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Abstract

In this supplementary document, we will briefly review some related models and

comment on some relevant methods. We will also report some simulation results

when x and z are correlated. Proofs of Theorems 1-4 are also given here.

1. A REVIEW ON RELATED MODELS AND METHODS

For the purposes of fair comparison, we shall concentrate on the univariate

response case in this section unless stated otherwise because many existing

models and the existing partial central mean dimension reduction methods

are designed for this case. We give a brief review on related models and

existing methods. We also emphasize here that we are concerned with the

multivariate response case in the present paper.
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1.1. Relationship to Existing Models

Model (1.1) with an unspecified d0 is so flexible that it encompasses many

existing semiparametric models. Ma and Song (2015) suggested the follow-

ing varying index coefficient model

E(y | x, z) =

q∑
k=1

mk(β
T

kx)Zk, (A.1)

where βk is a p-vector. Model (A.1) is a special case of model (1.1) if we set

d0 = q and β = (β1, . . . ,βq). The single-index coefficient model proposed

by Xia and Li (1999) takes the form of

E(y | x, z) =

q∑
k=1

mk(β
T

1x)Zk, (A.2)

where a common β1 is shared by all mks. In the literature the partially

linear varying multi-index coefficient model (Liu et al., 2016) is another

popular semiparametric model which takes the form of

E(y | x, z) =

q∑
k=1

{
mk(α

T

k,1x1) + (αT

k,2x2)
}
Zk, (A.3)

where x = (xT

1 ,x
T

2)T and βk = diag(αk,1,αk,2) is a block-diagonal p × 2

matrix. This is an extension of the partially linear single index model

(Carroll et al., 1997). Setting d0 = q and β = (β1, . . . ,βq), we can clearly
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see that the partially linear varying multiple-index coefficient model is again

a special case of model (1.1).

Because of such a difference in model specification, these models be-

have rather differently to characterize interaction effects, which are of cen-

tral interests in our motivating examples. Some of the key differences are

summarized as follows.

1. If all entries in the i-th row of β in model (1.1) are identically zero, then

Xi does not interact with any components of z = (Z1, . . . , Zq)
T. By

contrast, if the i-th entry of βk in model (A.1) or the i-th component

of αk,1 or αk,2 in model (A.3) is zero, then Xi does not interact with

Zk. However, the individual interaction effects between Xi and Zk

may be too weak to be detectable. To detect weak interaction effects,

in model (1.1) we use the grouped covariates (βTx) which strengthen

the weak signal level of individual interaction effects. This property

makes model (1.1) significantly different from models (A.1) and (A.3).

In addition, a single vector β1 in model (A.2) may not be sufficient

to capture the interaction effects completely. Through choosing an

appropriate d0, model (1.1) aims to retain complete information of the

interaction effects.

2. Ma and Song (2015) argued that model (A.1) could be used to assess
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arbitrary nonlinear interactions but model (A.2) could not. Ma and

Song (2015) illustrated this point through a linear example. This cor-

responds to a special case of model (1.1) with d0 = 1. However, we

allow for a general d0 in model (1.1) where the linear example is no

longer valid. We emphasize here that, model (1.1) can accommodate

arbitrary nonlinear interaction effects as well as model (A.1). This

property makes model (1.1) significantly different from model (A.2)

in that the latter may contain ill-defined interaction effects while the

former does not.

3. Liu et al. (2016) and Ma and Song (2015) argued, respectively, that

models (A.1) and (A.3) enable to engage different components of z to

modify the slope function of x through using different βks and αk,js,

while model (A.2) with a common β and d0 = 1 does not. In model

(1.1) we allow for a general d0 and d0 must be determined in a data-

driven fashion. This also permits different components of z to modify

the slope function of x differently. For example, if d0 = 2 in model

(1.1) and β = (β1,β2), then m1(β
Tx) and m2(β

Tx) may vary with

(βT

1x) and (βT

2x), respectively. In this particular example, different

components of z may use different basis of span(β) to modify the

slope function of x. Therefore, allowing for a general d0 in model (1.1)
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maintains the same flexibility as model (A.1) and has the desirable

model fitting and interpretation. This property makes model (1.1)

significantly different from model (A.2).

