CONTROL OF DIRECTIONAL ERRORS IN FIXED SEQUENCE MULTIPLE TESTING

Anjana Grandhi ${ }^{1}$, Wenge Guo ${ }^{2}$ and Joseph P. Romano ${ }^{3}$
${ }^{1}$ Merck Research Laboratories, ${ }^{2}$ New Jersey Institute of Technology,
${ }^{3}$ Stanford University

Supplementary Material

S1 Proofs

Proof of Lemma \mathbb{D}. Let T and P denote the test statistic and the corresponding p-value for testing H, respectively. When testing H, a type 3 error occurs if H is rejected and $\theta T<0$. Then, the type 3 error rate is given by $\operatorname{Pr}(P \leq \alpha, \theta T<0)$.

When $\theta>0$, we have

$$
\begin{aligned}
& \operatorname{Pr}(P \leq \alpha, \theta T<0)=\operatorname{Pr}\left(2 F_{0}(T) \leq \alpha, T<0\right) \\
= & \operatorname{Pr}\left(T \leq F_{0}^{-1}\left(\frac{\alpha}{2}\right)\right)=F_{\theta}\left(F_{0}^{-1}\left(\frac{\alpha}{2}\right)\right) \\
\leq & F_{0}\left(F_{0}^{-1}\left(\frac{\alpha}{2}\right)\right)=\frac{\alpha}{2} .
\end{aligned}
$$

The inequality follows from the assumption that F_{θ} is stochastically increasing in θ. Similarly, when $\theta<0$, we can also prove that $\operatorname{Pr}(P \leq \alpha, \theta T<$ 0) $\leq \frac{\alpha}{2}$.

Proof of Theorem $\boldsymbol{T}(\mathrm{i})$. Induction will be used to show that Procedure 1 strongly controls the mdFWER at level α. First consider the case of $n=2$. We show control of the mdFWER of Procedure \mathbb{T} in all possible combinations of true and false null hypotheses while testing two hypotheses H_{1} and H_{2}.

Case I: H_{1} is true. Type 1 or type 3 error occurs only when H_{1} is rejected.

$$
\operatorname{mdFWER}=\operatorname{Pr}\left(P_{1} \leq \alpha\right) \leq \alpha
$$

Case II: Both H_{1} and H_{2} are false. We have no type 1 errors but only type 3 errors.

$$
\begin{aligned}
& \text { mdFWER } \\
= & \operatorname{Pr}\left(\left\{P_{1} \leq \alpha, T_{1} \theta_{1}<0\right\} \cup\left\{P_{1} \leq \alpha, T_{1} \theta_{1} \geq 0, P_{2} \leq \alpha / 2, T_{2} \theta_{2}<0\right\}\right) \\
\leq & \operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1}<0\right)+\operatorname{Pr}\left(P_{2} \leq \alpha / 2, T_{2} \theta_{2}<0\right) \\
\leq & \frac{\alpha}{2}+\frac{\alpha}{4}=\frac{3 \alpha}{4}
\end{aligned}
$$

The first inequality follows from Bonferroni inequality and the second follows from Lemma [I.

Case III: H_{1} is false and H_{2} is true. The mdFWER is bounded above
by

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { make type } 3 \text { error when testing } H_{1}\right) \\
& +\operatorname{Pr}\left(\text { make type } 1 \text { error when testing } H_{2}\right) \\
\leq & \operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1}<0\right)+\operatorname{Pr}\left(P_{2} \leq \alpha / 2\right) \\
\leq & \frac{\alpha}{2}+\frac{\alpha}{2}=\alpha .
\end{aligned}
$$

The first inequality follows from Bonferroni inequality and the second follows from Lemma \mathbb{l} and $P_{2} \sim U(0,1)$ since H_{2} is true.

Now assume the inductive hypothesis that the mdFWER is bounded above by α when testing at most $n-1$ hypotheses by using Procedure \mathbb{T} at level α. In the following, we prove the mdFWER is also bounded above by α when testing n hypotheses H_{1}, \ldots, H_{n}. Without loss of generality, assume H_{1} is a false null (if H_{1} is a true null, the desired result directly follows by using the same argument as in Case I of $n=2$). Then, the mdFWER is bounded above by
$\operatorname{Pr}\left(\right.$ make type 3 error when testing $\left.H_{1}\right)$
$+\operatorname{Pr}\left(\right.$ make at least one type 1 or type 3 errors when testing $\left.H_{2}, \ldots, H_{n}\right)$ $\leq \frac{\alpha}{2}+\frac{\alpha}{2}=\alpha$.

The inequality follows from the induction assumption, noticing that H_{2}, \ldots, H_{n} are tested by using Procedure \mathbb{T} at level $\alpha / 2$. Thus, the desired result fol-
lows.
(ii). We now prove that the critical constants are unimprovable. For instance, when H_{1} is true, it is easy to see that the first critical constant, α, is unimprovable. For each given $k=2, \ldots, n$, when $\theta_{i}>0, i=1, \ldots, k-1$ and $\theta_{k}=0$, that is, $H_{i}, i=1, \ldots, k-1$ are false and H_{k} is true, we present a simple joint distribution of the test statistics T_{1}, \ldots, T_{k} to show that the k th critical constant of this procedure is also unimprovable.

