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S1 The proofs of Proposition 1 and Proposition 2

Proof of Proposition 1. Since ∇Q[M(θ)|θ] = 0, it is easy to show that

M(θ) is continuously differentiable with differential

dM(θ) = −d20Q[M(θ)|θ]−1d11Q[M(θ)|θ]. (S1.1)

Furthermore, ∇`(θ) −∇Q[M(θ)|θ] = 0. Taking differential on both sides

and set θ = θ∞, we have

d2`(θ∞)− d20Q(θ∞|θ∞)− d11Q(θ∞|θ∞) = 0. (S1.2)

Substituting (S1.2) into (S1.1), we have dM(θ∞) = I−d20Q(θ∞|θ∞)−1d2`(θ∞).

By Lange’s Lemma, it is then sufficient to show that all the eigenvalues of

the differential dM(θ∞) belong to [0, 1). Here we determine the eigenvalues

of dM(θ∞) by the stationary values of the Rayleigh quotient

R(v) =
v>[d20Q(θ∞|θ∞)− d2`(θ∞)]v

v>d20Q(θ∞|θ∞)v
= 1− v>d2`(θ∞)v

v>d20Q(θ∞|θ∞)v
.

At the optimal point θ∞, both d2`(θ∞) and Q(θ∞|θ∞) are negative definite

and R(v) < 1 for any unit vector v. The maximum of R(v) is strictly less

than 1. Note also that d20Q(θ∞|θ∞)− d2`(θ∞) is negative semidefinite. It

follows that R(v) > 0 and the minimum of R(v) is not less than 0.

Proof of Proposition 2. Let Γ be the set of cluster points generated

by the sequence θ(t+1) = M(θ(t)) starting from the initial value θ(0). By the
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Liapunov’s theorem in Lange (2010), Γ is contained in the set ∆ of station-

ary points of `(θ). On the other hand, Γ is a closed subset of the compact

set {θ ∈ Ω : `(θ) > `(θ(0))} and this implies Γ is also compact. According

to Proposition 8.2.1 in Lange (2010), Γ is connected. The condition that

all stationary points of `(θ) are isolated easily implies that the number of

stationary points in the compact set {θ ∈ Ω : `(θ) > `(θ(0))} can only be

finite. Since the cluster set Γ is a connected subset of finite set ∆, Γ reduces

to a singleton.

S2 The EM algorithm for the CZIGP example

If the random variable y ∼ CZIGPm(φ0,φ,λ,π), we have the following

stochastic representation (SR):

y
∧
= Z0(Z1X

∗
1 , · · · , ZmX∗m)>,

where
{
Zk
}m
k=0

ind∼ Bernoulli(1 − φk),
{
X∗i
}m
i=1

ind∼ GP(λi, πi) and
{
Zk
}m
k=0

and
{
X∗i
}m
i=1

are mutually independent. For each yj= (y1j, · · · , ymj)T with

j ∈ {1, · · · , n}, based on the above SR, we introduce independent latent

variables

Z0j
iid∼Bernoulli(1− φ0), Zij

ind∼ Bernoulli(1− φi), X∗ij
ind∼GP(λi, πi),
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for i = 1, · · · ,m.We denote the missing data by Ymis = {Z0j, {Zij, X∗ij}mi=1}nj=1

and the complete data by Ycom = {Yobs, Ymis}, where z0j, zij, x
∗
ij are the

realizations of Z0j, Zij and X∗ij, respectively. Thus, the complete-data like-

lihood function is given by

L(θ
∣∣Ycom)

=
n∏
j=1

{
φ
1−z0j
0 (1− φ0)

z0j

m∏
i=1

[
φ
1−zij
i (1− φi)zij

λi(λi + πix
∗
ij)

x∗ij−1e−(λi+πix
∗
ij)

x∗ij!

]}
,

and the complete-data log-likelihood function `(θ
∣∣Ycom) is proportional to

n∑
j=1

[
(1− z0j) log φ0 + z0j log(1− φ0)

]
+

n∑
j=1

m∑
i=1

[
(1− zij) log φi

+ zij log(1− φi) + log λi + (x∗ij − 1) log(λi + πix
∗
ij)− λi − πix∗ij

]
.

The M-step is to calculate the complete-data MLEs, which are given by

φ0 =
n−

∑n
j=1 z0j

n
,

φi =
n−

∑n
j=1 zij

n
,

λi =
(1− πi)

∑n
j=1 x

∗
ij

n
, i = 1, · · · ,m,

(S2.3)

while the complete-data MLE of πi is the root of the equation:

Hi(πi|λi) =
n∑
j=1

x∗2ij − x∗ij
λi + πix∗ij

−
n∑
j=1

x∗ij = 0, i = 1, . . . ,m. (S2.4)

The E-step is to replace {z0j}nj=1, {zij}nj=1, {x∗ij}nj=1 and

{
x∗2ij − x∗ij
λi + πix∗ij

}n
j=1

by their conditional expectations which are given by
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E(z0j
∣∣Yobs, θ)=(1− φ0

γ1
)I(yj = 00) + I(yj 6= 00),

E(zij
∣∣Yobs, θ)=

[
ψi + (1−φi−ψi)φ0

γ1

]
I(yj = 00) + ψiI(yj 6= 00)I(yji = 0)

+I(yj 6= 00)I(yji 6= 0),

E(x∗ij
∣∣Yobs, θ)= λi

1−πi

[
1−ψi+ ψiφ0

γ1

]
I(yj =00)+ (1−ψi)λi

1−πi I(yj 6=00)I(yji=0)

+yjiI(yj 6= 00)I(yji 6= 0),

E(
x∗ij

2−x∗ij
λi+πix∗ij

∣∣Yobs, θ)= λi
1−πi

(
1− ψi + ψiφ0

γ1

)
I(yj = 00)

+ (1−ψi)λi
1−πi I(yj 6= 00)I(yji = 0)

+
y2ji−yji
λi+πiyji

I(yj 6= 00)I(yji 6= 0),

(S2.5)

where ψi = (1−φi)e−λi
φi+(1−φi)e−λi .

