))
= Fθ

(
F−1
0

(α
2

))
≤ F0

(
F−1
0

(α
2

))
=

α

2
.
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The inequality follows from the assumption that Fθ is stochastically increas-

ing in θ. Similarly, when θ < 0, we can also prove that Pr(P ≤ α, θT <

0) ≤ α
2
.

Proof of Theorem 1(i). Induction will be used to show that Procedure

1 strongly controls the mdFWER at level α. First consider the case of

n = 2. We show control of the mdFWER of Procedure 1 in all possible

combinations of true and false null hypotheses while testing two hypotheses

H1 and H2.

Case I: H1 is true. Type 1 or type 3 error occurs only when H1 is rejected.

mdFWER = Pr(P1 ≤ α) ≤ α.

Case II: Both H1 and H2 are false. We have no type 1 errors but only

type 3 errors.

mdFWER

= Pr({P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, T1θ1 ≥ 0, P2 ≤ α/2, T2θ2 < 0})

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α/2, T2θ2 < 0)

≤ α

2
+

α

4
=

3α

4
.

The first inequality follows from Bonferroni inequality and the second fol-

lows from Lemma 1.

Case III: H1 is false and H2 is true. The mdFWER is bounded above
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by

Pr( make type 3 error when testing H1)

+ Pr( make type 1 error when testing H2)

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α/2)

≤ α

2
+

α

2
= α.

The first inequality follows from Bonferroni inequality and the second fol-

lows from Lemma 1 and P2 ∼ U(0, 1) since H2 is true.

Now assume the inductive hypothesis that the mdFWER is bounded

above by α when testing at most n − 1 hypotheses by using Procedure 1

at level α. In the following, we prove the mdFWER is also bounded above

by α when testing n hypotheses H1, . . . , Hn. Without loss of generality,

assume H1 is a false null (if H1 is a true null, the desired result directly

follows by using the same argument as in Case I of n = 2). Then, the

mdFWER is bounded above by

Pr( make type 3 error when testing H1)

+ Pr( make at least one type 1 or type 3 errors when testing H2, . . . , Hn)

≤ α

2
+

α

2
= α.

The inequality follows from the induction assumption, noticing thatH2, . . . , Hn

are tested by using Procedure 1 at level α/2. Thus, the desired result fol-
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lows.

(ii). We now prove that the critical constants are unimprovable. For in-

stance, when H1 is true, it is easy to see that the first critical constant, α,

is unimprovable. For each given k = 2, . . . , n, when θi > 0, i = 1, . . . , k − 1

and θk = 0, that is, Hi, i = 1, . . . , k− 1 are false and Hk is true, we present

a simple joint distribution of the test statistics T1, . . . , Tk to show that the

kth critical constant of this procedure is also unimprovable.

Define Zk ∼ N(0, 1) and Zi = Φ−1(|2Φ(Zi+1) − 1|), i = 1, . . . , k − 1,

where Φ(·) is the cdf of N(0, 1). Let qi denote Zi’s upper α/2
i quantile. It

is easy to check that for each i = 1, . . . , k, Zi ∼ N(0, 1). Thus, −qi is Zi’s

lower α/2i quantile. In addition, by the construction of Zi’s, it is easy to

see that the event Zi ≥ qi is equivalent to the event Zi+1 /∈ (−qi+1, qi+1).

Let Ti = Zi + θi, i = 1, . . . , k, thus Ti ∼ N(θi, 1). Then, as θi → 0+ for

i = 1, . . . , k − 1, we have

mdFWER =
k−1∑
j=1

Pr(T1 ≥ q1, . . . , Tj−1 ≥ qj−1, Tj ≤ −qj)

+ Pr(T1 ≥ q1, . . . , Tk−1 ≥ qk−1, Tk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Z1 ≥ q1, . . . , Zj−1 ≥ qj−1, Zj ≤ −qj)

+ Pr(Z1 ≥ q1, . . . , Zk−1 ≥ qk−1, Zk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Zj ≤ −qj) + Pr(Zk /∈ (−qk, qk))

4



=
k−1∑
j=1

α

2j
+

α

2(k−1)
= α.

