The Impact of Missing Values on

Different Measures of Uncertainty

Chantal Larose ${ }^{1}$, Dipak K. Dey ${ }^{2}$, Ofer Harel ${ }^{2}$
${ }^{1}$ Eastern Connecticut State Univeristy. ${ }^{2}$ University of Connecticut.

Supplementary Material

This supplement contains the proofs for Theorems 1 through 4.

S1 Proof of Theorem 1

The component-wise distribution of missingness in $y_{2 i}$ is $r_{2 i} \sim f\left(r_{2 i} \mid y_{1 i}, y_{2 i}, \phi\right)$. Since we are under the MCAR mechanism, $r_{2 i} \sim \operatorname{Bernoulli}(\phi)$, where ϕ is the complement of the percent missing in the data. Parameters of y_{1}, y_{2} and r (θ and ϕ respectively) have been suppressed in the following derivations.

The entropy of one record is

$$
\begin{aligned}
H\left(x_{i}\right) & =-\int_{y_{1 i}, y_{2 i}, r_{2 i}} f\left(y_{1 i}, y_{2 i}, r_{2 i}\right) \ln f\left(y_{1 i}, y_{2 i}, r_{2 i}\right) d\left(y_{1 i}, y_{2 i}, r_{2 i}\right) \\
& =-\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}, y_{2 i}, r_{2 i}\right) \ln f\left(y_{1 i}, y_{2 i}, r_{2 i}\right) d r_{2 i} d y_{2 i} d y_{1 i}
\end{aligned}
$$

To separate the joint distribution of $y_{1 i}, y_{2 i}$, and $r_{2 i}$, we use $f\left(y_{1 i}, y_{2 i}, r_{2 i}\right)=$ $f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right)$. Thus, the above entropy is reduced to

$$
\begin{aligned}
H\left(x_{i}\right)= & -\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right) \ln \left[f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right)\right] d r_{2 i} d y_{2 i} d y_{1 i} \\
= & -\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right)\left[\ln f\left(y_{1 i}\right)+\ln f\left(y_{2 i} \mid y_{1 i}\right)+\ln f\left(r_{2 i}\right)\right] d r_{2 i} d y_{2 i} d y_{1 i} \\
= & -\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right) \ln f\left(y_{1 i}\right) d r_{2 i} d y_{2 i} d y_{1 i} \\
& -\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right) \ln f\left(y_{2 i} \mid y_{1 i}\right) d r_{2 i} d y_{2 i} d y_{1 i} \\
& -\int_{y_{1 i}} \int_{y_{2 i}} \int_{r_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) f\left(r_{2 i}\right) \ln f\left(r_{2 i}\right) d r_{2 i} d y_{2 i} d y_{1 i} \\
= & -\int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) \ln f\left(y_{1 i}\right)\left(\int_{r_{2 i}} f\left(r_{2 i}\right) d r_{2 i}\right) d y_{2 i} d y_{1 i} \\
& -\int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) \ln f\left(y_{2 i} \mid y_{1 i}\right)\left(\int_{r_{2 i}} f\left(r_{2 i}\right) d r_{2 i}\right) d y_{2 i} d y_{1 i} \\
& -\int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right)\left(\int_{r_{2 i}} f\left(r_{2 i}\right) \ln f\left(r_{2 i}\right) d r_{2 i}\right) d y_{2 i} d y_{1 i}
\end{aligned}
$$

The first and second integral equal one; the third is the entropy of the distribution of $r_{2 i}$, denoted $H\left(r_{2 i}\right)$:

$$
\begin{aligned}
H\left(x_{i}\right)= & -\int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) \ln f\left(y_{1 i}\right) d y_{2 i} d y_{1 i} \\
& -\int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) \ln f\left(y_{2 i} \mid y_{1 i}\right) d y_{2 i} d y_{1 i} \\
& +H\left(r_{2 i}\right) \int_{y_{1 i}} \int_{y_{2 i}} f\left(y_{1 i}\right) f\left(y_{2 i} \mid y_{1 i}\right) d y_{2 i} d y_{1 i} .
\end{aligned}
$$

Pull terms out of the integral over $y_{2 i}$:

$$
\begin{aligned}
H\left(x_{i}\right)= & -\int_{y_{1 i}} f\left(y_{1 i}\right) \ln f\left(y_{1 i}\right)\left(\int_{y_{2 i}} f\left(y_{2 i} \mid y_{1 i}\right) d y_{2 i}\right) d y_{1 i} \\
& -\int_{y_{1 i}} f\left(y_{1 i}\right)\left(\int_{y_{2 i}} f\left(y_{2 i} \mid y_{1 i}\right) \ln f\left(y_{2 i} \mid y_{1 i}\right) d y_{2 i}\right) d y_{1 i} \\
& +H\left(r_{2 i}\right) \int_{y_{1 i}} f\left(y_{1 i}\right)\left(\int_{y_{2 i}} f\left(y_{2 i} \mid y_{1 i}\right) d y_{2 i}\right) d y_{1 i} .
\end{aligned}
$$