S3 The derivation of the rate matrix

Poisson model for transmission tomography: The rate matrix of PET

via MM algorithm is given by

E[dMMM(θ∞)] = I− E
[
d2QMM(θ∞|θ∞)

n

]−1
E

[
d2`(θ∞)

n

]
, (S3.6)

where

E

[
1

n
d2`(θ∞)

]
=

{
1

n
E

[
∂2`

∂πj∂πl

]}
jl

,

{
1

n
E

[
∂2`

∂πj∂πl

]}
=

1

n

n∑
i=1

{
−siaijajl exp(−a>iπ) +

sirie
−a>iπaijail

ri + sie−a
>
iπ

}
,
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j = 1, . . . , q; l = 1, . . . , q.

E

[
1

n
d2QMM(θ∞|θ∞)

]
=


1
n
E
[
∂2QMM

∂π2
1

]
0

. . .

0 1
n
E
[
∂2QMM

∂π2
q

]
,



1

n
E

[
∂2QMM

∂π2
j

]
=

1

n

n∑
i=1

[
−a2ijsiw−1ij exp(−a>iπ)

]
,

j = 1, · · · , q.

Left-truncated normal distribution: The rate matrices of LTN via MM

and EM algorithms are given by

E[dMMM(θ∞)] = I− E
[
d2QMM(θ∞|θ∞)

n

]−1
E

[
d2`(θ∞)

n

]
,

E[dMEM(θ∞)] = I− E
[
d2QEM(θ∞|θ∞)

n

]−1
E

[
d2`(θ∞)

n

]
,

(S3.7)

set δ = σ2, we have

E

[
1

n
d2`(θ∞)

]
=

 1
n
E
[
∂2`
∂µ2

]
1
n
E
[
∂2`
∂µ∂δ

]
1
n
E
[
∂2`
∂µ∂δ

]
1
n
E
[
∂2`
∂δ2

]
 ,
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1

n
E

[
∂2`

∂µ2

]
= −δ−1 +

δ−1φ2[(a− µ)δ−
1
2 ]

{1− Φ[(a− µ)δ−
1
2 ]}2

+
δ−1φ′[(a− µ)δ−

1
2 ] + 1

2
δ−

3
2φ[(a− µ)δ−

1
2 ]

1− Φ[(a− µ)δ−
1
2 ]

,

1

n
E

[
∂2`

∂µ∂δ

]
=

δ−
3
2φ[(a− µ)δ−

1
2 ]

1− Φ[(a− µ)δ−
1
2 ]

+
(a− µ)δ−2φ2[(a− µ)δ−

1
2 ]

2{1− Φ[(a− µ)δ−
1
2 ]}2

+
(a− µ)δ−2φ′[(a− µ)δ−

1
2 ] + δ−

3
2φ[(a− µ)δ−

1
2 ]

2{1− Φ[(a− µ)δ−
1
2 ]}

=
(a− µ)δ−2φ′[(a− µ)δ−

1
2 ] + 3δ−

3
2φ[(a− µ)δ−

1
2 ]

2{1− Φ[(a− µ)δ−
1
2 ]}

,

1

n
E

[
∂2`

∂δ2

]
=

1

2δ2
− δ−2 − (a− µ)δ−

5
2φ[(a− µ)δ−

1
2 ]

1− Φ[(a− µ)δ−
1
2 ]

+
(a− µ)2δ−3φ2[(a− µ)δ−

1
2 ]

4{1− Φ[(a− µ)δ−
1
2 ]}2

+
(a− µ)2δ−3φ′[(a− µ)δ−

1
2 ] + 3(a− µ)δ−

5
2φ[(a− µ)δ−

1
2 ]

4{1− Φ[(a− µ)δ−
1
2 ]}

= − 1

2δ2
+

(a− µ)2δ−3φ2[(a− µ)δ−
1
2 ]

4{1− Φ[(a− µ)δ−
1
2 ]}2

+
(a− µ)2δ−3φ′[(a− µ)δ−

1
2 ]− (a− µ)δ−

5
2φ[(a− µ)δ−

1
2 ]

4{1− Φ[(a− µ)δ−
1
2 ]}

,

E

[
1

n
d2QMM(θ∞|θ∞)

]
=

 1
n
E
[
∂2QMM

∂µ2

]
1
n
E
[
∂2QMM

∂µ∂δ

]
1
n
E
[
∂2QMM

∂µ∂δ

]
1
n
E
[
∂2QMM

∂δ2

]
 ,

1

n
E

[
∂2QMM

∂µ2

]
= −1 + s1

δ
,

1

n
E

[
∂2QMM

∂µ∂δ

]
=

s1g(a;µ, δ,−∞, a)

δ
− δ

3
2φ[(a− µ)δ−

1
2 ]

1− Φ[(a− µ)δ−
1
2 ]
,
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1

n
E

[
∂2QMM

∂δ2

]
= −1 + s1

2δ2
+
s1(a− µ)g(a;µ, δ,−∞, a)

δ2

− (a− µ)δ−
5
2φ[(a− µ)δ−

1
2 ]

1− Φ[(a− µ)δ−
1
2 ]

,

E

[
1

n
d2QEM(θ∞|θ∞)

]
=

 1
n
E
[
∂2QEM

∂µ2

]
1
n
E
[
∂2QEM

∂µ∂δ

]
1
n
E
[
∂2QEM

∂µ∂δ

]
1
n
E
[
∂2QEM

∂δ2

]
 ,

1

n
E

[
∂2QEM

∂µ2

]
= −1

δ
,

1

n
E

[
∂2QEM

∂µ∂δ

]
= 0,

1

n
E

[
∂2QEM

∂δ2

]
= − 1

2δ2
− µ2{1− Φ[(a− µ)δ−

1
2 ]}

δ3
.

