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Supplementary Material

S1. Proofs of the main theorems

S1.1 Proof of Theorems 3.1 and 3.2.

Without loss of generality, we assume σii = 1 for 1 ≤ i ≤ p. The proof of Theorems 3.1

and 3.2 mainly relies on the distribution of the test statistic Ti = n(σ̂i)
′
Σ̂
−1
Zi σ̂i and their tail

probabilities. To approximate the distribution of Ti, consider

T oi = n(σ̃i)
′
Σ−1Zi σ̃i =

∥∥∥√nΣ
−1/2
Zi σ̃i

∥∥∥2 =

∥∥∥∥∥n−1/2
n∑
k=1

ξki

∥∥∥∥∥
2

,



S1.1 Proof of Theorems 3.1 and 3.2.

where σ̃i = n−1
∑n

k=1(Zki−σi), ξki = Σ
−1/2
Zi (Zki−σi), Zki = (Y k −µY )(Xki− µi) and ‖ · ‖

denotes the Euclidean norm. Define a truncated version of ξki,

ξ̂ki = ξkiI{‖ξki‖ ≤
√
n/(log p)4} − E

[
ξiI{‖ξki‖ ≤

√
n/(log p)4}

]
.

Then, uniformly in 1 ≤ i ≤ p,

P

{∥∥∥∥∥n−1/2
n∑
k=1

(ξki − ξ̂ki)

∥∥∥∥∥ ≥ (log p)−2

}
≤ nP

{
‖ξ1i‖ ≥

√
n/(log p)4

}
= O(p−1−ε1)

for some ε1 > 0. By Theorem 1 in Zäıtsev (1987), we have for any x ∈ Rd,

P

(∥∥∥∥∥n−1/2
n∑
k=1

ξ̂ki + x

∥∥∥∥∥ ≥ t

)
≤ P

{
‖Ŵ + x‖ ≥ t− (log p)−2

}
+ c1de

−c2d(log p)2

and P

(∥∥∥∥∥n−1/2
n∑
k=1

ξ̂ki + x

∥∥∥∥∥ ≥ t

)
≥ P

{
‖Ŵ + x‖ ≥ t+ (log p)−2

}
− c1de−c2d(log p)

2

,

uniformly in t ∈ R and 1 ≤ i ≤ p, where Ŵ is a d-dimensional normal random vector with

mean zero and covariance matrix Cov(ξ̂ki), c1d and c2d are some constants depending only on

d. We have ‖Cov(ξ̂ki)− I‖ ≤ Cn−2β. Then it is easy to show that

P
{
‖Ŵ + x‖ ≥ t− (log p)−2

}
≤ P(‖W + x‖ ≥ t− 2(log p)−2) + c3de

−c4dn2β/(log p)4

and P
{
‖Ŵ + x‖ ≥ t+ (log p)−2

}
≥ P(‖W + x‖ ≥ t+ 2(log p)−2)− c3de−c4dn

2β/(log p)4 ,

where W is the standard normal random vector. Hence, for some ε1 > 0,

P(‖n−1/2
n∑
k=1

ξki + x‖ ≥ t) ≤ P(‖W + x‖ ≥ t− 2(log p)−2) +O(p−1−ε1),

P(‖n−1/2
n∑
k=1

ξki + x‖ ≥ t) ≥ P(‖W + x‖ ≥ t+ 2(log p)−2)−O(p−1−ε1), (S1.1)

where O(1) is uniformly in t ∈ R and 1 ≤ i ≤ p. This yields that, for any fixed δ > 0,

P

max
1≤i≤p

∥∥∥∥∥n−1/2
n∑
k=1

ξki

∥∥∥∥∥
2

≤ (2 + δ) log p

→ 1.
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Since σ̂i = σi + σ̃i − (Ȳ − µY )(X̄i − µXi), we may write

T
1/2
i =

√
n
∥∥∥Σ̂−1/2Zi σi − Σ̂

−1/2
Zi (Ȳ − µY )(X̄i − µXi) + (Σ̂

−1/2
Zi −Σ

−1/2
Zi )σ̃i + Σ

−1/2
Zi σ̃i

∥∥∥ . (S1.2)