The first and third integral equal one; the second is the entropy of the distribution of $y_{2 i} \mid y_{1 i}$, denoted $H\left(y_{2 i} \mid y_{1 i}\right)$:

$$
\begin{aligned}
H\left(x_{i}\right)= & -\int_{y_{1 i}} f\left(y_{1 i}\right) \ln f\left(y_{1 i}\right) d y_{1 i} \\
& +H\left(y_{2 i} \mid y_{1 i}\right) \int_{y_{1 i}} f\left(y_{1 i}\right) d y_{1 i} \\
& +H\left(r_{2 i}\right) \int_{y_{1 i}} f\left(y_{1 i}\right) d y_{1 i} .
\end{aligned}
$$

The second and third integrals equal one, while the third is the entropy of the distribution of $y_{1 i}$, denoted $H\left(y_{1 i}\right)$:

$$
\begin{equation*}
H\left(x_{i}\right)=H\left(y_{1 i}\right)+H\left(y_{2 i} \mid y_{1 i}\right)+H\left(r_{2 i}\right), \forall i . \tag{S1.1}
\end{equation*}
$$

Since the records are independent and identically distributed, we sum Equation S1.1 n :

$$
\begin{equation*}
H(x)=\sum_{i=1}^{n}\left(H\left(y_{1 i}\right)+H\left(y_{2 i} \mid y_{1 i}\right)+H\left(r_{2 i}\right)\right)=n H\left(y_{1}\right)+n H\left(y_{2} \mid y_{1}\right)+n H\left(r_{2}\right) \tag{S1.2}
\end{equation*}
$$

The above is the framework for entropy of an MCAR incomplete bivariate normal dataset.

The following are clear from our assumptions, introductory mathematical statistics, and textbook entropy derivations:

- $y_{1 i} \sim N_{1}\left(\mu_{1}, \sigma_{1}^{2}\right)$, therefore $H\left(y_{1 i}^{o}\right)=\frac{1}{2} \ln \left(2 \pi e \sigma_{1}^{2}\right)$, $\forall i$, for fixed $y_{i 1}^{o}$.
- $y_{2 i} \mid y_{1 i}^{o} \sim N_{1}\left(\mu_{2.1}, \sigma_{2.1}^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right)\right)$, therefore $H\left(y_{2 i} \mid y_{1 i}\right)=\frac{1}{2} \ln \left(2 \pi e \sigma_{2}^{2}(1-\right.$ $\left.\left.\rho^{2}\right)\right), \forall i$
- $r_{2 i} \sim \operatorname{Bern}(\phi)$, therefore $H\left(r_{2 i}\right)=-(1-\phi) \ln (1-\phi)-\phi \ln (\phi), \forall i$.

Plug the above into Equation S1.2 to complete the proof.

S2 Proof of Theorem 2

Begin with entropy for bivariate normal data with Bernoulli missingness:

$$
\frac{n}{2} \ln \left(2 \pi e \sigma_{1}^{2}\right)+\frac{n}{2} \ln \left(2 \pi e \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)-n(1-\phi) \ln (1-\phi)-n \phi \ln (\phi) .
$$

To see whether $\lim _{\phi \rightarrow 0}[n(1-\phi) \ln (1-\phi)+n \phi \ln (\phi)]=0$:

$$
\begin{gathered}
\lim _{\phi \rightarrow 0}[n(1-\phi) \ln (1-\phi)+n \phi \ln (\phi)]=n \lim _{\phi \rightarrow 0}[(1-\phi) \ln (1-\phi)]+n \lim _{\phi \rightarrow 0}[\phi \ln (\phi)] \\
=n \lim _{\phi \rightarrow 0}[(1-\phi)] \lim _{\phi \rightarrow 0}[\ln (1-\phi)]+n \lim _{\phi \rightarrow 0}[\phi \ln (\phi)] \\
=n \lim _{\phi \rightarrow 0}[\ln (1-\phi)]+n \lim _{\phi \rightarrow 0}[\phi \ln (\phi)]
\end{gathered}
$$

since $\lim _{\phi \rightarrow 0}[(1-\phi)]=1$.

$$
n \lim _{\phi \rightarrow 0}[\ln (1-\phi)]+n \lim _{\phi \rightarrow 0}[\phi \ln (\phi)]=n \lim _{\phi \rightarrow 0}[\phi \ln (\phi)]=0 .
$$

S3 Proof of Theorem 3

This proof follows the same structure as the proof of Theorem 1.
We pull $H\left(r_{2 i} \mid y_{1 i}^{o}\right)$ out of the integral over y_{1} because entropy focuses on the distribution of $r_{2 i} \mid y_{1 i}^{o}$ and not the realized values. Since $H\left(r_{2 i} \mid y_{1 i}^{o}\right)=$ $-\left(1-\phi^{*}\right) \ln \left(1-\phi^{*}\right)-\phi^{*} \ln \left(\phi^{*}\right)$, the entropy term is pulled out of the integral over $y_{1 i}^{o}$, and $y_{1 i}^{o}$ is fixed. Applying the same steps as in the proof for Theorem 1, we obtain:

$$
\begin{equation*}
H\left(y_{1 i}^{o}\right)+H\left(y_{2 i} \mid y_{1 i}^{o}\right)+H\left(r_{2 i} \mid y_{1 i}^{o}\right) \tag{S3.1}
\end{equation*}
$$