Multivariate compound zero-inflated generalized Poisson distri-

bution: First provide some notations below

γ1 = φ0 + (1− φ0)
m∏
i=1

[φi + (1− φi)e−λi ],

a0 =
m∏
i=1

[φi + (1− φi)e−λi ],

ai =
m∏
k 6=i

[φk + (1− φk)e−λk ],

ail =
m∏

k 6=i,l

[φk + (1− φk)e−λk ],

ψi =
(1− φi)e−λi

φi + (1− φi)e−λi
,

τi = (1− φi)(1− e−λi)(1− γ1),

ηi = γ1 − γ1ψi + ψiφ0 + φi(1− γ1) + τi.
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The rate matrices of CZIGP via MM and EM algorithms are given by

E[dMMM(θ∞)] = I− E
[
d2QMM(θ∞|θ∞)

n

]−1
E

[
d2`(θ∞)

n

]
,

E[dMEM(θ∞)] = I− E
[
d2QEM(θ∞|θ∞)

n

]−1
E

[
d2`(θ∞)

n

]
,

(S3.8)

where

E

[
1

n
d2`(θ∞)

]
=



1
n
E[ ∂

2`
∂φ20

] 1
n
E[ ∂2`

∂φ0∂φ
>] 1

n
E[ ∂2`

∂φ0∂λ
>] 1

n
E[ ∂2`

∂φ0∂π>
]

1
n
E[ ∂2`

∂φ∂φ0
] 1

n
E[ ∂2`

∂φ∂φ>
] 1

n
E[ ∂2`

∂φ∂λ>
] 1

n
E[ ∂2`

∂φ∂π>
]

1
n
E[ ∂2`

∂λ∂φ0
] 1

n
E[ ∂2`

∂λ∂φ>
] 1

n
E[ ∂2`

∂λ∂λ>
] 1

n
E[ ∂2`

∂λ∂π>
]

1
n
E[ ∂2`

∂π∂φ0
] 1

n
E[ ∂2`

∂π∂φ>
] 1

n
E[ ∂2`

∂π∂λ>
] 1

n
E[ ∂2`

∂π∂π>
]


,

1

n
E

[
∂2`

∂φ2
0

]
= −(1− a0)2

γ1
− 1− a0

1− φ0

,

1

n
E

[
∂2`

∂φ2
i

]
= −(1− φ0)

2(1− e−λi)2a2i
γ1

− (1− γ1)(1− e−λi)2

φi + (1− φi)e−λi

− (1− e−λi)(1− γ1)
1− φi

,

1

n
E

[
∂2`

∂λ2i

]
= (1− φ0)(1− φi)e−λiai −

(1− φ0)
2(1− φi)2e−λia2i
γ1

+ τi

(
πi

λi + 2πi
− 1

λi

)
+
φi(1− φi)e−λi(1− γ1)
φi + (1− φi)e−λi

,

1

n
E

[
∂2`

∂π2
i

]
= −τi

(
2λi

λi + 2πi
+

λi
1− πi

)
,
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1

n
E

[
∂2`

∂φ0∂φi

]
= −(1− e−λi)ai

γ1
,

1

n
E

[
∂2`

∂φ0∂λi

]
= (1− φi)e−λiai +

(1− φ0)(1− φi)e−λi(1− a0)ai
γ1

,

1

n
E

[
∂2`

∂φi∂φl 6=i

]
= (1− φ0)(1− e−λi)(1− e−λl)ail

− (1− φ0)
2(1− e−λi)(1− e−λl)aial

γ1
,

1

n
E

[
∂2`

∂φi∂λi

]
= (1− φ0)e

−λiai +
(1− φ0)

2(1− e−λi)(1− φi)e−λia2i
γ1

+
(1− γ1)e−λi

φi + (1− φi)e−λi
,

1

n
E

[
∂2`

∂φi∂λl 6=i

]
=

(1− φ0)
2(1− e−λi)ai(1− φl)e−λlal

γ1

− (1− φ0)(1− e−λi)(1− φl)e−λlail,

1

n
E

[
∂2`

∂λi∂λl 6=i

]
= (1− φ0)(1− φi)(1− φl)e−λie−λlail

− (1− φ0)
2(1− φi)(1− φl)e−λie−λlaial

γ1
,

1

n
E

[
∂2`

∂λi∂πi

]
= − τiλi

λi + 2πi
,

1

n
E

[
∂2`

∂λi∂πl 6=i

]
=

1

n
E

[
∂2`

∂φ0∂πi

]
=

1

n
E

[
∂2`

∂φi∂πl

]
=

1

n
E

[
∂2`

∂πi∂πl 6=i

]
= 0.

E

[
1

n
d2QMM(θ∞ | θ∞)

]

= diag

(
1

n
E

[
∂2QMM

∂φ2
0

]
,

1

n
E

[
∂2QMM

∂φ2
1

]
, . . . ,

1

n
E

[
∂2QMM

∂φ2
m

]
,

1

n
E

[
∂2QMM

∂λ21

]
,

. . . ,
1

n
E

[
∂2QMM

∂λ2m

]
,

1

n
E

[
∂2QMM

∂π2
1

]
, . . . ,

1

n
E

[
∂2QMM

∂π2
m

])
,
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1

n
E

[
∂2QMM

∂φ2
0

]
= − 1

φ0

− 1

1− φ0

,

1

n
E

[
∂2QMM

∂φ2
i

]
= − γ1 − φ0

φi[φi + (1− φi)e−λi]
− (γ1 − φ0)e

−λi

(1− φi)[φi + (1− φi)e−λi]

− 1− γ1
φi

− 1− γ1
1− φi

,

1

n
E

[
∂2QMM

∂λ2i

]
= −(1− φi)(1− e−λi)(1− γ1)

λi
,

1

n
E

[
∂2QMM

∂π2
i

]
= − τiλi

πi(1− πi)
, i = 1, . . . ,m.

E

[
d2QEM(θ∞|θ∞)

n

]
=



1
n
E
[
∂2QEM

∂φ20

]
1
n
E
[
∂2QEM

∂φ0∂φ
>

]
1
n
E
[
∂2QEM

∂φ0∂λ
>

]
1
n
E
[
∂2QEM

∂φ0∂π>

]
1
n
E
[
∂2QEM

∂φ∂φ0

]
1
n
E
[
∂2QEM

∂φ∂φ>

]
1
n
E
[
∂2QEM

∂φ∂λ>

]
1
n
E
[
∂2QEM

∂φ∂π>

]
1
n
E
[
∂2QEM

∂λ∂φ0

]
1
n
E
[
∂2QEM

∂λ∂φ>

]
1
n
E
[
∂2QEM

∂λ∂λ>

]
1
n
E
[
∂2QEM

∂λ∂π>

]
1
n
E
[
∂2QEM

∂π∂φ0

]
1
n
E
[
∂2QEM

∂π∂φ>

]
1
n
E
[
∂2QEM

∂π∂λ>

]
1
n
E
[
∂2QEM

∂π∂π>

]