Thus, the kth critical constant of Procedure 1 is unimprovable and hence

each critical constant of Procedure 1 is unimprovable under arbitrary de-

pendence.

Proof of Lemma 2. Note that when θ1 > 0 and θ2 = 0, we have

mdFWER

= Pr (P1 ≤ α, θ1T1 < 0) + Pr (P1 ≤ α, θ1T1 ≥ 0, P2 ≤ α)

= Pr (P1 ≤ α, T1 < 0) + Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 > 0)

+Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 ≤ 0)

= Pr (2F0(T1) ≤ α) + Pr (2(1− F0(T1)) ≤ α, 2(1− F0(T2)) ≤ α)

+Pr (2(1− F0(T1)) ≤ α, 2F0(T2) ≤ α)

= Pr (T1 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2) + Pr (T1 ≥ c2, T2 ≤ c1)

= Fθ1(c1) + 1− Fθ1(c2)− F0(c2) + F(θ1,0)(c2, c2) + F0(c1)− F(θ1,0)(c2, c1)

= α + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1). (S1.1)

Specifically, under Assumption 1 (independence), (S1.1) can be simplified

as,

α + Fθ1(c1)− Fθ1(c2) + Fθ1(c2)F0(c2)− Fθ1(c2)F0(c1)

= α + Fθ1(c1)− αFθ1(c2).
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Similarly, when θ1 < 0 and θ2 = 0, we can prove that

mdFWER = 1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2).

Proof of Lemma 3. By using the same arguments as in Theorem 1,

we can easily prove control of the mdFWER of Procedure 2 in the case of

n = 2 when H1 is true or both H1 and H2 are false. In the following, we

prove the desired result also holds when H1 is false and H2 is true.

Note that H1 is false and H2 is true imply θ1 ̸= 0 and θ2 = 0. To show

that the mdFWER is controlled for θ1 > 0 and θ2 = 0, we only need to

show by Lemma 2 that α + Fθ1(c1) − αFθ1(c2) ≤ α. This is equivalent to

show

Fθ1(c2) (F0(c2)− F0(c1)) ≤ Fθ1(c2)− Fθ1(c1). (S1.2)

For proving (S1.2), it is enough to prove the following, as 0 ≤ F0(c2) ≤

1,

Fθ1(c2) (F0(c2)− F0(c1)) ≤ F0(c2) (Fθ1(c2)− Fθ1(c1)) . (S1.3)

Dividing both sides of (S1.3) by Fθ1(c2)F0(c2), we see that we only need

to prove,

1− F0(c1)

F0(c2)
≤ 1− Fθ1(c1)

Fθ1(c2)
,

which follows directly from (3.5) and Assumption 2 (MLR).
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Similarly, to show that the mdFWER is controlled for θ1 < 0 and

θ2 = 0, we only need to show by Lemma 2 that 1 + αFθ1(c1)−Fθ1(c2) ≤ α.

This is equivalent to showing

(1− α) (1− Fθ1(c1)) ≤ Fθ1(c2)− Fθ1(c1).

Writing 1 − α as (1− F0(c1)) − (1− F0(c2)) and writing Fθ1(c2) − Fθ1(c1)

as

(1− Fθ1(c1))− (1− Fθ1(c2)), we get that it is equivalent to prove

[(1− F0(c1))− (1− F0(c2))] (1− Fθ1(c1)) ≤ (1− Fθ1(c1))− (1− Fθ1(c2)) .(S1.4)

Since 0 ≤ 1 − F0(c1) ≤ 1, to prove inequality (S1.4), it is enough to prove

the following,

(1− Fθ1(c1)) [(1− F0(c1))− (1− F0(c2))]

≤ (1− F0(c1)) [1− Fθ1(c1)]− [1− Fθ1(c2)] . (S1.5)

Dividing both sides of (S1.5) by (1− Fθ1(c1)) (1− F0(c1)), we see that prov-

ing (S1.4) is equivalent to showing

1− Fθ1(c2)