In the Framingham Heart Study in Section 3.3, we let the first compo-

nent of z be 1, namely, z = (1, Z2, . . . , Zq)
T. Accordingly, model (1.1) boils

down to

E(y | x, z) = m1(β
Tx) +

q∑
k=2

mk(β
Tx)Zk. (A.4)

Another related model is

E(y | x, z) = m1(β
T

1x) +

q∑
k=2

mk(β
T

2x)Zk, (A.5)

which is also a special case of model (1.1), if we simply choose β = (β1,β2)

and z = (1, Z2, . . . , Zp)
T in model (1.1). Both our proposed algorithm and

the theoretical results can be directly used in these two models.

Because we allow for a general d0, that all mks share a common β in

model (1.1) is an imperative assumption for the identifiability purposes.

It is not a restriction or an assumption. If we used βk in model (1.1)

with an unknown column dimension dk, model (1.1) would no longer be

identifiable. Specifically, in the following two cases we can easily choose a
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different function m∗k such that mk(β
T

kx) = m∗k(β
∗
k

Tx).

1. The first is to increase the column dimension of βk from d0 to d∗ such

that span(βk) ⊆ span(β∗k). Say, β∗k = (βk,αk) for an arbitrary matrix

αk.

2. The second is to multiply βk with a nonsingular d0×d0 matrix γk. Let

β∗k = βkγk. In this case, the column dimension d0 remains unchanged.

That is why we assume a common β in model (1.1).

Cook (2007) and Cook and Forzani (2008, 2009) assumed that the in-

verse regression (x | y) admits heterogeneous linear structures and their

interest is in estimating the central subspace (Cook, 1998), while we as-

sume that the forward regression of (y | x, z) admits the semiparametric

structure (1.1) and our goal is to identify the interaction effects through

estimating the partial central mean dimension reduction subspace span(β)

(Li et al., 2003).

1.2. A Brief Review on Existing Methods

There are some existing works in the literature which aim to estimate

the partial central mean dimension reduction subspace span(β) such that

E(y | x, z) = E(y | βTx, z) when both y and z are univariate random

variables and (x | z) satisfies certain distributional assumptions. We re-

view these methods briefly here. Suppose z is a categorical variable and
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has C categories, say, z = {1, · · · , C}. Under the linearity assumption

that E(x | βTx, z) is a linear function of x, Li et al. (2003) showed that

β(z)
def

= {cov(x,xT | z)}−1 {cov(x,y | z)} ⊆ span(β). Therefore, we can

simply recover span(β) through the eigen-space of E
{
β(z)βT(z)

}
. Follow-

ing the idea of Zhu et al. (2010), Feng et al. (2013) generalized the work

of Li et al. (2003) by allowing z to be a continuous random variable. To

be precise, Feng et al. (2013) recovered span(β) through the eigen-space of

E
{
β̃(z̃)β̃

T

(z̃)
}

if the partial central mean dimension reduction subspace

is of interest, where β̃(z̃)
def

= {cov(x,xT | z ≤ z̃)}−1 {cov(x,y | z ≤ z̃)} and

z̃ is an independent copy of z. The same idea can be readily generalized

to recover the partial central dimension reduction subspace. The distri-

butional assumptions on (x | z) are relaxed by Ma and Song (2015) and

Liu et al. (2016) under different model structures. However, their proposed

semiparametric estimates require that y be univariate. In addition, the lin-

earity condition is violated if some components of x are categorical. Such

requirements are possibly very restrictive. In particular, in the Framing-

ham Heart Study, both z and y are continuous and multivariate. Therefore,

these existing methods cannot be used directly.