,

1

n
E

[
∂2QEM

∂φ2
0

]
= − 1

φ0

− 1

1− φ0

,

1

n
E

[
∂2QEM

∂φ0∂φi

]
=

1

n
E

[
∂2QEM

∂φ0∂λi

]
=

1

n
E

[
∂2QEM

∂φ0∂πi

]
= 0,

1

n
E

[
∂2QEM

∂φ2
i

]
= − 1

φ2
i

+

[
1

φ2
i

− 1

(1− φi)2

]
· [γ1ψi + (1− φi − ψi)φ0

+(1− φi)e−λi(1− γ1)],

1

n
E

[
∂2QEM

∂φi∂φl 6=i

]
=

1

n
E

[
∂2QEM

∂φi∂λl

]
=

1

n
E

[
∂2QEM

∂φi∂πl

]
= 0,

1

n
E

[
∂2QEM

∂λ2i

]
= −ηi

λi
+

πiηi
λi + 2πi

,

1

n
E

[
∂2QEM

∂λi∂λl 6=i

]
=

1

n
E

[
∂2QEM

∂λi∂πl 6=i

]
=

1

n
E

[
∂2QEM

∂πi∂πl 6=i

]
= 0,
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1

n
E

[
∂2QEM

∂λi∂πi

]
= − λiηi

λi + 2πi
,

1

n
E

[
∂2QEM

∂π2
i

]
= − λiηi

1− πi
− 2λiηi
λi + 2πi

.

S4 The proof that the supporting hyperplane inequal-

ity can be implied by the Jensen’s inequality

Statement: The Jensen’s inequality implies the supporting hyper-

plane inequality.

Assume that ψ(·) is a convex function, according to the following Jensen’s

inequality,

ψ(
n∑
i=1

aixi) 6
n∑
i=1

aiψ(xi),

where ai > 0 and
∑n

i=1 ai = 1. Simply taking n = 2, we have ψ[ax1 + (1−

a)x2] 6 aψ(x1) + (1− a)ψ(x2), and we can rewrite as

ψ[x2 + a(x1 − x2)]− ψ(x2)

a
6 ψ(x1)− ψ(x2),

where a ∈ (0, 1). Without loss of generality, let x1 6= x2 and let a→ 0, we

have

(x1 − x2) lim
a→0

ψ[x2 + a(x1 − x2)]− ψ(x2)

a(x1 − x2)
6 ψ(x1)− ψ(x2),

which is equivalent to (x1 − x2)ψ′(x2) 6 ψ(x1)− ψ(x2).
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S5 Some applications of Section 4 in the old version

Generalized Poisson distribution

In this part, we develop an AD-MM algorithm for calculating the MLEs

for the generalized Poisson (GP) distribution, where the explicit solutions

to the MLEs are not available and the EM algorithm does not yet exist due

to the absence of latent variables.

A non-negative integer valued random variable Y is said to have the

GP distribution with parameters λ > 0 and π, denoted by Y ∼ GP(λ, π),

if its pmf is given by

p(y|λ, π) =


λ(λ+ πy)y−1e−λ−πy

y!
, y = 0, 1, . . . ,∞,

0, for y > r, when π < 0,

(S5.9)

where max(−1,−λ/r) < π 6 1 and r (> 4) is the largest positive integer

for which λ + πr > 0 when π < 0. The GP(λ, π) distribution reduces

to the usual Poisson(λ) when π = 0, and it has the twin properties of

over-dispersion when π > 0 and under-dispersion when π < 0. The most

frequently used version of the GP distribution assumes λ > 0 and π ∈ [0, 1).

Let Y1, . . . , Yn
iid∼ GP(λ, π) and Yobs = {yi}ni=1 denote the observed

counts. Let I0 = {i: yi = 0, 1 6 i 6 n}, I1 = {i: yi = 1, 1 6 i 6 n},

I2 = {i: yi > 2, 1 6 i 6 n}, and mk denote the number of elements in Ik
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for k = 0, 1, 2. Clearly, we have m0 + m1 + m2 = n. The observed-data

likelihood function is given by

L(λ, π|Yobs) =
∏
i∈I0

e−λ ·
∏
i∈I1

λe−λ−π ·
∏
i∈I2

λ(λ+ πyi)
yi−1e−λ−πyi

yi!
.

Since
∑

i∈I2 yi = nȳ−m1, the log-likelihood function can be decomposed as

`(λ, π|Yobs) = c+ (m1 +m2) log(λ) + n(−λ) + nȳ(−π)

+
∑
i∈I2

(yi − 1) log(λ+ πyi)

=̂ `0(λ, π) +
∑
i∈I2

`i(a
>
iθ), (S5.10)

where c is a constant not involving (λ, π);

• `0(λ, π) = `0(λ) + `0(π) is completely additively separable, `0(λ) =

c + (m1 + m2) log(λ) + n(−λ) ∈ LG(λ) contains two complemental

assemblies {log λ,−λ}, and `0(π) = nȳ(−π) includes one assembly

−π;

• `i(·) = (yi− 1) log(·) is a concave function defined in R+, ai = (1, yi)
>,

and θ = (λ, π)>.

In other words, (S5.10) is a special case of (3.2) with pi = 2, hi(θ) = θ for
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all i, and n2 = 0. Therefore, from (3.3) and (3.5), we have

Qi(θ|θ(t)) = c
(t)
i + (yi − 1)

[
λ(t)

β
(t)
i

log(λ) +
π(t)yi

β
(t)
i

log(π)

]
, β

(t)
i =̂ λ(t) + π(t)yi,

Q(θ|θ(t)) = `0(λ, π) +
∑
i∈I2

Qi(θ|θ(t)) = c∗ +Q[I](λ|θ(t)) +Q[II](π|θ(t)),

where {c(t)i , c∗} are constants not depending on θ, Q(·|θ(t)) is completely

additively separable,

Q[I](λ|θ(t)) =

(
m1 +m2 + λ(t)

∑
i∈I2

yi − 1

β
(t)
i

)
log(λ)− nλ

=

(
n+ λ(t)

n∑
i=1

yi − 1

β
(t)
i

)
log(λ)− nλ ∈ LG(λ),

Q[II](π|θ(t)) = π(t)

[
n∑
i=1

(yi − 1)yi

β
(t)
i

]
log(π)− nȳπ ∈ LG(π).