1− Fθ1(c1)
≤ 1− F0(c2)

1− F0(c1)
, (S1.6)

which follows directly from (3.6) and Assumption 2 (MLR). By combining

the arguments of the above two cases, the desired result follows.
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Proof of Theorem 2. The proof is by induction on number of hypothe-

ses n. We already proved strong control of the mdFWER for n = 2 in

Lemma 3. Let us assume the result holds for testing any n = k hypotheses,

that is, mdFWER ≤ α while testing any k pre-ordered hypotheses. We now

argue that is will hold for n = k+1 hypotheses. Without loss of generality,

assume H1 is a false null, as in the proof of Theorem 1.

Let V
(−1)
k+1 denote the total number of type 1 or type 3 errors commit-

ted while testing H2, . . . , Hk+1 and excluding H1. Then, by the inductive

hypothesis, the mdFWER while testing the k hypotheses H2, . . . , Hk+1 is

Pr(V
(−1)
k+1 > 0) ≤ α. Then, the mdFWER of testing k + 1 hypotheses

H1, . . . , Hk+1 is defined by

Pr
(
{P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, T1θ1 ≥ 0, V

(−1)
k+1 > 0}

)
= Pr (P1 ≤ α, T1θ1 < 0) + Pr (P1 ≤ α, T1θ1 ≥ 0) · Pr

(
V

(−1)
k+1 > 0

)
≤ Pr (P1 ≤ α, T1θ1 < 0) + α Pr (P1 ≤ α, T1θ1 ≥ 0) . (S1.7)

The equality follows by Assumption 1 (independence) and the inequality

follows by the inductive hypothesis. Note that (S1.7) is the same as (3.8)

under independence, which is equal to the mdFWER of Procedure 2 in

the case of two hypotheses. So again by applying Lemma 3, we get that

mdFWER ≤ α for n = k + 1. Hence, the proof follows by induction.
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Proof of Theorem 3 . Without loss of generality, we assume θi > 0 if

θi ̸= 0 for i = 1, . . . , n. Also, if there exists an i with θi = 0, by induction,

we can simply assume i0 = n. Thus, to prove the mdFWER control of

Procedure 2, we only need to consider two cases:

(i) θi > 0 for i = 1, . . . , n;

(ii) θi > 0 for i = 1, . . . , n− 1 and θn = 0.

Case (i). Consider the general case of θi > 0, i = 1, . . . , n. By Assumption

3, the test statistics T1, . . . , Tn are positively regression dependent. For

j = 1, . . . , n − 1, let En−j denote the event of making at least one type 3

error when testing Hj+1, . . . , Hn using Procedure 2 at level α. By using

induction, we prove the following two lemmas hold.

Lemma 1. Assume the conditions of Theorem 3. For j = 1, . . . , n− 1, the

following inequality holds.

Pr(En−j|T1 > c2, . . . , Tj > c2) ≤ α. (S1.8)

Proof of Lemma 1. We prove the result by using reverse induction.
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When j = n− 1, we have

Pr(En−j|T1 > c2, . . . , Tj > c2)

= Pr(Tn < c1|T1 > c2, . . . , Tn−1 > c2)

=
Pr(Tn < c1)Pr(T1 > c2, . . . , Tn−1 > c2|Tn < c1)

Pr(T1 > c2, . . . , Tn−1 > c2)

≤ Pr(Tn < c1) ≤ α.

The inequality follows from Assumption 3.

Assume the inequality (S1.8) holds for j = m. In the following, we

prove that it also holds for j = m− 1. Note that

Pr(En−m+1|T1 > c2, . . . , Tm−1 > c2)

= Pr
(
{Tm < c1}

∪(
{Tm > c2}

∩
En−m

) ∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ Pr
(
{Tm > c2}

∩
En−m

∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ Pr
(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)
Pr

(
En−m

∣∣T1 > c2, . . . , Tm > c2
)

≤ Pr
(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ αPr
(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)

≤ α.