2. SOME ADDITIONAL SIMULATIONS

In this section we conduct some additional simulations where x and z are
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correlated. We revisit model (II) with the following nonlinear link functions:



Y1 = sin(4βTx)Z1 + 2(βTx)Z2 + ε1;

Y2 = cos(2βTx)Z2 + ε2;

Y3 =2(βTx)Z1 + sin(2βTx)Z2 + ε3.

We draw x̃
def

= (xT, zT)T = (X̃1, . . . , X̃p+q)
T from multivariate normal dis-

tribution with mean zero and covariance matrix cov(X̃k, X̃l) = ρ|k−l|. We

set ρ = 0.2, 0.5 and 0.8, respectively. We fix r = 3, and generate ε =

(ε1, ε2, ε3)
T from N (0,Σ), where

Σ =


1 0 0

0 2 0

0 0 4




1 0.5 0.25

0.5 1 0.5

0.25 0.5 1




1 0 0

0 2 0

0 0 4

 .

We fix p = 10, q = 2 and β = (1, 0.8, 0.6, 0.4, 0.2,−0.2,−0.4,−0.6,−0.8, 0)T.

We choose the sample size n = 200 and 500 and repeat each simulation 1000

times.

The average of estimation bias (“bias”), the Monte Carlo standard devi-

ation (“std”), the average of estimated standard deviation (“ŝtd”), and the

empirical coverage probability (“cvp”) at the nominal 95% confidence level

for all free parameter are summarized in Table S1 - Table S2 for n = 200
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and n = 500, respectively. It can be clearly seen that all estimates have very

small biases, and the biases become smaller as the sample size increases.

This phenomenon again shows that both the weighted and the unweighted

estimates are consistent. In addition, as the correlations between x and

z increase, both the Monte Carlo standard deviations and the estimated

standard deviations increase significantly, indicating that the estimates are

more and more unstable. However, the empirical coverage probabilities

are still very close to 95%, indicating that the inferential results are still

reliable.

3. PROOFS OF THEOREM 1 - THEOREM 4

For notational simplicity, we omit the subscript w and write β̂−d = β̂−d,w,

β̂ =
(
Id, β̂

T

−d,w
)

T

and m̂(β̂
T

xi) = m̂(β̂
T

xi, β̂). Let cn = hs+{log n/(nhd)}1/2.

3.1. Proof of Theorem 1

By conditions (C1) and (C2),

E
{
zzT ⊗ (βTx− u)Kh(β

Tx− u)
}

= E
{
Ω(βTx)⊗ (βTx− u)Kh(β

Tx− u
)}

= O(hs). (C.1)

Applying similar techniques to those used in Mack and Silverman (1982),
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Table S1: The simulation results when x and z are correlated based on n = 200: the
average bias of the estimators (“bias”), the Monte Carlo standard deviation (“std”), the

average of the estimated standard deviation (“ŝtd”) based on the theoretical calculation,
and the empirical coverage probability (“cvp”) at the nominal 95% confidence level. All
simulation results reported below are multiplied by 100.

β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10
ρx,z W True value 0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 0

0.2 I

bias 1.30 0.59 0.79 0.45 -0.13 -0.41 -0.75 -0.83 -0.05
std 8.81 7.15 6.81 6.37 6.68 6.99 7.44 7.93 6.50

ŝtd 9.10 7.64 7.11 6.78 6.78 7.16 7.65 8.37 6.45
cvp 95.90 96.40 95.60 95.90 94.90 95.50 95.80 95.40 94.90

0.2 Σ̂
−1

bias 1.07 0.75 0.35 0.18 -0.13 -0.26 -0.55 -0.85 0.16
std 5.10 4.42 3.87 3.88 3.92 4.00 4.38 4.71 3.63

ŝtd 5.24 4.39 4.08 3.90 3.90 4.11 4.40 4.81 3.73
cvp 95.60 94.90 95.90 95.20 94.80 95.00 94.80 95.30 95.60