In the derivation of Q[I](λ|θ(t)), we used the following identity:

n∑
i=1

yi − 1

β
(t)
i

=

(∑
i∈I0

+
∑
i∈I1

+
∑
i∈I2

)
yi − 1

β
(t)
i

=
∑
i∈I0

−1

λ(t)
+ 0 +

∑
i∈I2

yi − 1

β
(t)
i

= −m0

λ(t)
+
∑
i∈I2

yi − 1

β
(t)
i

.

Therefore, we have the following MM iteration:

λ(t+1) =
n+ λ(t)

∑n
i=1[(yi − 1)/β

(t)
i ]

n
, π(t+1) =

π(t)
∑n

i=1[(yi − 1)yi/β
(t)
i ]

nȳ
.

(S5.11)

Zero-truncated binomial distribution

A discrete random variable Y is said to follow a zero-truncated binomial
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(ZTB) distribution, denoted by Y ∼ ZTB(m,π), if its pmf is

Pr(Y = y) =
1

1− (1− π)m
·
(
m

y

)
πy(1− π)m−y, y = 1, 2, . . . ,m.

Let Y1, . . . , Yn
iid∼ ZTB(m,π), Yobs = {yi}ni=1 denote the observed data and

ȳ = (1/n)
∑n

i=1 yi. The observed-data log-likelihood function of π is

`(π|Yobs) = `0(π) + `3(π), (S5.12)

where `0(π) = nȳ log(π) + n(m − ȳ) log(1 − π) ∈ LB(π) and `3(π) =

−n log[1− (1− π)m].

The first MM algorithm based on the LB function family

Note that `0(π) ∈ LB(π), which guides us to yield an assembly log(π)

or log(1 − π) from a minorizing function of `3(π). Obviously, `(π|Yobs) in

(S5.12) is a special case of (3.6) with bi = n, a>ihi(θ) = (1−π)m and n3 = 1.

From (3.9), we obtain

Q(π|π(t)) = c+ `0(π) +
nm(1− π(t))m

1− (1− π(t))m
log(1− π)

= c+ nȳ log(π) +

[
nm

1− (1− π(t))m
− nȳ

]
log(1− π) ∈ LB(π),

minorizing the log-likelihood function `(π|Yobs). The first MM iteration is

π(t+1) =
ȳ[1− (1− π(t))m]

m
. (S5.13)

The second MM algorithm based on the LEB function family
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If we could find an assembly −π from a minorizing function of `3(π),

then the global surrogate function belongs to the LEB function family,

resulting in an explicit solution. Let u = g(π) = 1 − π and `3(u) =

−n log(1− um). Since

`′3(u) =
nmum−1

1− um
> 0 and `′′3(u) =

nm(m− 1)um−2

1− um
+
nm2u2m−2

(1− um)2
> 0,

`3(u) is strictly convex. By applying (3.4), we obtain

Q2(π|π(t)) = c2 −
nm(1− π(t))m−1

1− (1− π(t))m
· π,

minorizing `3(π) so that

Q(π|π(t)) = c2 + `0(π) +
nm(1− π(t))m−1

1− (1− π(t))m
· (−π) ∈ LEB(π),

minorizing the log-likelihood function `(π|Yobs). The second MM iteration

is

π(t+1) =
a(t) + b(t) −

√
(a(t) + b(t))2 − 4ȳa(t)b(t)/m

2a(t)
. (S5.14)

where a(t) = (1− π(t))m−1 and b(t) = 1− (1− π(t))m.

Multivariate Poisson distribution

Let Xi = W0 +Wi for i = 1, . . . ,m and {Wi}mi=0
ind∼ Poisson (λi). Then,

the discrete random vector x = (X1, . . . , Xm)> is said to follow an m-

dimensional Poisson distribution with parameters λ0 > 0 and λ = (λ1, . . . ,

λm)> ∈ Rm
+ , denoted by x ∼ MP(λ0, λ1, . . . , λm) or x ∼ MPm(λ0,λ), ac-
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cordingly. The joint pmf of x is

Pr(x = x) =

min(x)∑
k=0

λk0e−λ0

k!

m∏
i=1

λxi−ki e−λi

(xi − k)!
,

where x = (x1, . . . , xm)>, {xi}mi=1 are the corresponding realizations of

{Xi}mi=1, and min(x) =̂ min(x1, . . . , xm).

Let {xj}nj=1
iid∼ MP(λ0, λ1, . . . , λm) and Yobs = {xj}nj=1 denote the ob-

served data, where xj = (x1j, . . . , xmj)
> is the realization of xj = (X1j, . . . , Xmj)

>.

For convenience’s sake, we define θ = (λ0, λ1, . . . , λm)>, pj = min(xj),

hjk(θ) =
λk0e−λ0

k!
· λ

x1j−k
1 e−λ1

(x1j − k)!
· · · λ

xmj−k
m e−λm

(xmj − k)!
, and

b
(t)
jk =

hjk(θ
(t))

11>pj+1hj(θ
(t))

, j = 1, . . . , n, k = 0, 1, . . . , pj.

The observed-data log-likelihood function of θ is

`(θ|Yobs) =
n∑
j=1

log
[
hj0(θ) + hj1(θ) + · · ·+ hjpj(θ)

]
=

n∑
j=1

log
[
11>pj+1hj(θ)

]
,

(S5.15)

where hj(θ) = [hj0(θ), hj1(θ), . . . , hjpj(θ)]>. Clearly, (S5.15) is a special

case of (3.2) with `0(θ) = 0 and n2 = 0. Hence, from (3.3) and (3.5), we
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have

Qj(θ|θ(t)) =

pj∑
k=0

hjk(θ
(t))

11>hj(θ
(t))

log

[
11>hj(θ

(t))

hjk(θ
(t))
· hjk(θ)

]

= c
(t)
j +

(
pj∑
k=0

kb
(t)
jk

)
log(λ0)− λ0

+
m∑
i=1

{[
pj∑
k=0

(xij − k)b
(t)
jk

]
log(λi)− λi

}
,

Q(θ|θ(t)) =
n∑
j=1

Qj(θ|θ(t)) =
n∑
j=1

c
(t)
j +Q[0](λ0|θ(t)) +

m∑
i=1

Q[i](λi|θ(t)),

where {c(t)j } are constants not involving θ, Q(·|θ(t)) is completely additively

separable, (3.2) with `0(θ) = 0 and n2 = 0. Hence, from (3.3) and (3.5),

we have

Q[0](λ0|θ(t)) =

(
n∑
j=1

pj∑
k=0

kb
(t)
jk

)
log(λ0)− nλ0 ∈ LG(λ0),

Q[i](λi|θ(t)) =

[
n∑
j=1

pj∑
k=0

(xij − k)b
(t)
jk

]
log(λi)− nλi ∈ LG(λi).