By the proof of Lemma 2 in Cai and Liu (2011), we have for some C > 0,

P
(

max
1≤i≤p

|X̄i − µi| ≥ C

√
log p

n

)
→ 0, P

(
‖Ȳ − µY ‖ ≥ C

√
log p

n

)
→ 0, (S1.3)

P
(

max
1≤i≤p

|σ̃i − σi| ≥ C

√
log p

n

)
→ 0, and P

(
max
1≤i≤p

‖Σ̂Zi −ΣZi‖ ≥ C

√
log p

n

)
→ 0. (S1.4)

By (S1.2), (S1.3) and (S1.4), we obtain that

P
(

max
1≤i≤p

∣∣∣T 1/2
i −

∥∥∥√nΣ
−1/2
Zi σ̃i +

√
nΣ̂
−1/2
Zi σi

∥∥∥∣∣∣ ≥ C

√
(log p)2

n

)
→ 0. (S1.5)

This, together with the above arguments, implies that the following lemma.

Lemma 1. We have, as (n, p)→∞,

max
i∈H0

∣∣∣∣P(Ti ≥ t)

G(t)
− 1

∣∣∣∣→ 0

uniformly in t ∈ [0, ap].

Next, define

H1(c) = {i : σ
′

iΣ
−1
Ziσi ≥ c log p/n} and H1(c) = {i : σ

′

iΣ
−1
Ziσi < c log p/n}.

For i ∈ H1(10), by (S1.1), (S1.4) and (S1.5), P(Ti ≥ 2 log p)→ 1 uniformly in i. On the other

hand,

P
(

max
i∈H1(10)

∣∣∣T 1/2
i −

∥∥∥√nΣ
−1/2
Zi σ̃i +

√
nΣ
−1/2
Zi σi

∥∥∥∣∣∣ ≥ C

√
(log p)2

n

)
→ 0. (S1.6)

For i ∈ H1(10) ∩H1(c) for some c > 2, uniformly in i we have

P
{
‖W +

√
nΣ
−1/2
Zi σi‖ ≥

√
2 log p+ 2(log p)−2

}
→ 1.
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It follows from (S1.1), (S1.5) and (S1.6) that P(Ti ≥ 2 log p) → 1 uniformly in i ∈ H1(c) for

any c > 2. Thus, whenever H1(c) 6= ∅, we have∑
i∈H1(c)

I{Ti ≥ bp}
Card{H1(c)}

→ 1, in probability. (S1.7)

If (3.8) holds, then we have Card{H1(c)}} ≥ (1 − ε) log p for any ε > 0. In this case,

P(t̂ ≤ bp)→ 1.

Now with these distributional properties of Ti, we return to the proof of Theorems 3.1 and

3.2. When t̂ in (2.5) exists, by the continuity of G(t) and the monotonicity of the indicator

function,

G(t̂) =
αmax{

∑
1≤i≤p I(Ti ≥ t̂), 1}

p

and hence

FDP = α

∑
i∈H0

I(Ti ≥ t̂)

pG(t̂)
.

If t̂ in (2.5) does not exist, then {FDP ≥ ε} ⊆ {maxi∈H0 Ti ≥ ap}. Note that, by (S1.1) and

(S1.5),

P(max
i∈H0

Ti ≥ ap) ≤ 2pG(ap − 3(log p)−1) +O(p−ε1) = O((log p)−1/2).

To prove Theorems 3.1 and 3.2, it suffices to show that

sup
0≤t≤bp

∣∣∣∑i∈H0
I(Ti ≥ t)

p0G(t)
− 1
∣∣∣→ 0 in probability.

Let b
′
p = bp + (log p)−2. By (S1.5), it is enough to prove that

sup
0≤t≤b′p

∣∣∣∑i∈H0
I{T oi ≥ t}

p0G(t)
− 1
∣∣∣→ 0 in probability.