Therefore, the desired result follows. Here, the first inequality follows from
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the assumption of induction and the second follows from Lemma 2 below.

Lemma 2. Assume the conditions of Theorem 3. For j = 1, . . . , n− 1, the

following inequality holds:

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

+ αPr
(
Tj > c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ α. (S1.9)

Specifically, for j = 1, we have

Pr (T1 < c1) + αPr (T1 > c2) ≤ α.

Proof of Lemma 2. To prove the inequality (S1.9), it is enough to show

that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ αPr

(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
,

which is equivalent to

(1− α)Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)

≤ Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
− Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
.

Note that

1− α = Prθj=0(Tj < c2)− Prθj=0(Tj < c1).

Thus, the above inequality is equivalent to

Prθj=0(Tj < c2)−Prθj=0(Tj < c1) ≤ 1−
Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ,
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which in turn is implied by

1−
Prθj=0(Tj < c1)

Prθj=0(Tj < c2)

≤ 1−
Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) . (S1.10)

Note that by Assumption 2, we have

Pr(Tj < c1)

Pr(Tj < c2)
≤

Prθj=0(Tj < c1)

Prθj=0(Tj < c2)
.

Thus, to prove the inequality (S1.10), we only need to show that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ≤ Pr(Tj < c1)

Pr(Tj < c2)
,

which is equivalent to

Pr
(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c1
)
≤ Pr

(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c2
)
,

which follows from Assumption 3. Therefore, the desired result follows.

Based on Lemmas 1 and 2, we have

mdFWER = Pr(T1 < c1) +
n∑

j=2

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

= Pr(T1 < c1) + Pr(T1 > c2)
n∑

j=2

Pr(T2 > c2, . . . , Tj−1 > c2, Tj < c1|T1 > c2)

= Pr(T1 < c1) + Pr(T1 > c2)Pr(En−1|T1 > c2)

≤ Pr(T1 < c1) + αPr(T1 > c2)

≤ α.
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Therefore, the mdFWER is controlled at level α for Case (i). Here, the first

inequality follows from Lemma 1 and the second follows from Lemma 2.

Case (ii). Consider the general case of θi > 0, i = 1, . . . , n− 1 and θn = 0.

Under Assumption 3, Ti, i = 1, . . . , n−1 are positively regression dependent

and under Assumption 4, Tn is independent of Ti’s . Note that

mdFWER

=
n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tn−1 > c2, Tn < c1) + Pr(T1 > c2, . . . , Tn > c2)

=
n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tn−1 > c2).

The second equality follows from Assumption 4.

For m = 1, . . . , n− 1, define

∆m =
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) +αPr(T1 > c2, . . . , Tm > c2).

Thus, mdFWER = ∆n−1. By using induction, we prove below that ∆m ≤ α

for m = 1, . . . , n− 1.

For m = 1, by using Lemma 2, we have

∆1 = Pr (T1 < c1) + αPr (T1 > c2) ≤ α.
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Assume ∆m ≤ α. In the following, we show ∆m+1 ≤ α. Note that

∆m+1

=
m+1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ αPr(T1 > c2, . . . , Tm > c2, Tm+1 > c2)

=
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tm > c2) [Pr(Tm+1 < c1|T1 > c2, . . . , Tm > c2)

+ αPr(Tm+1 > c2|T1 > c2, . . . , Tm > c2)]

≤
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tm > c2)

= ∆m ≤ α. (S1.11)

The first inequality follows from Lemma 2 and the second follows from the

inductive hypothesis. Thus, ∆m ≤ α for m = 1, . . . , n − 1. Therefore,

mdFWER = ∆n−1 ≤ α, the desired result.

Combining the arguments of Cases (i) and (ii), the proof of Theorem 3

is complete.

Proof of Proposition 2. From the proof of Theorem 1 and by Lemma

1, it is easy to see that we only need to prove the mdFWER control of

Procedure 2 when H1 is false and H2 is true, i.e., θ1 ̸= 0 and θ2 = 0.