0.5 I

bias 1.84 1.03 0.25 0.57 -0.49 -0.92 -0.99 -0.80 -0.03
std 11.63 9.49 8.95 8.67 8.81 9.00 9.78 10.20 7.19

ŝtd 12.64 9.93 9.35 8.99 8.97 9.36 9.96 10.68 7.48
cvp 96.10 95.70 96.10 95.40 94.70 96.10 95.20 96.10 95.60

0.5 Σ̂
−1

bias 1.38 0.62 0.15 0.20 -0.27 -0.46 -0.73 -0.66 -0.08
std 6.87 5.48 5.20 5.03 5.27 5.23 5.52 5.99 4.45

ŝtd 7.13 5.59 5.27 5.06 5.06 5.28 5.61 6.03 4.25
cvp 95.30 96.10 94.90 94.80 93.70 95.10 95.10 95.40 94.50

0.8 I

bias 3.79 1.34 1.31 0.76 -0.23 -1.00 -1.70 -2.32 0.23
std 18.16 16.01 15.43 14.95 15.50 16.05 15.94 16.57 10.70

ŝtd 20.51 16.36 15.66 15.19 15.22 15.68 16.45 17.23 10.81
cvp 97.00 95.30 95.50 96.10 94.30 94.90 95.90 96.30 95.40

0.8 Σ̂
−1

bias 2.62 0.90 1.16 0.35 -0.78 -0.35 -1.25 -1.35 -0.01
std 11.04 9.44 9.31 9.10 9.23 9.11 9.31 9.69 6.62

ŝtd 11.48 9.12 8.76 8.49 8.51 8.74 9.20 9.63 6.06
cvp 95.70 94.50 93.50 92.60 92.90 93.50 95.30 95.00 93.20

we obtain

sup
u

∥∥∥∥hSn1(u,β)−E
[
zzT ⊗ (βTx− u)Kh(β

Tx− u)
]∥∥∥∥

= Op

{( log n

nhd

)1/2}
, (C.2)
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Table S2: The simulation results when x and z are correlated based on n = 500: the
average bias of the estimators (“bias”), the Monte Carlo standard deviation (“std”), the

average of the estimated standard deviation (“ŝtd”) based on the theoretical calculation,
and the empirical coverage probability (“cvp”) at the nominal 95% confidence level. All
simulation results reported below are multiplied by 100.

β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10
ρx,z W True value 0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 0

0.2 I

bias 0.76 0.15 0.39 0.21 -0.27 -0.16 -0.25 -0.41 -0.13
std 5.39 4.48 4.40 4.13 4.05 4.51 4.79 4.84 3.88

ŝtd 5.73 4.80 4.47 4.24 4.24 4.47 4.81 5.25 4.05
cvp 96.60 96.20 95.90 95.20 95.80 94.80 94.80 96.20 95.40

0.2 Σ̂
−1

bias 0.87 0.38 0.27 0.15 -0.18 -0.28 -0.44 -0.54 -0.02
std 2.69 2.39 2.26 2.08 2.16 2.38 2.32 2.51 2.14

ŝtd 3.07 2.57 2.39 2.27 2.26 2.39 2.57 2.81 2.17
cvp 96.40 95.90 95.90 96.70 95.10 95.00 96.60 96.60 95.10

0.5 I

bias 1.15 0.81 0.48 0.29 -0.08 -0.30 -0.94 -1.05 0.13
std 7.56 6.01 5.40 5.39 5.40 5.69 6.09 6.41 4.62

ŝtd 8.00 6.25 5.86 5.61 5.62 5.86 6.23 6.75 4.66
cvp 95.30 95.80 97.00 96.50 96.70 95.60 96.10 96.30 95.00

0.5 Σ̂
−1

bias 1.17 0.61 0.43 0.21 -0.10 -0.32 -0.68 -0.90 -0.18
std 3.98 3.31 3.02 3.03 2.94 3.12 3.39 3.47 2.52