Therefore, the MM iterations are given by

λ
(t+1)
0 =

∑n
j=1

∑pj
k=0 kb

(t)
jk

n
, λ

(t+1)
i =

∑n
j=1

∑pj
k=0(xij − k)b

(t)
jk

n
, (S5.16)

for i = 1, . . . ,m.
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S6 Some simulation results of Section 5 in the old

version
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Figure 1: The MM iteration points (marked with “×”) on the contour plots of the log-likelihood

functions for the generalized Poisson (GP) distribution (the left one) and for the left-truncated normal

(LTN) distribution (the right one) converged to their stationary points marked with “•”, respectively.

S7 Section 6 in the old version: Further extensions

When the objective function is of the form of {gl(a>θ)}7l=1

In Subsection 3.1, we have introduced seven one-dimensional functions

{gl(θ)}7l=1 and the q-dimensional function g8(θ), where each function gl(θ)

is a linear combination of some assemblies and complemental assemblies. In

this subsection, we extend {gl(θ)}7l=1 to {gl(a>θ)}7l=1 by replacing θ with a>θ

since a>θ is usually appeared in regression models. Let a = (a1, . . . , aq)
>
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and θ = (θ1, . . . , θq)
>. We assume that

aj > 0, θj > 0 for j = 1, . . . , q. (S7.17)

When the conditions in (S7.17) are violated, we will give a discussion

at the end of Subsection 7.2. Under (S7.17), seven separable functions

{Ql(θ|θ(t))}7l=1 can be constructed such that

Ql(θ|θ(t)) 6 gl(a
>θ), ∀ θ,θ(t) ∈ Θ and Ql(θ

(t)|θ(t)) = gl(a
>θ(t)).

In other words, when the log-likelihood function `(θ|Yobs) = gl(a
>θ) for

l = 1, . . . , 7, we can obtain explicit MM iterations for calculating the MLE

of θ based on the proposed AD technique in Section 3.

1) Let `(θ|Yobs) = g1(a
>θ) = c0 + c1 log(a>θ) − c2(a>θ)k. The goal is to

find the MLEs of θ via an MM algorithm. Since both log(x) and −xk

(k ∈ {1, 2, . . . ,∞}) are concave for x > 0, according to the discrete

version of Jensen’s inequality (2.3), we obtain

g1(a
>θ) > c0 +

q∑
j=1

c1ω(t)
j log

(
ajθj

ω
(t)
j

)
− c2ω(t)

j

(
ajθj

ω
(t)
j

)k


=̂ c0 +

q∑
j=1

G1j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)

=̂ Q1(θ|θ(t)),

where

ω
(t)
j =

ajθ
(t)
j

a>θ(t)
> 0, j = 1, . . . , q, (S7.18)
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and

G1j(φj|θ(t)) = c1ω
(t)
j log(φj) + c2ω

(t)
j (−φkj ) ∈ LGGk(φj).

In other words, at θ = θ(t), g1(a
>θ) majorizes Q1(θ|θ(t)), which is a

sum of q separable log-generalized-gamma functions. The explicit MM

iterations for calculating the MLEs of {θj}qj=1 are given by

θ
(t+1)
j =

(
c1
kc2

)1/kω
(t)
j

aj
=

(
c1
kc2

)1/k θ
(t)
j

a>θ(t)
, j = 1, . . . , q,

or in the form of vectors

θ(t+1) =

(
c1
kc2

)1/k
θ(t)

a>θ(t)
. (S7.19)

2) Let `(θ|Yobs) = g2(a
>θ) = c0 + c1 log(a>θ) + c2 log(1− a>θ). The goal

is to find the MLEs of θ via an MM algorithm. Since both log(x)

and log(1− x) are concave for x ∈ (0, 1), we can obtain the following

separable minorizing function

Q2(θ|θ(t)) = c0 +

q∑
j=1

G2j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)
,

where {ω(t)
j } are defined by (S7.18) and

G2j(φj|θ(t)) = c1ω
(t)
j log(φj) + c2ω

(t)
j log(1− φj) ∈ LB(φj).

The explicit MM iteration for calculating the MLE of θ is given by

θ(t+1) =
c1

c1 + c2
· θ

(t)

a>θ(t)
. (S7.20)
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3) Let `(θ|Yobs) = g3(a
>θ) = c0 + c1 log(a>θ) + c2 log(1−a>θ)− c3(a>θ).

Since both log(x) and log(1 − x) are concave for x ∈ (0, 1), we can

obtain the following separable minorizing function

Q3(θ|θ(t)) = c0 +

q∑
j=1

G3j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)
,

where {ω(t)
j } are defined by (S7.18) and

G3j(φj|θ(t)) = c1ω
(t)
j log(φj) + c2ω

(t)
j log(1− φj)− c3ω(t)

j φj ∈ LEB(φj).

The explicit MM iteration for calculating the MLE of θ is given by

θ(t+1) =
c1 + c2 + c3 −

√
(c1 + c2 + c3)2 − 4c1c3
2c3

· θ
(t)

a>θ(t)
. (S7.21)

4) Let `(θ|Yobs) = g4(a
>θ) = c0+c1 log(a>θ)−(c1+c2) log(1+a>θ). Since

log(x) is concave for x > 0 and − log(1 + x) is convex for x > 0, from

(2.3) and the supporting hyperplane inequality (2.4), we can obtain

the following separable minorizing function

Q4(θ|θ(t)) = c∗0 +

q∑
j=1

G4j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)
,

where {ω(t)
j } are defined by (S7.18) and

G4j(φj|θ(t)) = c1ω
(t)
j log(φj)−

(c1 + c2)ω
(t)
j

1 + a>θ(t)
· φj ∈ LG(φj).

Note that LG(·) = LGG1(·) and we can immediately obtain the MM

iteration

θ(t+1) =
c1(1 + a>θ(t))

c1 + c2
· θ

(t)

a>θ(t)
. (S7.22)
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5) Let `(θ|Yobs) = g5(a
>θ) = c0 + c1 log(a>θ)− c2(a>θ) + c3 log(1 +a>θ).