Define $Z_{k} \sim N(0,1)$ and $Z_{i}=\Phi^{-1}\left(\left|2 \Phi\left(Z_{i+1}\right)-1\right|\right), i=1, \ldots, k-1$, where $\Phi(\cdot)$ is the cdf of $\mathrm{N}(0,1)$. Let q_{i} denote Z_{i} 's upper $\alpha / 2^{i}$ quantile. It is easy to check that for each $i=1, \ldots, k, Z_{i} \sim N(0,1)$. Thus, $-q_{i}$ is Z_{i} 's lower $\alpha / 2^{i}$ quantile. In addition, by the construction of Z_{i} 's, it is easy to see that the event $Z_{i} \geq q_{i}$ is equivalent to the event $Z_{i+1} \notin\left(-q_{i+1}, q_{i+1}\right)$.

Let $T_{i}=Z_{i}+\theta_{i}, i=1, \ldots, k$, thus $T_{i} \sim N\left(\theta_{i}, 1\right)$. Then, as $\theta_{i} \rightarrow 0+$ for $i=1, \ldots, k-1$, we have

$$
\begin{aligned}
\operatorname{mdFWER}= & \sum_{j=1}^{k-1} \operatorname{Pr}\left(T_{1} \geq q_{1}, \ldots, T_{j-1} \geq q_{j-1}, T_{j} \leq-q_{j}\right) \\
& +\operatorname{Pr}\left(T_{1} \geq q_{1}, \ldots, T_{k-1} \geq q_{k-1}, T_{k} \notin\left(-q_{k}, q_{k}\right)\right) \\
= & \sum_{j=1}^{k-1} \operatorname{Pr}\left(Z_{1} \geq q_{1}, \ldots, Z_{j-1} \geq q_{j-1}, Z_{j} \leq-q_{j}\right) \\
& \quad+\operatorname{Pr}\left(Z_{1} \geq q_{1}, \ldots, Z_{k-1} \geq q_{k-1}, Z_{k} \notin\left(-q_{k}, q_{k}\right)\right) \\
= & \sum_{j=1}^{k-1} \operatorname{Pr}\left(Z_{j} \leq-q_{j}\right)+\operatorname{Pr}\left(Z_{k} \notin\left(-q_{k}, q_{k}\right)\right)
\end{aligned}
$$

$$
=\sum_{j=1}^{k-1} \frac{\alpha}{2^{j}}+\frac{\alpha}{2^{(k-1)}}=\alpha
$$

Thus, the k th critical constant of Procedure \mathbb{T} is unimprovable and hence each critical constant of Procedure \mathbb{T} is unimprovable under arbitrary dependence.

Proof of Lemma [2]. Note that when $\theta_{1}>0$ and $\theta_{2}=0$, we have
mdFWER
$=\operatorname{Pr}\left(P_{1} \leq \alpha, \theta_{1} T_{1}<0\right)+\operatorname{Pr}\left(P_{1} \leq \alpha, \theta_{1} T_{1} \geq 0, P_{2} \leq \alpha\right)$
$=\operatorname{Pr}\left(P_{1} \leq \alpha, T_{1}<0\right)+\operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \geq 0, P_{2} \leq \alpha, T_{2}>0\right)$
$+\operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \geq 0, P_{2} \leq \alpha, T_{2} \leq 0\right)$
$=\operatorname{Pr}\left(2 F_{0}\left(T_{1}\right) \leq \alpha\right)+\operatorname{Pr}\left(2\left(1-F_{0}\left(T_{1}\right)\right) \leq \alpha, 2\left(1-F_{0}\left(T_{2}\right)\right) \leq \alpha\right)$
$+\operatorname{Pr}\left(2\left(1-F_{0}\left(T_{1}\right)\right) \leq \alpha, 2 F_{0}\left(T_{2}\right) \leq \alpha\right)$
$=\operatorname{Pr}\left(T_{1} \leq c_{1}\right)+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \geq c_{2}\right)+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \leq c_{1}\right)$
$=F_{\theta_{1}}\left(c_{1}\right)+1-F_{\theta_{1}}\left(c_{2}\right)-F_{0}\left(c_{2}\right)+F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{2}\right)+F_{0}\left(c_{1}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{1}\right)$
$=\alpha+F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right)+F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{2}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{1}\right)$.