By the proof of Lemma 6.3 in Liu (2013), we only need to show that the following lemma.
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Lemma 2. We have, for any ε > 0,

sup
0≤t≤b′p

P
(∣∣∣∑i∈H0

[I{T oi ≥ t} − P(T oi ≥ t)]

p0G(t)

∣∣∣ ≥ ε
)

= o(1) (S1.8)

and ∫ b
′
p

0

P
(∣∣∣∑i∈H0

[I{T oi ≥ t} − P(T oi ≥ t)]

p0G(t)

∣∣∣ ≥ ε
)
dt = o(vp), (S1.9)

where vp = 1/ log log p.

To prove Lemma 2, define

B1 = {(i, j) : i ∈ H0, j ∈ H0, (i, j) ∈ A(ε), i 6= j},

and B2 = {(i, j) : i ∈ H0, j ∈ H0, (i, j) /∈ A(ε), i 6= j}.

Then

E
(∑
i∈H0

[I{T oi ≥ t} − P(T oi ≥ t)]
)2

=
∑

(i,j)∈B1

[
P(T oi ≥ t, T oj ≥ t)− P(T oi ≥ t)P(T oj ≥ t)

]
+
∑

(i,j)∈B2

[
P(T oi ≥ t, T oj ≥ t)− P(T oi ≥ t)P(T oj ≥ t)

]
+
∑
i∈H0

[
P(T oi ≥ t)− (P(T oi ≥ t))2

]
.

(S1.10)

For (i, j) ∈ B2, we have by Lemma 3 below,

P(T oi ≥ t, T oj ≥ t) = (1 + An)P(T oi ≥ t)P(T oj ≥ t) (S1.11)

uniformly for 0 ≤ t ≤ b
′
p, where |An| ≤ C(log p)−1−γ. For (i, j) ∈ B1, we have by Lemma 3,

for any δ > 0,

P(T oi ≥ t, T oj ≥ t) ≤ C(t+ 1)−1 exp(−t/(1 + ρ∗ij + δ)) (S1.12)
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uniformly in 0 ≤ t ≤ b
′
p. Submitting (S1.11) and (S1.12) into (S1.10), we obtain

E
(∑
i∈H0

[I{T oi ≥ t} − P(T oi ≥ t)]
)2
≤ C(

∑
(i,j)∈A(ε)

e
− t

1+ρ∗
ij

+δ (1 + t)−1 + Anp
2G2(t) + pG(t))

uniformly in 0 ≤ t ≤ b
′
p. Note that, by (C1) and letting δ be sufficiently small,

∑
(i,j)∈A(ε)

∫ b
′
p

0

exp
( ρ∗ij + δ

1 + ρ∗ij + δ
t
)
dt = o(p2vp).

This, together with
∫ b′p
0

1/G(t)dt = O(p(log p)−1/2), proves (S1.9). (S1.8) can be proved

similarly. This concludes the proof of Theorem 2.

Lemma 3. (i). We have for any δ > 0,

P(T oi ≥ t, T oj ≥ t) ≤ C(t+ 1)−1 exp(−t/(1 + ρ∗ij + δ))

uniformly in 0 ≤ t ≤ b
′
p and (i, j) ∈ B1. (ii). We have

P(T oi ≥ t, T oj ≥ t) = (1 + An)P(T oi ≥ t)P(T oj ≥ t)

uniformly in 0 ≤ t ≤ b
′
p and (i, j) ∈ B2, where |An| ≤ C(log p)−1−γ for some γ > 0.

To prove Lemma 3, we need the following lemma which comes from Lemma 6.2 in Liu

(2013). Let ηk = (ηk1, ηk2)
′
are independent and identically distributed 2-dimensional random

vectors with mean zero.

Lemma 4. Suppose that p ≤ cnr and E‖η1‖2br+2+ε < ∞ for some fixed c > 0, r > 0, b > 0

and ε > 0. Assume that Var(η11) = Var(η12) = 1 and |Cov(η11, η12)| ≤ δ for some 0 ≤ δ < 1.

Then we have

P
(
|

n∑
k=1

ηk1| ≥ t
√
n, |

n∑
k=1

ηk2| ≥ t
√
n
)
≤ C(t+ 1)−2 exp(−t2/(1 + |Cov(η11, η12)|))

uniformly for 0 ≤ t ≤
√
b log p, where C only depends on c, b, r, ε, δ.
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Proof of Lemma 3. We first prove (i). Let

T oi (α) =
1√
n

n∑
k=1

α
′
ξki.