Case I: θ1 > 0 and θ2 = 0. By Lemma 2, the mdFWER of Procedure 2 is
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controlled at level α if we have the following:

Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1) ≤ 0.

After rewriting F(θ1,0)(x, y) as Pr(T1 ≤ x, T2 ≤ y) and then dividing through

by Pr(T1 ≤ c2), we get,

Pr (T2 ≤ c2|T1 ≤ c2)− Pr (T2 ≤ c1|T1 ≤ c2) ≤ 1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)
.

Dividing by Pr (T2 ≤ c2|T1 ≤ c2), we get,

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)

≤ 1

Pr (T2 ≤ c2|T1 ≤ c2)

(
1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)

)
. (S1.12)

For proving (S1.12), it is enough to prove the following inequality, as

1
Pr(T2≤c2|T1≤c2)

≥ 1.

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)
≤ 1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)
. (S1.13)

By Assumption 2 and (3.5), it follows that F0(c2)
F0(c1)

≤ Fθ1
(c2)

Fθ1
(c1)

, which is equiva-

lent to, 1− Pr(T2≤c1)
Pr(T2≤c2)

≤ 1− Pr(T1≤c1)
Pr(T1≤c2)

. Thus for proving (S1.12), it is enough

to prove the following:

1− Pr (T2 ≤ c1|T1 ≤ c2)

Pr (T2 ≤ c2|T1 ≤ c2)
≤ 1− Pr(T2 ≤ c1)

Pr(T2 ≤ c2)
. (S1.14)

But, (S1.14) is equivalent to showing

Pr (T1 ≤ c2|T2 ≤ c1) ≥ Pr (T1 ≤ c2|T2 ≤ c2) ,
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which follows directly from Assumption 5.

Case II: θ1 < 0 and θ2 = 0. Similarly, by Lemma 2, the mdFWER of

Procedure 2 is controlled at level α if we have the following:

1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2) ≤ α, (S1.15)

which after some rearrangement and rewriting 1−α as F0(c2)−F0(c1) gives,

(
F0(c2)− F(θ1,0)(c1, c2)

)
−

(
F0(c1)− F(θ1,0)(c1, c1)

)
≤ (1− Fθ1(c1))− (1− Fθ1(c2)) . (S1.16)

Thus, proving (S1.15) is equivalent to proving that

Pr (T1 ≥ c1, T2 ≤ c2)− Pr (T1 ≥ c1, T2 ≤ c1) ≤ Pr (T1 ≥ c1)− Pr (T1 ≥ c2) .

Dividing through by Pr(T1 ≥ c1), we get

Pr (T2 ≥ c1|T1 ≥ c1)− Pr (T2 ≥ c2|T1 ≥ c1)

≤ 1− Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
. (S1.17)

Thus to prove (S1.15), it is enough to prove the following,

1− Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≤ 1− Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
,

which is equivalent to proving,

Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≥ Pr(T1 ≥ c2)

Pr(T1 ≥ c1)
. (S1.18)
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By Assumption 2 and (3.6), it follows that for θ1 < 0, Pr(T1≥c2)
Pr(T1≥c1)

≤ Pr(T2≥c2)
Pr(T2≥c1)

.

Thus to prove (S1.15), it is enough to prove the following,

Pr (T2 ≥ c2|T1 ≥ c1)

Pr (T2 ≥ c1|T1 ≥ c1)
≥ Pr(T2 ≥ c2)

Pr(T2 ≥ c1)
. (S1.19)

But (S1.19) is equivalent to showing

Pr (T1 ≥ c1|T2 ≥ c2) ≥ Pr (T1 ≥ c1|T2 ≥ c1) , (S1.20)

which follows directly from Assumption 5. By combining the arguments of

the above two cases, the desired result follows.

Proof of Proposition 3. By Corollary 1, without loss of generality,

assume that θi > 0, i = 1, 2 and θ3 = 0, that is, H1 and H2 are false and H3

is true. Note that

mdFWER

= Pr(T1 ≤ c1) + Pr(T1 ≥ c2, T2 ≤ c1) (S1.21)

+ Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2)) .