Specifically, under Assumption [1] (independence), (S1.1) can be simplified as,

$$
\begin{aligned}
& \alpha+F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right)+F_{\theta_{1}}\left(c_{2}\right) F_{0}\left(c_{2}\right)-F_{\theta_{1}}\left(c_{2}\right) F_{0}\left(c_{1}\right) \\
= & \alpha+F_{\theta_{1}}\left(c_{1}\right)-\alpha F_{\theta_{1}}\left(c_{2}\right) .
\end{aligned}
$$

Similarly, when $\theta_{1}<0$ and $\theta_{2}=0$, we can prove that

$$
\operatorname{mdFWER}=1+F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right)+F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{1}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{2}\right)
$$

Proof of Lemma 33. By using the same arguments as in Theorem [1, we can easily prove control of the mdFWER of Procedure in the case of $n=2$ when H_{1} is true or both H_{1} and H_{2} are false. In the following, we prove the desired result also holds when H_{1} is false and H_{2} is true.

Note that H_{1} is false and H_{2} is true imply $\theta_{1} \neq 0$ and $\theta_{2}=0$. To show that the mdFWER is controlled for $\theta_{1}>0$ and $\theta_{2}=0$, we only need to show by Lemma that $\alpha+F_{\theta_{1}}\left(c_{1}\right)-\alpha F_{\theta_{1}}\left(c_{2}\right) \leq \alpha$. This is equivalent to show

$$
\begin{equation*}
F_{\theta_{1}}\left(c_{2}\right)\left(F_{0}\left(c_{2}\right)-F_{0}\left(c_{1}\right)\right) \leq F_{\theta_{1}}\left(c_{2}\right)-F_{\theta_{1}}\left(c_{1}\right) . \tag{S1.2}
\end{equation*}
$$

For proving (SL.2), it is enough to prove the following, as $0 \leq F_{0}\left(c_{2}\right) \leq$ 1 ,

$$
\begin{equation*}
F_{\theta_{1}}\left(c_{2}\right)\left(F_{0}\left(c_{2}\right)-F_{0}\left(c_{1}\right)\right) \leq F_{0}\left(c_{2}\right)\left(F_{\theta_{1}}\left(c_{2}\right)-F_{\theta_{1}}\left(c_{1}\right)\right) . \tag{S1.3}
\end{equation*}
$$

Dividing both sides of (S1.3) by $F_{\theta_{1}}\left(c_{2}\right) F_{0}\left(c_{2}\right)$, we see that we only need to prove,

$$
1-\frac{F_{0}\left(c_{1}\right)}{F_{0}\left(c_{2}\right)} \leq 1-\frac{F_{\theta_{1}}\left(c_{1}\right)}{F_{\theta_{1}}\left(c_{2}\right)},
$$

which follows directly from (3.5) and Assumption 2 (MLR).

Similarly, to show that the mdFWER is controlled for $\theta_{1}<0$ and $\theta_{2}=0$, we only need to show by Lemma \boxtimes that $1+\alpha F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right) \leq \alpha$. This is equivalent to showing

$$
(1-\alpha)\left(1-F_{\theta_{1}}\left(c_{1}\right)\right) \leq F_{\theta_{1}}\left(c_{2}\right)-F_{\theta_{1}}\left(c_{1}\right) .
$$

Writing $1-\alpha$ as $\left(1-F_{0}\left(c_{1}\right)\right)-\left(1-F_{0}\left(c_{2}\right)\right)$ and writing $F_{\theta_{1}}\left(c_{2}\right)-F_{\theta_{1}}\left(c_{1}\right)$ as
$\left(1-F_{\theta_{1}}\left(c_{1}\right)\right)-\left(1-F_{\theta_{1}}\left(c_{2}\right)\right)$, we get that it is equivalent to prove

$$
\left[\left(1-F_{0}\left(c_{1}\right)\right)-\left(1-F_{0}\left(c_{2}\right)\right)\right]\left(1-F_{\theta_{1}}\left(c_{1}\right)\right) \leq\left(1-F_{\theta_{1}}\left(c_{1}\right)\right)-\left(1-F_{\theta_{1}}\left(c_{2}\right) \gamma S 1.4\right)
$$

Since $0 \leq 1-F_{0}\left(c_{1}\right) \leq 1$, to prove inequality (SL.4), it is enough to prove the following,

$$
\begin{align*}
& \left(1-F_{\theta_{1}}\left(c_{1}\right)\right)\left[\left(1-F_{0}\left(c_{1}\right)\right)-\left(1-F_{0}\left(c_{2}\right)\right)\right] \\
\leq & \left(1-F_{0}\left(c_{1}\right)\right)\left[1-F_{\theta_{1}}\left(c_{1}\right)\right]-\left[1-F_{\theta_{1}}\left(c_{2}\right)\right] . \tag{S1.5}
\end{align*}
$$

Dividing both sides of (51.5) by $\left(1-F_{\theta_{1}}\left(c_{1}\right)\right)\left(1-F_{0}\left(c_{1}\right)\right)$, we see that proving (SL.4) is equivalent to showing

$$
\begin{equation*}
\frac{1-F_{\theta_{1}}\left(c_{2}\right)}{1-F_{\theta_{1}}\left(c_{1}\right)} \leq \frac{1-F_{0}\left(c_{2}\right)}{1-F_{0}\left(c_{1}\right)} \tag{S1.6}
\end{equation*}
$$

which follows directly from (3.6) and Assumption (MLR). By combining the arguments of the above two cases, the desired result follows.