Since both log(x) and log(1 + x) are concave for x > 0, we obtain the

following separable minorizing function

Q5(θ|θ(t)) = c0 +

q∑
j=1

G5j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)
,

where {ω(t)
j } are defined by (S7.18) and

G5j(φj|θ(t)) = c1ω
(t)
j log(φj)− c2ω(t)

j ·φj + c3ω
(t)
j log(1 +φj) ∈ LEG(φj).

The explicit MM iteration for calculating the MLE of θ is given by

θ(t+1) =
c1 − c2 + c3 +

√
(c1 − c2 + c3)2 + 4c1c2
2c2

· θ
(t)

a>θ(t)
. (S7.23)

6) Let `(θ|Yobs) = g6(a
>θ) = c0− c1 log(a>θ)− c2(a>θ)−1. Since − log(x)

is convex for x > 0 and −1/x is concave for x > 0, we obtain the

following separable minorizing function

Q6(θ|θ(t)) = c∗0 +

q∑
j=1

(
−c1ajθj
a>θ(t)

−
c2ω

(t)2
j

ajθj

)
with the following MM iteration

θ(t+1) =

√
c2
c1
· θ(t)√

a>θ(t)
. (S7.24)

7) Let `(θ|Yobs) = g7(a
>θ) = c0 − c1 exp(−c2a>θ) − c3(a>θ). Since −ex

is concave for x ∈ R, we obtain the following separable minorizing

function

Q7(θ|θ(t)) = c0 +

q∑
j=1

G7j

(
ajθj

ω
(t)
j

∣∣∣∣θ(t)
)
,
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where {ω(t)
j } are defined by (S7.18) and

G7j(φj|θ(t)) = −c1ω(t)
j exp(−c2φj)− c3ω(t)

j · φj ∈ LGM(φj).

The explicit MM iteration for calculating the MLE of θ is given by

θ(t+1) =
log(c1c2/c3)

c2
· θ

(t)

a>θ(t)
. (S7.25)

When the log-likelihood function is beyond {gl(a>θ)}7l=1

When the log-likelihood function `(θ|Yobs) is beyond {gl(a>θ)}7l=1, we

may try to construct a separable surrogate function, Q∗(θ|θ(t)) say, satis-

fying that

(i) Q∗(θ|θ(t)) minorizes `(θ|Yobs); and

(ii) Q∗(θ|θ(t)) belongs to {gl(a>θ)}7l=1.

In this way, we can obtain explicit MM iterations for calculating the MLE

of θ based on the proposed AD technique in Section 3.

Example 1. We revisit `(θ|Yobs) = g4(a
>θ) = c0 + c1 log(a>θ) − (c1 +

c2) log(1 + a>θ) in Part 4) of Subsection 6.1. Alternatively, we could

construct a separable surrogate function Q∗4(θ|θ(t)) to minorize g4(a
>θ)

at θ = θ(t), where Q∗4(θ|θ(t)) is a special case of g1(a
>θ). In fact, since

− log(1 +x) is convex for x > 0, from the supporting hyperplane inequality
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(2.4), we have

− log(1 + a>θ) > − log(1 + a>θ(t))− a
>θ − a>θ(t)

1 + a>θ(t)
,

so that

g4(a
>θ) > c3 + c1 log(a>θ)− c1 + c2

1 + a>θ(t)
· a>θ =̂ Q∗4(θ|θ(t)),

which is a special case of g1(a
>θ) with k = 1. From (S7.19), we immediately

obtain the MM iteration

θ(t+1) =
c1(1 + a>θ(t))

c1 + c2
· θ

(t)

a>θ(t)
, (S7.26)

which is identical to (S7.22).

Example 2. Assume that the log-likelihood function is given by

`(θ|Yobs) = c0 +
n∑
i=1

{
−a>iθ − log

[
n∑
j=1

cij exp(−a>jθ)

]}
, cij > 0.

Since − log(x) is convex for x > 0, from the supporting hyperplane inequal-

ity (2.4), we have

− log

[
n∑
j=1

cij exp(−a>jθ)

]
> − log

[
n∑
j=1

cij exp(−a>jθ(t))

]

−
∑n

j=1 cij
[

exp(−a>jθ)− exp(−a>jθ(t))
]∑n

j=1 cij exp(−a>jθ
(t))

so that

`(θ|Yobs) > c1 +
n∑
i=1

{
−a>iθ −

∑n
j=1 cij exp(−a>jθ)∑n

k=1 cik exp(−a>kθ
(t))

}
=̂ Q∗(θ|θ(t)),
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which minorizes `(θ|Yobs) at θ = θ(t). Note that

Q∗(θ|θ(t)) = −
n∑
j=1

a>jθ −
n∑
j=1

(
∑n

i=1 c
′
ij) exp(−a>jθ)

=
n∑
j=1

[
−a>jθ − (

∑n
i=1 c

′
ij) exp(−a>jθ)

]
=

n∑
j=1

g7(a
>
jθ),

which is a linear combination of g7(a
>
jθ), where

c′ij =
cij∑n

k=1 cik exp(−a>kθ
(t))

, i, j = 1, . . . , n.

Although we cannot immediately obtain the MM iteration from (S7.25), a

similar method can be used to separate the parameters within the vector θ

and to obtain the MM iteration.

S8 Section 7 in the old version: Illustration and sum-

mary

In this subsection, we show that most of the inequalities in the MM litera-

ture are special cases of Jensen’s inequality. Our AD method distinguishes

itself from solely using these inequalities in the way that as guided by the

A-technique, it decomposes the target function or some intermediate surro-

gate function into different parts to be minorized separately. Our approach

sets a clear goal of constructing a surrogate function as the sum of separable

univariate functions for numerical convenience.
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(1) The following (S8.27) is the arithmetic-geometric mean inequality,

which is used by Lange and Zhou (2014) (p.341) in the unconstrained

signomial programming for the terms cα
∏n

i=1 x
αi
i with positive coeffi-

cients cα:
n∏
i=1

zαii 6
n∑
i=1

αi
‖α‖1

z
‖α‖1
i , (S8.27)

where {zi}ni=1 and {αi}ni=1 are non-negative numbers, and the `1-norm

‖α‖1 =̂
∑n

i=1 |αi|. In fact, the inequality (S8.27) is from Jensen’s

inequality (2.3) with ϕ(·) = log(·); that is,

log

(
n∑
i=1

αi
‖α‖1

z
‖α‖1
i

)
>

n∑
i=1

αi
‖α‖1

log
(
z
‖α‖1
i

)
=

n∑
i=1

αi log(zi).