For any ‖α‖ = 1 and ‖β‖ = 1, we have, for i ∈ H0 and j ∈ H0,

|Cov(T oi (α), T oj (β))| ≤ ρ∗ij.

Letα1, . . . ,αq satisfying ‖αj‖2 = 1. For any ‖α‖ = 1, there existsαj such that ‖α−αj‖ ≤ cq,

where cq → 0 as q →∞ uniformly in α and 1 ≤ j ≤ q. Then∣∣∣∣(T oi )1/2 − max
1≤j≤q

|T oi (αj)|
∣∣∣∣ ≤ cq(T

o
i )1/2.

So we have

(T oi )1/2 ≤ (1− cq)−1 max
1≤j≤q

|T oi (αj)|.

It follows from Lemma 4 that

P(T oi ≥ t, T oj ≥ t) ≤
q∑

k=1

q∑
l=1

P
{
|T oi (αk)| ≥

√
t(1− cq), |T oi (αl)| ≥

√
t(1− cq)

}
≤ C(t+ 1)−1e−t/(1+ρ

∗
ij+δ)

for any δ > 0 by letting q sufficiently large. This proves (i).

To prove (ii), we first note that, using the similar arguments for (S1.1) and Theorem 1 in

Zäıtsev (1987),

P(T oi ≥ t, T oj ≥ t) ≤ P(‖Ŵ 1‖2 ≥ t
′
, ‖Ŵ 2‖2 ≥ t

′
) + c5d exp(−c6dn2β/(log p)4),

P(T oi ≥ t, T oj ≥ t) ≥ P(‖Ŵ 1‖2 ≥ t
′′
, ‖Ŵ 2‖2 ≥ t

′′
)− c5d exp(−c6dn2β/(log p)4),

where t
′
= (
√
t− (log p)−2)2 and t

′′
= (
√
t+ (log p)−2)2, and (Ŵ

′
1, Ŵ

′
2)
′ is the normal random

vector with mean zero and covariance matrix Cov(ξ̂kij), where ξ̂kij = (ξ̂
′
ki, ξ̂

′
kj)
′. We have

‖Cov(ξ̂kij)− I‖ ≤ C(log p)−2−ε
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for some ε > 0. By the density of multivariate normal random vector,

P(‖Ŵ 1‖2 ≥ t
′
, ‖Ŵ 2‖2 ≥ t

′
) = (1 + An)[G(t)]2.

Similar equation holds when t
′

is replaced by t
′′
. This proves (ii).

S1.2 Proof of Theorems 3.3 and 3.4.

By the proof of (S1.7), for t ∼ 2(1− θ) log p,∑
i∈H1(c)

I(Ti ≥ t)

m1(c)
→ 1 (S1.13)

in probability. Then, for t ∼ 2(1− θ) log p,∑p
i=1 I(Ti ≥ t)

p
≥ (1 + o(1))p−1+θ

with probability tending to one. So P{0 ≤ t̂ ≤ G−1(αp−1+θ/2)} → 1. Hence, P̂O → 1 in

probability. Theorem 3.3 follows immediately by letting bp = G−1(αp−1+θ/2) in the proof of

Theorem 3.2.

S1.3 Proof of Proposition 2.

Under the condition in Theorem 3.2 that m1(c) ≥ log p for some c > 2, the proof of Theorem

3.2 shows that P(t̂BH ≤ bp) → 1. So P(t̂BH = t̂) → 1. This indicates that FDRBH − FDR =

o(1) and FDPBH − FDP = oP(1). The proposition is proved.

S1.4 Proof of Proposition 1.

Suppose (3.13) does not hold. So there is a sequence (nk, pk) → ∞ as k → ∞ and pk ≤ nβk

such that

P(FDPBH ≤ ζ)→ 1
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for some 0 < ζ < 1 as k →∞. Let p̂0 denote the number of wrong rejections by BH method.

So we have P(p̂0 ≤ ζ|H1|/(1 − ζ)) → 1 as k → ∞. Write p
′

= [ζ|H1|/(1 − ζ)] and let

p(1),H0
≤ · · · ≤ p(|H0|),H0

be the ordered p-values of {pi, i ∈ H0}. By the definition of BH

method, we have

P(p(p′),H0
≥ α/pk)→ 1 (S1.14)

as k →∞.