Proof of Theorem [2 . The proof is by induction on number of hypotheses n. We already proved strong control of the mdFWER for $n=2$ in Lemma 园. Let us assume the result holds for testing any $n=k$ hypotheses, that is, $\operatorname{mdFWER} \leq \alpha$ while testing any k pre-ordered hypotheses. We now argue that is will hold for $n=k+1$ hypotheses. Without loss of generality, assume H_{1} is a false null, as in the proof of Theorem II.

Let $V_{k+1}^{(-1)}$ denote the total number of type 1 or type 3 errors committed while testing H_{2}, \ldots, H_{k+1} and excluding H_{1}. Then, by the inductive hypothesis, the mdFWER while testing the k hypotheses H_{2}, \ldots, H_{k+1} is $\operatorname{Pr}\left(V_{k+1}^{(-1)}>0\right) \leq \alpha$. Then, the mdFWER of testing $k+1$ hypotheses H_{1}, \ldots, H_{k+1} is defined by

$$
\begin{align*}
& \operatorname{Pr}\left(\left\{P_{1} \leq \alpha, T_{1} \theta_{1}<0\right\} \cup\left\{P_{1} \leq \alpha, T_{1} \theta_{1} \geq 0, V_{k+1}^{(-1)}>0\right\}\right) \\
= & \operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1}<0\right)+\operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1} \geq 0\right) \cdot \operatorname{Pr}\left(V_{k+1}^{(-1)}>0\right) \\
\leq & \operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1}<0\right)+\alpha \operatorname{Pr}\left(P_{1} \leq \alpha, T_{1} \theta_{1} \geq 0\right) . \tag{S1.7}
\end{align*}
$$

The equality follows by Assumption (1) (independence) and the inequality follows by the inductive hypothesis. Note that (51.7) is the same as ([3.8) under independence, which is equal to the mdFWER of Procedure \square in the case of two hypotheses. So again by applying Lemma [3, we get that mdFWER $\leq \alpha$ for $n=k+1$. Hence, the proof follows by induction.

Proof of Theorem 3. Without loss of generality, we assume $\theta_{i}>0$ if $\theta_{i} \neq 0$ for $i=1, \ldots, n$. Also, if there exists an i with $\theta_{i}=0$, by induction, we can simply assume $i_{0}=n$. Thus, to prove the mdFWER control of Procedure 【, we only need to consider two cases:
(i) $\theta_{i}>0$ for $i=1, \ldots, n$;
(ii) $\theta_{i}>0$ for $i=1, \ldots, n-1$ and $\theta_{n}=0$.

Case (i). Consider the general case of $\theta_{i}>0, i=1, \ldots, n$. By Assumption 3, the test statistics T_{1}, \ldots, T_{n} are positively regression dependent. For $j=1, \ldots, n-1$, let E_{n-j} denote the event of making at least one type 3 error when testing H_{j+1}, \ldots, H_{n} using Procedure at level α. By using induction, we prove the following two lemmas hold.

Lemma 1. Assume the conditions of Theorem 圆. For $j=1, \ldots, n-1$, the following inequality holds.

$$
\begin{equation*}
\operatorname{Pr}\left(E_{n-j} \mid T_{1}>c_{2}, \ldots, T_{j}>c_{2}\right) \leq \alpha \tag{S1.8}
\end{equation*}
$$

Proof of Lemma m. We prove the result by using reverse induction.

When $j=n-1$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{n-j} \mid T_{1}>c_{2}, \ldots, T_{j}>c_{2}\right) \\
= & \operatorname{Pr}\left(T_{n}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{n-1}>c_{2}\right) \\
= & \frac{\operatorname{Pr}\left(T_{n}<c_{1}\right) \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{n-1}>c_{2} \mid T_{n}<c_{1}\right)}{\operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{n-1}>c_{2}\right)} \\
\leq & \operatorname{Pr}\left(T_{n}<c_{1}\right) \leq \alpha .
\end{aligned}
$$

The inequality follows from Assumption [3].
Assume the inequality (SL.8) holds for $j=m$. In the following, we prove that it also holds for $j=m-1$. Note that

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{n-m+1} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
= & \operatorname{Pr}\left(\left\{T_{m}<c_{1}\right\} \bigcup\left(\left\{T_{m}>c_{2}\right\} \bigcap E_{n-m}\right) \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
= & \operatorname{Pr}\left(T_{m}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
& +\operatorname{Pr}\left(\left\{T_{m}>c_{2}\right\} \bigcap E_{n-m} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
= & \operatorname{Pr}\left(T_{m}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
& +\operatorname{Pr}\left(T_{m}>c_{2} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \operatorname{Pr}\left(E_{n-m} \mid T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right) \\
\leq & \operatorname{Pr}\left(T_{m}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
& +\alpha \operatorname{Pr}\left(T_{m}>c_{2} \mid T_{1}>c_{2}, \ldots, T_{m-1}>c_{2}\right) \\
\leq & \alpha .
\end{aligned}
$$

Therefore, the desired result follows. Here, the first inequality follows from
the assumption of induction and the second follows from Lemma below.