ŝtd 4.29 3.35 3.14 3.00 3.00 3.14 3.33 3.61 2.52
cvp 95.60 95.00 95.40 95.10 94.70 94.20 94.10 95.10 94.50

0.8 I

bias 3.32 0.93 0.84 0.07 0.18 -1.09 -1.05 -1.95 0.06
std 12.57 9.60 9.38 9.35 9.26 9.35 10.01 10.59 6.51

ŝtd 13.29 10.26 9.79 9.50 9.50 9.78 10.25 10.91 6.70
cvp 96.60 97.40 95.80 95.30 95.70 96.20 95.10 95.40 94.80

0.8 Σ̂
−1

bias 2.78 0.87 0.65 0.28 -0.32 -0.54 -1.08 -1.38 -0.13
std 6.39 5.35 5.08 5.30 5.13 5.30 5.43 5.59 3.69

ŝtd 7.05 5.44 5.19 5.04 5.04 5.18 5.44 5.78 3.56
cvp 95.20 95.40 95.10 93.20 94.10 94.20 94.00 95.60 93.20

which together with (C.1) yields that hSn1(u,β) = Op(cn). Thus, we have

q∑
j=1

m̂j(β̂
T

xi)Zij =
{
S−1n0 (β̂

T

xi, β̂)ξξξn0(β̂
T

xi, β̂)
}

T

zi{1 + op(1)}

=
[
S−1n0 (β̂

T

xi, β̂)
1

n

n∑
j=1

Zij

{ q∑
k=1

mk(β
Txj)Zjk + εj

}
T

Kh(β̂
T

xj − β̂
T

xi)
]

T

zi{1 + op(1)}

def
= ∆i{1 + op(1)}.
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Taylor expansion gives

mk(β
Txj) = mk(β̂

T

xj) + m
(1)
k (β̂

T

xj)(β−d − β̂−d)Tx−d,j + op(‖β̂−d − β−d‖).

Hence, we have

∆i = n−1
n∑
j=1

{ q∑
k=1

mk(β̂
T

xj)Zjkz
T

jKh(β̂
T

xj − β̂
T

xi)
}

S−1n0 (β̂
T

xi, β̂)zi

+ n−1
n∑
j=1

q∑
k=1

m
(1)
k (β̂

T

xj)(β−d − β̂−d)Tx−d,jZj,kz
T

jKh(β̂
T

xj − β̂
T

xi)S
−1
n0 (β̂

T

xi, β̂)zi

+ n−1
n∑
j=1

εjz
T

jKh(β̂
T

xj − β̂
T

xi)S
−1
n0 (β̂

T

xi, β̂)zi

def
= ∆i1 + ∆i2 + ∆i3.

Similar to the proof of (C.2), we can derive that

Sn0(β̂
T

xj, β̂)−Ω(β̂
T

xj)f(β̂
T

xj) = Op

{( log n

nhd

)1/2}
,

n−1
n∑
j=1

{ q∑
k=1

mk(β̂
T

xj)Zjkz
T

jKh(β̂
T

xj − β̂
T

xi)
}
−mT(β̂

T

xi)Ω(β̂
T

xi)f(β̂
T

xi)

= Op

{( log n

nhd

)1/2}
.

Thus, we obtain that ∆i1 = mT(β̂
T

xi)zi +Op

[
{log n/(nhd)}1/2

]
. Similarly,

∆i2 =

q∑
k=1

m
(1)
k (β̂

T

xi)(β−d − β̂−d)TE(x−d,i|β̂
T

xi)Zik +Op

{( log n

nhd

)1/2}
,
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∆i3 = Op

{( log n

nhd

)1/2}
.