In the following, we prove that

Pr(T1 ≥ c2, T2 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2))

≤ Pr (T1 ≥ c2, T3 /∈ (c1, c2)) . (S1.22)
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To prove (S1.22), it is enough to show the following inequality:

Pr(T2 ≤ c1|T1) + Pr (T2 ≥ c2, T3 /∈ (c1, c2)|T1)

≤ Pr (T3 /∈ (c1, c2)|T1) . (S1.23)

Note that

Pr (T2 ≥ c2, T3 ≤ c1|T1)

= Pr(T3 ≤ c1|T1)− Pr (T2 < c2, T3 ≤ c1|T1) (S1.24)

and

Pr (T2 ≥ c2, T3 ≥ c2|T1) (S1.25)

= 1− Pr(T2 < c2|T1)− Pr(T3 < c2|T1) + Pr (T2 < c2, T3 < c2|T1) .

In addition, we have

Pr (T3 /∈ (c1, c2)|T1) = 1 + Pr(T3 ≤ c1|T1)− Pr(T3 < c2|T1). (S1.26)

Thus, in order to show (S1.23), by combining (S1.24)-(S1.26), we only need

to prove the following inequality:

Pr (T2 < c2, T3 < c2|T1)− Pr (T2 < c2, T3 ≤ c1|T1)

≤ Pr(T2 < c2|T1)− Pr(T2 ≤ c1|T1). (S1.27)

18



Note that (S1.27) can be rewritten as

Pr (T2 < c2, T3 < c2|T1)

[
1− Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)

]
≤ Pr(T2 < c2|T1)

[
1− Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)

]
. (S1.28)

Thus, to prove (S1.27), it is enough to show

1− Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
≤ 1− Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)
. (S1.29)

That is,

Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)
≤ Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
. (S1.30)

By Assumption 6 (BMLR), we have

Pr(T2 ≤ x2|T1)

Pr(T3 ≤ x2|T1)
≥ Pr(T2 ≤ x1|T1)

Pr(T3 ≤ x1|T1)
. (S1.31)

By (S1.31), to prove (S1.30), it is enough to show

Pr(T3 ≤ c1|T1)

Pr(T3 < c2|T1)
≤ Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)
. (S1.32)

That is,

Pr (T2 < c2|T3 < c2, T1) ≤ Pr (T2 < c2|T3 < c1, T1) . (S1.33)

The inequality (S1.33) holds under Assumption 5. Therefore, the inequality

(S1.22) holds.

Based on (S1.21)-(S1.22) and Proposition 1, we have

mdFWER = Pr(T1 ≤ c1) + Pr (T1 ≥ c2, T3 /∈ (c1, c2)) ≤ α.
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Thus, the desired result follows.

Proof of Theorem 4. By Corollary 1, without loss of generality, assume

that θi > 0, i = 1, . . . , n − 1 and θn = 0, that is, Hi, i = 1, . . . , n − 1 are

false and Hn is true. Note that

mdFWER

=
n−1∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) (S1.34)

+ Pr(T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2)).

In the following, we prove that

Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn−1 ≤ c1)

+ Pr (T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2))

≤ Pr (T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)) . (S1.35)

To prove (S1.35), it is enough to show the following inequality:

Pr(Tn−1 ≤ c1|T1, . . . , Tn−2)

+ Pr (Tn−1 ≥ c2, Tn /∈ (c1, c2)|T1, . . . , Tn−2)

≤ Pr (Tn /∈ (c1, c2)|T1, . . . , Tn−2) . (S1.36)

By using the same argument as in proving (S1.23) in the case of three hy-

potheses, we can prove that the inequality (S1.36) holds under Assumptions
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5 and 7. Then, by combining (S1.34) and (S1.35), we have

mdFWER

≤
n−2∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) (S1.37)

+ Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)).

Note that the right-hand side of (S1.37) is the mdFWER of Procedure

2 when testing H1, . . . , Hn−2, Hn. By induction and Proposition 1, the

mdFWER is bounded above by α, the desired result.
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