Lemma 2. Assume the conditions of Theorem 圆. For $j=1, \ldots, n-1$, the following inequality holds:

$$
\begin{align*}
& \operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right) \\
& \quad+\alpha \operatorname{Pr}\left(T_{j}>c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right) \leq \alpha \tag{S1.9}
\end{align*}
$$

Specifically, for $j=1$, we have

$$
\operatorname{Pr}\left(T_{1}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}\right) \leq \alpha .
$$

Proof of Lemma [2. To prove the inequality (ST..), it is enough to show that

$$
\operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right) \leq \alpha \operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)
$$

which is equivalent to

$$
\begin{aligned}
& (1-\alpha) \operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right) \\
\leq & \operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)-\operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right) .
\end{aligned}
$$

Note that

$$
1-\alpha=\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{2}\right)-\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{1}\right)
$$

Thus, the above inequality is equivalent to
$\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{2}\right)-\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{1}\right) \leq 1-\frac{\operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)}{\operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)}$,
which in turn is implied by

$$
\begin{align*}
& 1-\frac{\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{1}\right)}{\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{2}\right)} \\
\leq & 1-\frac{\operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)}{\operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)} . \tag{S1.10}
\end{align*}
$$

Note that by Assumption [2], we have

$$
\frac{\operatorname{Pr}\left(T_{j}<c_{1}\right)}{\operatorname{Pr}\left(T_{j}<c_{2}\right)} \leq \frac{\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{1}\right)}{\operatorname{Pr}_{\theta_{j}=0}\left(T_{j}<c_{2}\right)} .
$$

Thus, to prove the inequality (SL.10), we only need to show that

$$
\frac{\operatorname{Pr}\left(T_{j}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)}{\operatorname{Pr}\left(T_{j}<c_{2} \mid T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}\right)} \leq \frac{\operatorname{Pr}\left(T_{j}<c_{1}\right)}{\operatorname{Pr}\left(T_{j}<c_{2}\right)},
$$

which is equivalent to
$\operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2} \mid T_{j}<c_{1}\right) \leq \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2} \mid T_{j}<c_{2}\right)$,
which follows from Assumption [3]. Therefore, the desired result follows.

Based on Lemmas [1] and we have

$$
\begin{aligned}
& \text { mdFWER }=\operatorname{Pr}\left(T_{1}<c_{1}\right)+\sum_{j=2}^{n} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right) \\
= & \operatorname{Pr}\left(T_{1}<c_{1}\right)+\operatorname{Pr}\left(T_{1}>c_{2}\right) \sum_{j=2}^{n} \operatorname{Pr}\left(T_{2}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1} \mid T_{1}>c_{2}\right) \\
= & \operatorname{Pr}\left(T_{1}<c_{1}\right)+\operatorname{Pr}\left(T_{1}>c_{2}\right) \operatorname{Pr}\left(E_{n-1} \mid T_{1}>c_{2}\right) \\
\leq & \operatorname{Pr}\left(T_{1}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}\right) \\
\leq & \alpha .
\end{aligned}
$$

Therefore, the mdFWER is controlled at level α for Case (i). Here, the first inequality follows from Lemma $]_{\text {and }}$ and the second follows from Lemma

Case (ii). Consider the general case of $\theta_{i}>0, i=1, \ldots, n-1$ and $\theta_{n}=0$. Under Assumption 目, $T_{i}, i=1, \ldots, n-1$ are positively regression dependent and under Assumption (G, T_{n} is independent of T_{i} 's. Note that

$$
\begin{aligned}
& \quad \text { mdFWER } \\
& =\sum_{j=1}^{n-1} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right) \\
& \quad \quad+\operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{n-1}>c_{2}, T_{n}<c_{1}\right)+\operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{n}>c_{2}\right) \\
& = \\
& \sum_{j=1}^{n-1} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{n-1}>c_{2}\right) .
\end{aligned}
$$

The second equality follows from Assumption $\boldsymbol{7}$.
For $m=1, \ldots, n-1$, define
$\Delta_{m}=\sum_{j=1}^{m} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right)$.

Thus, $\operatorname{mdFWER}=\Delta_{n-1}$. By using induction, we prove below that $\Delta_{m} \leq \alpha$ for $m=1, \ldots, n-1$.