We next show that, for any γ > 0,

lim inf
(n,p)→∞

P(p(p′),H0
< γ/p) > 0. (S1.15)

Let T(1),H0 ≥ · · · ≥ T(|H0|),H0 be the ordered values of {Ti, i ∈ H0} and T o(1),H0
≥ · · · ≥ T o(|H0|),H0

be the ordered values of {T oi , i ∈ H0}. To prove (S1.15), it is enough to show that

lim inf
(n,p)→∞

P(T(p′),H0 > G−1(γ/p)) > 0. (S1.16)

By the proof of Theorem 3.1, we can easily show that

P
(

max
i∈H0

|T 1/2
i − (T oi )1/2| ≥ C

√
(log p)2

n

)
→ 0.

Thus, we only need to show that

lim inf
(n,p)→∞

P(T o(p′),H0
≥ xnp) > 0, (S1.17)

where xnp = G−1(γ/p) + C
√

(log p)2

n
. Write

P(T o(p′),H0
≥ xnp) = P(∪∗i1<···<ip′ {T

o
i1
≥ xnp, . . . , T

o
i
p
′ ≥ xnp}),

where the notation ∪∗i1<···<ip′ denotes the union of all i1 < · · · < ip′ with ik ∈ H0, 1 ≤ k ≤ p
′
.

Then we have

P(T o(p′),H0
≥ xnp)
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≥
∗∑

i1<···<ip′

P(T oi1 ≥ xnp, . . . , T
o
i
p
′ ≥ xnp)

−
∗∑

i1<···<ip′

∗∑
j1 < · · · < j

p
′

(j1, · · · , j
p
′ ) 6= (i1, · · · , i

p
′ )

P(T oi1 ≥ xnp, . . . , T
o
i
p
′ ≥ xnp, T

o
j1
≥ xnp, . . . , T

o
j
p
′ ≥ xnp),

where the notation
∑∗

... denotes the sum for all i1 < · · · < ip′ with ik ∈ H0, 1 ≤ k ≤ p
′
. By

the proof of Lemma 7.2 and the assumptions that Σ is diagonal, it is easy to show that

P(T oi1 ≥ xnp, . . . , T
o
id
≥ xnp) = (1 + o(1))[G(xnp)]

d

for any distinct i1, . . . , id ∈ H0 and fixed d. This implies that

∗∑
i1<···<ip′

P(T oi1 ≥ xnp, . . . , T
o
i
p
′ ≥ xnp) = (1 + o(1))Cp

′

|H0|(γ/pk)
p
′

= (1 + o(1))
γp
′

p′ !
.

Let s denote the number of indices of the set {i1, . . . , ip′ , j1, . . . , jp′}. Then we have p
′
+1 ≤ s ≤

2p
′
. Note that the number of pairs (i1, . . . , ip′ , j1, . . . , jp′ ) with |{i1, . . . , ip′ , j1, . . . , jp′}| = s is

no more than O(Cp
′

|H0||H0|s−p
′
) = O(|H0|s). Also, when |{i1, . . . , ip′ , j1, . . . , jp′}| = s, we have

P(T oi1 ≥ xnp, . . . , T
o
i
p
′ ≥ xnp, T

o
j1
≥ xnp, . . . , T

o
j
p
′ ≥ xnp) = (1 + o(1))(γ/pk)

s,

which implies that

∗∑
i1<···<ip′

∗∑
j1 < · · · < j

p
′

(j1, · · · , j
p
′ ) 6= (i1, · · · , i

p
′ )

P(T oi1 ≥ xnp, . . . , T
o
i
p
′ ≥ xnp, T

o
j1
≥ xnp, . . . , T

o
j
p
′ ≥ xnp) ≤ Cγs.

Combining the above arguments, we have

P(T o(p′),H0
≥ xnp) ≥ (1 + o(1))

γp
′

p′ !
− Cγp

′
+1 ≥ Cγp

′

for small γ. This implies (S1.15), which is contradict with (S1.14). The proof is complete.
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