The records are independent but not identically distributed, due to the realized values of $y_{1 i}^{o}$ impacting the value of ϕ^{*}. Therefore, sum Equation

S3.1, n times to account for the n records:

$$
\begin{align*}
& \sum_{i=1}^{n}\left(H\left(y_{1 i}^{o}\right)+H\left(y_{2 i} \mid y_{1 i}^{o}\right)+H\left(r_{2 i} \mid y_{1 i}^{o}\right)\right) \\
= & n H\left(y_{1 i}^{o}\right)+n H\left(y_{2 i} \mid y_{1 i}^{o}\right)+\sum_{i=1}^{n}\left(H\left(r_{2 i} \mid y_{1 i}^{o}\right)\right) . \tag{S3.2}
\end{align*}
$$

The above is a framework for entropy of an MAR incomplete bivariate normal dataset.

The following are clear:

- $y_{1 i} \sim N_{1}\left(\mu_{1}, \sigma_{1}^{2}\right)$, therefore $H\left(y_{1 i}^{o}\right)=\frac{1}{2} \ln \left(2 \pi e \sigma_{1}^{2}\right)$
- $y_{2 i} \mid y_{1 i}^{o} \sim N_{1}\left(\mu_{2.1}, \sigma_{2.1}^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right)\right)$, therefore $H\left(y_{2 i} \mid y_{1 i}^{o}\right)=\frac{1}{2} \ln \left(2 \pi e \sigma_{2}^{2}(1-\right.$ $\left.\rho^{2}\right)$)
- $r_{2 i} \sim \operatorname{Bern}\left(\phi^{*}\right)$, therefore $H\left(r_{2}\right)=-\left(1-\phi^{*}\right) \ln \left(1-\phi^{*}\right)-\phi^{*} \ln \left(\phi^{*}\right)$.

Plug in the above into Equation S3.2:

$$
\begin{aligned}
& \left.\frac{n}{2} \ln \left(2 \pi e \sigma_{1}^{2}\right)+\frac{n}{2} \ln \left(2 \pi e \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)-\sum_{i=1}^{n}\left(\left(1-\phi_{i}^{*}\right) \ln \left(1-\phi_{i}^{*}\right)+\phi_{i}^{*} \ln \left(\phi_{i}^{*}\right)\right)\right) \\
= & \frac{n}{2} \ln \left(2 \pi e \sigma_{1}^{2}\right)+\frac{n}{2} \ln \left(2 \pi e \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)-\sum_{i=1}^{n}\left\{\left(1-\phi_{i}^{*}\right) \ln \left(1-\phi_{i}^{*}\right)\right\}-\sum_{i=1}^{n}\left\{\phi_{i}^{*} \ln \left(\phi_{i}^{*}\right)\right\},
\end{aligned}
$$

which completes the proof.

S4 Proof of Theorem 4

We are looking at

$$
\lim _{\phi^{*} \rightarrow 0}\left(\sum_{i=1}^{n}\left\{\left(1-\phi_{i}^{*}\right) \ln \left(1-\phi_{i}^{*}\right)\right\}-\sum_{i=1}^{n}\left\{\phi_{i}^{*} \ln \left(\phi_{i}^{*}\right)\right\}\right)
$$

Note that $\phi^{*}=\frac{e^{\beta_{0}+y_{1 i}}}{1+e^{\beta_{0}+y_{1 i}}}$, where $y_{1 i}$ are the values in the data set. We cannot let $\phi^{*} \rightarrow 0$, since the $y_{1 i}$ values are fixed. Instead, we examine the behavior of the only arbitrary parameter in ϕ^{*}, β_{0}.

If ϕ^{*} goes to zero, all elements ϕ_{i}^{*} go to zero; a requirement satisfied using properties of the logistic function. For a realized value of $y_{1 i}, \phi_{i}^{*}$ goes to zero when β_{0} goes to negative infinity. Therefore, we consider $\lim _{\beta_{0} \rightarrow-\infty}$, which results in $\phi_{i}^{*} \rightarrow 0$ for all i.

Our limit equation is:

$$
\lim _{\phi_{i}^{*} \rightarrow 0}\left(\sum_{i=1}^{n}\left\{\left(1-\phi_{i}^{*}\right) \ln \left(1-\phi_{i}^{*}\right)\right\}-\sum_{i=1}^{n}\left\{\phi_{i}^{*} \ln \left(\phi_{i}^{*}\right)\right\}\right),
$$

which goes to zero following the same steps presented in the proof to Theorem 2.