For $m=1$, by using Lemma 【, we have

$$
\Delta_{1}=\operatorname{Pr}\left(T_{1}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}\right) \leq \alpha .
$$

Assume $\Delta_{m} \leq \alpha$. In the following, we show $\Delta_{m+1} \leq \alpha$. Note that

$$
\begin{align*}
& \quad \Delta_{m+1}^{\Delta_{m}}=\sum_{j=1}^{m+1} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right) \\
& \quad \quad+\alpha \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{m}>c_{2}, T_{m+1}>c_{2}\right) \\
& =\sum_{j=1}^{m} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right) \\
& \quad+\operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right)\left[\operatorname{Pr}\left(T_{m+1}<c_{1} \mid T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right)\right. \\
& \left.\quad \quad+\alpha \operatorname{Pr}\left(T_{m+1}>c_{2} \mid T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right)\right] \\
& \leq \\
& \quad \sum_{j=1}^{m} \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{j-1}>c_{2}, T_{j}<c_{1}\right)+\alpha \operatorname{Pr}\left(T_{1}>c_{2}, \ldots, T_{m}>c_{2}\right) \\
& = \tag{S1.11}\\
& \Delta_{m} \leq \alpha .
\end{align*}
$$

The first inequality follows from Lemma \boxtimes and the second follows from the inductive hypothesis. Thus, $\Delta_{m} \leq \alpha$ for $m=1, \ldots, n-1$. Therefore, $\operatorname{mdFWER}=\Delta_{n-1} \leq \alpha$, the desired result.

Combining the arguments of Cases (i) and (ii), the proof of Theorem [] is complete.

Proof of Proposition [2]. From the proof of Theorem [1] and by Lemma U, it is easy to see that we only need to prove the mdFWER control of Procedure when H_{1} is false and H_{2} is true, i.e., $\theta_{1} \neq 0$ and $\theta_{2}=0$.

Case I: $\theta_{1}>0$ and $\theta_{2}=0$. By Lemma 【, the mdFWER of Procedure \rrbracket is
controlled at level α if we have the following:

$$
F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right)+F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{2}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{2}, c_{1}\right) \leq 0
$$

After rewriting $F_{\left(\theta_{1}, 0\right)}(x, y)$ as $\operatorname{Pr}\left(T_{1} \leq x, T_{2} \leq y\right)$ and then dividing through by $\operatorname{Pr}\left(T_{1} \leq c_{2}\right)$, we get,

$$
\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)-\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1} \leq c_{2}\right) \leq 1-\frac{\operatorname{Pr}\left(T_{1} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{1} \leq c_{2}\right)}
$$

Dividing by $\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)$, we get,

$$
\begin{align*}
& 1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1} \leq c_{2}\right)}{\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)} \\
\leq & \frac{1}{\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)}\left(1-\frac{\operatorname{Pr}\left(T_{1} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{1} \leq c_{2}\right)}\right) \tag{S1.12}
\end{align*}
$$

For proving (SL.12), it is enough to prove the following inequality, as $\frac{1}{\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)} \geq 1$.

$$
\begin{equation*}
1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1} \leq c_{2}\right)}{\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)} \leq 1-\frac{\operatorname{Pr}\left(T_{1} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{1} \leq c_{2}\right)} \tag{S1.13}
\end{equation*}
$$

By Assumption \boxtimes and (B.5), it follows that $\frac{F_{0}\left(c_{2}\right)}{F_{0}\left(c_{1}\right)} \leq \frac{F_{\theta_{1}}\left(c_{2}\right)}{F_{\theta_{1}}\left(c_{1}\right)}$, which is equivalent to, $1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{2} \leq c_{2}\right)} \leq 1-\frac{\operatorname{Pr}\left(T_{1} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{1} \leq c_{2}\right)}$. Thus for proving (51.12$)$), it is enough to prove the following:

$$
\begin{equation*}
1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1} \leq c_{2}\right)}{\operatorname{Pr}\left(T_{2} \leq c_{2} \mid T_{1} \leq c_{2}\right)} \leq 1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1}\right)}{\operatorname{Pr}\left(T_{2} \leq c_{2}\right)} \tag{S1.14}
\end{equation*}
$$

But, (51.14) is equivalent to showing

$$
\operatorname{Pr}\left(T_{1} \leq c_{2} \mid T_{2} \leq c_{1}\right) \geq \operatorname{Pr}\left(T_{1} \leq c_{2} \mid T_{2} \leq c_{2}\right),
$$

which follows directly from Assumption 5 .
Case II: $\theta_{1}<0$ and $\theta_{2}=0$. Similarly, by Lemma [], the mdFWER of Procedure $\sqrt{7}$ is controlled at level α if we have the following:

$$
\begin{equation*}
1+F_{\theta_{1}}\left(c_{1}\right)-F_{\theta_{1}}\left(c_{2}\right)+F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{1}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{2}\right) \leq \alpha \tag{S1.15}
\end{equation*}
$$

which after some rearrangement and rewriting $1-\alpha$ as $F_{0}\left(c_{2}\right)-F_{0}\left(c_{1}\right)$ gives,

$$
\begin{align*}
& \left(F_{0}\left(c_{2}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{2}\right)\right)-\left(F_{0}\left(c_{1}\right)-F_{\left(\theta_{1}, 0\right)}\left(c_{1}, c_{1}\right)\right) \\
\leq & \left(1-F_{\theta_{1}}\left(c_{1}\right)\right)-\left(1-F_{\theta_{1}}\left(c_{2}\right)\right) . \tag{S1.16}
\end{align*}
$$

Thus, proving (51.75) is equivalent to proving that
$\operatorname{Pr}\left(T_{1} \geq c_{1}, T_{2} \leq c_{2}\right)-\operatorname{Pr}\left(T_{1} \geq c_{1}, T_{2} \leq c_{1}\right) \leq \operatorname{Pr}\left(T_{1} \geq c_{1}\right)-\operatorname{Pr}\left(T_{1} \geq c_{2}\right)$.