By taking exponential operation on both sides of the above inequal-

ity, we immediately obtain the arithmetic-geometric mean inequality

(S8.27).

(2) The following inequality (S8.28) is used by Lange and Zhou (2014)

(p.342) in the unconstrained signomial programming for the terms

cα
∏n

i=1 x
αi
i with cα < 0:

n∏
i=1

xαii >
n∏
j=1

x
αj
mj

[
1 +

n∑
i=1

αi log(xi)−
n∑
i=1

αi log(xmi)

]
, (S8.28)

where {xi} and {αi} are positive numbers, and xmi denotes the m-th

approximation of xi. In fact, the inequality (S8.28) comes from the

supporting hyperplane inequality (2.4) with ψ(z) = − log(z) at the
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point z0 = 1; that is, − log(z) > −z+1 or z > 1+log(z). In particular,

let z =
∏n

i=1(xi/xmi)
αi , we immediately obtain the inequality (S8.28).

(3) Let C be a closed convex set in Rk and d(x,C) =̂ inf{‖x−y‖: y ∈ C}

denote the Euclidean distance from x in the closed convex set S ⊂ Rk

to C. Chi and Lange (2014) (p.98) used the following (S8.29) and

(S8.30) to get an MM algorithm for the heron problem:

d(x,C)6 ‖x− PC(xm)‖ (S8.29)

6‖xm − PC(xm)‖+ ‖x−PC(xm)‖2−‖xm−PC(xm)‖2

2‖xm − PC(xm)‖
,(S8.30)

where xm is them-th approximation of x, PC(xm) =̂ arg miny∈C ‖xm−

y‖ denotes the projection of xm onto the set C. In fact, the inequality

(S8.29) follows directly from the definition of the distance function.

The inequality (S8.30) comes from the supporting hyperplane inequal-

ity (2.4) with ψ(u) = −
√
u at the point u0 = um; that is, −

√
u >

−√um− (u− um)/(2
√
um). In particular, let u = ‖x−PC(xm)‖2 and

um = ‖xm−PC(xm)‖2, we immediately obtain the inequality (S8.30).

(4) Let h1(β) = ‖y−Xβ‖2 +λ‖β‖2. The inequality (3.14) in Yen (2011)
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can be stated as

h1

(
β(l+1)

)
+ ρλ,k,σ2 lim

τ3→0
ρτ3

p∑
j=1

log
(

1 + τ−13 |β
(l+1)
j |

)

6h1

(
β(l+1)

)
+ρλ,k,σ2 lim

τ3→0
ρτ3

p∑
j=1

[
log
(

1 + τ−13 |β
(l)
j |
)

+
|β(l+1)
j |+ τ3

|β(l)
j |+ τ3

−1

]
,

which in fact comes from the Taylor expansion of the convex function

− log(z) at the point z0 = 1 + τ−13 |β
(l)
j | with z = 1 + τ−13 |β

(l+1)
j |.

(5) The inequality (7) in Zhou and Zhang (2012), i.e.,

log(αj + k)>
α
(t)
j

α
(t)
j + k

log

(
α
(t)
j + k

α
(t)
j

· αj
)

+
k

α
(t)
j + k

log

(
α
(t)
j + k

k
· k
)

comes from Jensen’s inequality on the concave function log(x).

(6) The inequality (8) in Zhou and Zhang (2012), i.e.,

− log(|α|+ k) > − log(|α(t)|+ k)− |α| − |α
(t)|

|α(t)|+ k

comes from the Taylor expansion of the convex function − log(z) at

the point z0 = |α(t)|+ k with z = |α|+ k.

(7) The inequality used in Zhou, et al. (2011) (p.269), i.e.,

(λj − λk)2 6
1

2
(2λj − λ(t)j − λ

(t)
k )2 +

1

2
(2λk − λ(t)j − λ

(t)
k )2

is a special case of arithmetic geometric mean inequality when we

rearrange the term

(λj − λk)2 =

[
1

2
(2λj − λ(t)j − λ

(t)
k )− 1

2
(2λk − λ(t)j − λ

(t)
k )

]2
.
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The basic idea of an MM algorithms is that instead of maximizing

the log-likelihood function, one must find a minorizing/surrogate function,

which is maximized at each iteration. In this paper, we first proposed a

new AD technique to construct separable minorizing functions in a class of

MM algorithms, where in the A-technique, the notions of assemblies and

complemental assemblies are introduced and in the D-technique, the log-

likelihood function is decomposed into the sum of concave and/or convex

functions under the guideline of the A-technique. Second, the applications

of the proposed AD method to diverse applications are presented and new

MM algorithms are developed, which were not previously reported in the

literature. Third, the further extensions of the proposed AD technique were

also considered.

When the conditions aj > 0, θj > 0, j = 1, . . . , q, in (S7.17) are vi-

olated, i.e., if aj ∈ R and θj ∈ R, for j = 1, . . . , q, we could employ De

Pierro’s Algorithm (De Pierro (1995)) to calculate the MLE of θ. Take

`(θ|Yobs) = g1(a
>θ) = c0 + c1 log(a>θ)− c2(a>θ)k for example, we construct

weight wj = |aj|/
∑q

j=1 |aj| and rewrite a>θ =
∑q

j=1wj[w
−1
j aj(θj − θ(t)j ) +



32 GUO-LIANG TIAN, XI-FEN HUANG AND JIN-FENG XU

a>θ(t)], according to Jensen’s inequality, we can obtain

g1(a
>θ) > c0 +

q∑
j=1

{
c1wj log

[
w−1j aj(θj − θ(t)j ) + a>θ(t)

]
−c2wj

[
w−1j aj(θj − θ(t)j ) + a>θ(t)

]k}
,

=̂ c0 +

q∑
j=1

G1j

[
w−1j aj(θj − θ(t)j ) + a>θ(t)|θ(t)

]
=̂Q1(θ|θ(t)).
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