Combining the above results, we have

yi−
q∑
j=1

m̂j(β̂
T

xi)Zij =

q∑
j=1

{
mj(β̂

T

xi) + m
(1)
j (β̂

T

xi)(β−d − β̂−d)Tx−d,i

}
Zij

−
q∑
j=1

m̂j(β̂
T

xi)Zij + εi

=

q∑
j=1

m
(1)
j (β̂

T

xi)(β−d − β̂−d)T
{
x−d,i − E(x−d,i|β̂

T

xi)
}
Zij + εi + op(‖β̂−d − β−d‖).

Thus it follows that

n∑
i=1

{
yi −

q∑
j=1

m̂j(xd,i + βT

−dx−d,i)Zij

}
T

W
{

yi −
q∑
j=1

m̂j(xd,i + βT

−dx−d,i)Zij

}
≈

n∑
i=1

[ q∑
j=1

m
(1)
j (β̂

T

xi)Zij ⊗
{
x−d,i − E(x−d,i|β̂

T

xi)
}

T
{

vec(β−d)− vec(β̂−d)
}

+ εi

]
T

W

×
[ q∑
j=1

m
(1)
j (β̂

T

xi)Zij ⊗
{
x−d,i − E(x−d,i|β̂

T

xi)
}

T
{

vec(β−d)− vec(β̂−d)
}

+ εi

]
.

Minimizing the above equation yields that

vec(β̂−d)− vec(β−d) =

[ n∑
i=1

{ q∑
j=1

m
(1),T

j (β̂
T

xi)Zij ⊗
(
x−d,i − E(x−d,i|β̂

T

xi)
)}

W

·
{ q∑

j=1

m
(1)
j (β̂

T

xi)Zij ⊗
(
xT

−d,i − E(xT

−d,i|β̂
T

xi)
)}]−1
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×
[ n∑
i=1

{ q∑
j=1

m
(1),T

j (β̂
T

xi)Zij ⊗
(
x−d,i − E(x−d,i|β̂

T

xi)
)}

Wεi

]

+op(‖β̂−d − β−d‖)
def
= Ψ−1n1 Ψn2 + op(‖β̂−d − β−d‖).

By Slutsky’s theorem, to prove Theorem 1, we need only to show that

n−1Ψn1
p−→ Aw and n−1/2Ψn2

d−→ N (0,Bw).

We prove the second part because the proof of fist part is similar. Observe

that

Ψn2 =
n∑
i=1

q∑
j=1

m
(1),T

j (βTxi)Zij ⊗ x̃−d,iWεi

+
n∑
i=1

q∑
j=1

m
(1),T

j (βTxi)Zij ⊗
{
E(x−d,i|βTxi)− E(x−d,i|β̂

T

xi)
}
Wεi

+
n∑
i=1

q∑
j=1

{
m

(1)
j (β̂

T

xi)−m
(1)
j (βTxi)

}
T

Zij ⊗ x̃−d,iWεi

+
n∑
i=1

q∑
j=1

{
m

(1)
j (β̂

T

xi)−m
(1)
j (βTxi)

}
T

Zij ⊗
{
E(x−d,i|βTxi)− E(x−d,i|β̂

T

xi)
}
Wεi

def
=

4∑
k=1

Ψn2,k.

Obviously, n−1/2Ψn2,1
d−→ N (0,Bw), and Ψn2,k = op(n

−1/2), for k = 2, 3, 4.

Thus the proof of Theorem 1 is completed.

3.2. Proof of Theorem 2
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Let

Ξ1 = A−1I

{ q∑
j=1

m(1),T(βTx)⊗ x̃−d

}
Σ1/2 and

Ξ2 = A−1Σ−1

{ q∑
j=1

m(1),T(βTx)⊗ x̃−d

}
Σ−1/2.

Simple calculation yields that 0 ≤ E
{

(Ξ1−Ξ2)(Ξ1−Ξ2)
T
}

= A−1I BIA
−1
I −

A−1Σ−1 , which together with AΣ−1 = BΣ−1 yields the result of Theorem 2.