Dividing through by $\operatorname{Pr}\left(T_{1} \geq c_{1}\right)$, we get

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2} \geq c_{1} \mid T_{1} \geq c_{1}\right)-\operatorname{Pr}\left(T_{2} \geq c_{2} \mid T_{1} \geq c_{1}\right) \\
\leq & 1-\frac{\operatorname{Pr}\left(T_{1} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{1} \geq c_{1}\right)} \tag{S1.17}
\end{align*}
$$

Thus to prove (ST.15), it is enough to prove the following,

$$
1-\frac{\operatorname{Pr}\left(T_{2} \geq c_{2} \mid T_{1} \geq c_{1}\right)}{\operatorname{Pr}\left(T_{2} \geq c_{1} \mid T_{1} \geq c_{1}\right)} \leq 1-\frac{\operatorname{Pr}\left(T_{1} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{1} \geq c_{1}\right)}
$$

which is equivalent to proving,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(T_{2} \geq c_{2} \mid T_{1} \geq c_{1}\right)}{\operatorname{Pr}\left(T_{2} \geq c_{1} \mid T_{1} \geq c_{1}\right)} \geq \frac{\operatorname{Pr}\left(T_{1} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{1} \geq c_{1}\right)} \tag{S1.18}
\end{equation*}
$$

By Assumption \mathbb{Z} and (3.6), it follows that for $\theta_{1}<0, \frac{\operatorname{Pr}\left(T_{1} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{1} \geq c_{1}\right)} \leq \frac{\operatorname{Pr}\left(T_{2} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{2} \geq c_{1}\right)}$. Thus to prove (S1.15), it is enough to prove the following,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(T_{2} \geq c_{2} \mid T_{1} \geq c_{1}\right)}{\operatorname{Pr}\left(T_{2} \geq c_{1} \mid T_{1} \geq c_{1}\right)} \geq \frac{\operatorname{Pr}\left(T_{2} \geq c_{2}\right)}{\operatorname{Pr}\left(T_{2} \geq c_{1}\right)} \tag{S1.19}
\end{equation*}
$$

But (ST.19) is equivalent to showing

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1} \geq c_{1} \mid T_{2} \geq c_{2}\right) \geq \operatorname{Pr}\left(T_{1} \geq c_{1} \mid T_{2} \geq c_{1}\right), \tag{S1.20}
\end{equation*}
$$

which follows directly from Assumption [By combining the arguments of the above two cases, the desired result follows.

Proof of Proposition 皿. By Corollary 四, without loss of generality, assume that $\theta_{i}>0, i=1,2$ and $\theta_{3}=0$, that is, H_{1} and H_{2} are false and H_{3} is true. Note that
mdFWER

$$
\begin{align*}
& =\operatorname{Pr}\left(T_{1} \leq c_{1}\right)+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \leq c_{1}\right) \tag{S1.21}\\
& \quad+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \geq c_{2}, T_{3} \notin\left(c_{1}, c_{2}\right)\right) .
\end{align*}
$$

In the following, we prove that

$$
\begin{align*}
& \operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \leq c_{1}\right)+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{2} \geq c_{2}, T_{3} \notin\left(c_{1}, c_{2}\right)\right) \\
\leq & \operatorname{Pr}\left(T_{1} \geq c_{2}, T_{3} \notin\left(c_{1}, c_{2}\right)\right) . \tag{S1.22}
\end{align*}
$$

To prove (S工.22), it is enough to show the following inequality:

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1}\right)+\operatorname{Pr}\left(T_{2} \geq c_{2}, T_{3} \notin\left(c_{1}, c_{2}\right) \mid T_{1}\right) \\
\leq & \operatorname{Pr}\left(T_{3} \notin\left(c_{1}, c_{2}\right) \mid T_{1}\right) . \tag{S1.23}
\end{align*}
$$

Note that

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2} \geq c_{2}, T_{3} \leq c_{1} \mid T_{1}\right) \\
= & \operatorname{Pr}\left(T_{3} \leq c_{1} \mid T_{1}\right)-\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right) \tag{S1.24}
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2} \geq c_{2}, T_{3} \geq c_{2} \mid T_{1}\right) \tag{S1.25}\\
= & 1-\operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)-\operatorname{Pr}\left(T_{3}<c_{2} \mid T_{1}\right)+\operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right) .
\end{align*}
$$

In addition, we have

$$
\begin{equation*}
\operatorname{Pr}\left(T_{3} \notin\left(c_{1}, c_{2}\right) \mid T_{1}\right)=1+\operatorname{Pr}\left(T_{3} \leq c_{1} \mid T_{1}\right)-\operatorname{Pr}\left(T_{3}<c_{2} \mid T_{1}\right) . \tag{S1.26}
\end{equation*}
$$

Thus, in order to show (SL.23), by combining (SL.24)-(SL.26]), we only need to prove the following inequality:

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)-\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right) \\
\leq & \operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)-\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1}\right) . \tag{S1.27}
\end{align*}
$$

Note that (S1.27) can be rewritten as

$$
\begin{align*}
& \operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)\left[1-\frac{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)}\right] \\
\leq & \operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)\left[1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)}\right] . \tag{S1.28}
\end{align*}
$$

Thus, to prove (Sl.27), it is enough to show

$$
\begin{equation*}
1-\frac{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)} \leq 1-\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)} \tag{S1.29}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(T_{2} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2} \mid T_{1}\right)} \leq \frac{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)} \tag{S1.30}
\end{equation*}
$$

By Assumption 6 (BMLR), we have

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(T_{2} \leq x_{2} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{3} \leq x_{2} \mid T_{1}\right)} \geq \frac{\operatorname{Pr}\left(T_{2} \leq x_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{3} \leq x_{1} \mid T_{1}\right)} \tag{S1.31}
\end{equation*}
$$

By (S1.31), to prove (51.30), it is enough to show

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(T_{3} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{3}<c_{2} \mid T_{1}\right)} \leq \frac{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3} \leq c_{1} \mid T_{1}\right)}{\operatorname{Pr}\left(T_{2}<c_{2}, T_{3}<c_{2} \mid T_{1}\right)} \tag{S1.32}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Pr}\left(T_{2}<c_{2} \mid T_{3}<c_{2}, T_{1}\right) \leq \operatorname{Pr}\left(T_{2}<c_{2} \mid T_{3}<c_{1}, T_{1}\right) . \tag{S1.33}
\end{equation*}
$$

The inequality (51.33) holds under Assumption [5. Therefore, the inequality (51.22) holds.

Based on (SL.21)-(SL.22) and Proposition 1, we have

$$
\operatorname{mdFWER}=\operatorname{Pr}\left(T_{1} \leq c_{1}\right)+\operatorname{Pr}\left(T_{1} \geq c_{2}, T_{3} \notin\left(c_{1}, c_{2}\right)\right) \leq \alpha
$$

Thus, the desired result follows.

Proof of Theorem 四. By Corollary [1], without loss of generality, assume that $\theta_{i}>0, i=1, \ldots, n-1$ and $\theta_{n}=0$, that is, $H_{i}, i=1, \ldots, n-1$ are false and H_{n} is true. Note that
mdFWER

$$
\begin{align*}
& =\sum_{j=1}^{n-1} \operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{j-1} \geq c_{2}, T_{j} \leq c_{1}\right) \tag{S1.34}\\
& \quad \quad+\operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{n-1} \geq c_{2}, T_{n} \notin\left(c_{1}, c_{2}\right)\right) .
\end{align*}
$$

In the following, we prove that

$$
\begin{align*}
& \operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{n-2} \geq c_{2}, T_{n-1} \leq c_{1}\right) \\
& \quad+\operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{n-1} \geq c_{2}, T_{n} \notin\left(c_{1}, c_{2}\right)\right) \\
& \leq \operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{n-2} \geq c_{2}, T_{n} \notin\left(c_{1}, c_{2}\right)\right) \tag{S1.35}
\end{align*}
$$

To prove (S1.35), it is enough to show the following inequality:

$$
\begin{align*}
& \operatorname{Pr}\left(T_{n-1} \leq c_{1} \mid T_{1}, \ldots, T_{n-2}\right) \\
& +\operatorname{Pr}\left(T_{n-1} \geq c_{2}, T_{n} \notin\left(c_{1}, c_{2}\right) \mid T_{1}, \ldots, T_{n-2}\right) \\
\leq & \operatorname{Pr}\left(T_{n} \notin\left(c_{1}, c_{2}\right) \mid T_{1}, \ldots, T_{n-2}\right) \tag{S1.36}
\end{align*}
$$

By using the same argument as in proving (S1.23) in the case of three hypotheses, we can prove that the inequality (SL.36) holds under Assumptions
[6 and [T. Then, by combining (51.34) and (51.35), we have

$$
\begin{align*}
& \text { mdFWER } \\
& \leq \sum_{j=1}^{n-2} \operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{j-1} \geq c_{2}, T_{j} \leq c_{1}\right) \tag{S1.37}\\
& \quad+\operatorname{Pr}\left(T_{1} \geq c_{2}, \ldots, T_{n-2} \geq c_{2}, T_{n} \notin\left(c_{1}, c_{2}\right)\right) .
\end{align*}
$$

Note that the right-hand side of (S1.37) is the mdFWER of Procedure [2] when testing $H_{1}, \ldots, H_{n-2}, H_{n}$. By induction and Proposition 1, the mdFWER is bounded above by α, the desired result.