3.3. Proof of Theorem 3

Using similar arguments to that in the proof of Theorem 1, we have

h2Sn2(β̂
T

xi, β̂) = Ω(β̂
T

xi)f(β̂
T

xi)

∫
usK(u)du+ op(1),

hξξξn1(β̂
T

xi, β̂) = n−1
n∑
j=1

zj ⊗
[( β̂T

xj − β̂
T

xi
h

){ q∑
k=1

(
m(β̂

T

xj) + m(1)(β̂
T

xj)(β − β̂)Txj

+ op(‖β̂ − β‖)
)
Zjk + εj

}
T

]
Kh(β̂

T

xj − β̂
T

xi)

= m(1)(β̂
T

xi)Ω(β̂
T

xi)f(β̂
T

xi)

∫
usK(u)du+ op(1),

which together with Sn1(u,β) = Op(cn) yields that m̂(1)(β̂
T

xi) = m(1)(βTxi)+

op(1). Similarly, we can prove that Σ̂ = Σ + op(1), Âw = Aw + op(1) and

B̂w = Bw + op(1). Thus Theorem 3 follows.

3.4. Proof of Theorem 4

15



NONLINEAR INTERACTION DETECTION

Let

L1(d) =
n∑
i=1

{
yi −

q∑
k=1

m̂k(β̂
T

d,wxi)Zik
}

T
{
yi −

q∑
k=1

m̂k(β̂
T

d,wxi)Zik
}
.

By definition,

L1(d)−L1(d0) =
n∑
i=1

{
yi −

q∑
j=1

m̂j(β̂
T

d,wxi)Zij

}
T
[ q∑
j=1

{
m̂j(β̂

T

d0,w
xi)− m̂j(β̂

T

d,wxi)
}
Zij

]
+

n∑
i=1

[ q∑
j=1

{
m̂j(β̂

T

d0,w
xi)− m̂j(β̂

T

d,wxi)
}
Zij

]
T
{

yi −
q∑
j=1

m̂j(β̂
T

d0,w
xi)Zij

}
def
=Λ1 + Λ2.

Model (1.1) implies that yi =
∑q

j=1 mj(β
T

d0
xi)Zij + εi. E(yi | βT

dxi, zi) 6=

E(yi | βTxd0 , zi) if d < d0 and E(yi | βT

dxi, zi) = E(yi | βT

d0
xi, zi) otherwise.

The proof in Theorem 1 implies that m(βT

dxi) − m̂(βT

dxi) = Op(cn), and

m̂(βT

dxi)− m̂(β̂
T

d,wxi) = op(n
−1/2). If d < d0,

Λ2 =
n∑
i=1

[
q∑
j=1

{
m̂j(β̂

T

d0,w
xi)− m̂j(β̂

T

d,wxi)
}
Zij

]
T

·

[
q∑
j=1

{
mj(β̂

T

d0,w
xi)− m̂j(β̂

T

d0,w
xi)
}
Zij + εi

]
= op(n).

Λ1 =
n∑
i=1

[
q∑
j=1

{
mj(β

T

d0
xi)−mj(β

T

dxi)
}
Zij

]
T
[

q∑
j=1

{
mj(β

T

d0
xi)−mj(β

T

dxi)
}]

+ op(n).
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The first term on the left side of the equation is Op(n), and is positive.

Invoking condition (C3) and λnn
−1/2 → 0, we have

L∗(d)− L∗(d0) ={L1(d)− L1(d0)}

/{
n∑
i=1

(yi − y)T(yi − y)

}1/2

+ p(d− d0)λn

>0, in probability, if d < d0.

Analogously, by condition (C3) and λn/ log n→∞, when d > d0,

L∗(d)− L∗(d0) = Op(n
1/2h2s + n−1/2h−d log n) + p(d− d0)λn > 0, in probability.

Hence, pr(d̂ = d0) goes to 1 and the proof is completed.
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