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Computation of the score function. Note that the objective func-

tion is

pl(θ) =
n∑
i=1

∑
1≤j<k≤mi

lijk(θ),

where

lijk(θ) = logLijk(θ) = log

∫ zij

z−ij

∫ zik

z−ik

φ2(u; ρijk)du

= log
(

Φ2(zij, zik; ρijk)− Φ2(z
−
ij , zik; ρijk)− Φ2(zij, z

−
ik; ρijk) + Φ2(z

−
ij , z

−
ik; ρijk)

)
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and Φ2(x, y; ρ) is the cdf of bivariate normalN(0, 0, 1, 1, ρ), zij = Φ−1
1 {F (yij)} =

zij(β, ψ), z−ij = Φ−1
1 {F (yij − 1) = z−ij(β, ψ)}, and denote η = (βT, ψ)T. We

have

∂lijk
∂η

=
1

Lijk

∂Lijk
∂η

=
1

Lijk

( ∂

∂η
Φ2(zij, zik; ρijk)−

∂

∂η
Φ2(z

−
ij , zik; ρijk)

− ∂

∂η
Φ2(zij, z

−
ik; ρijk) +

∂

∂η
Φ2(z

−
ij , z

−
ik; ρijk)

)
. (A.1)

By the fact that

∂Φ2(z1, z2; ρ)

∂η
=
∂Φ2(z1, z2; ρ)

∂z1

∂z1
∂η

+
∂Φ2(z1, z2; ρ)

∂z2

∂z2
∂η

= φ(z1)Φ1

( z2 − ρz1√
1− ρ2

)∂z1
∂η

+ φ(z2)Φ1

( z1 − ρz2√
1− ρ2

)∂z2
∂η

= Φ1

( z2 − ρz1√
1− ρ2

)∂F (y1)

∂η
+ Φ1

( z1 − ρz2√
1− ρ2

)∂F (y2)

∂η
, (A.2)

where zi = Φ−1
1 {F (yi)}, i = 1, 2, we can write out (A.1) easily.

Noting that for j < k, ρijk =
∑j

s=1 TijsTiks and

∂Tits
∂γ

=



Tits[−tan(ωits)
∂ωits

∂γ +
∑s−1

l=1
1

tan(ωitl)
∂ωitl

∂γ ] t > s > 1

Tits
∑s−1

l=1
1

tan(ωitl)
∂ωitl

∂γ , t = s > 1

−sin(ωit1)
∂ωit1

∂γ , s = 1

,
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we can obtain the derivative of lijk with respect to γ as

∂lijk
∂γ

=
1

Lijk

∂Lijk
∂γ

=
1

Lijk

(
φ2(zij, zik; ρijk)− φ2(z

−
ij , zik; ρijk)

− φ2(zij, z
−
ik; ρijk) + φ2(z

−
ij , z

−
ik; ρijk)

)∂ρijk
∂γ

. (A.3)

Combining (A.1) and (A.3) leads to the score function Sn(θ) .

The expected Hessian matrix. For the second derivatives of log-

likelihood function, the formula is more complicated. However, it is easy to

see that

EHn(θ̂) = − 1

n

n∑
i=1

∑
1≤j<k≤mi

El̈ijk(θ̂)

=
1

n

n∑
i=1

∑
1≤j<k≤mi

El̇ijk(θ̂)l̇Tijk(θ̂), (A.4)

thus Hn in (10) can be approximated by 1
n

∑n
i=1

∑
1≤j<k≤mi

l̇ijk(θ̂)l̇Tijk(θ̂).

Proof of Theorem 1. The proof follows as a special case of the

following proof for Theorem 2, and hence is omitted.

Proof of Theorem 2. Here we give a sketch of the proof. It is easy

to see that EθSn(θ) = 0. Thus by Taylor expansion, we have

0 = Sn(θ̂) = Sn(θ0) + Ṡn(θ̃)(θ̂ − θ0),
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where Ṡn = ∂ST

n/∂θ and θ̃ is in a neighborhood of θ0. Specially, we have

θ̃ → θ0 when n→∞. Therefore, it is seen that

√
n(θ̂ − θ0) = [− 1

n
Ṡn(θ̃)]−1 1√

n
Sn(θ0).

From Central Limit Theorem, Assumption A1-A3, Eθ0
Sn(θ0) = 0 and the

boundness of V arθ0
(Sni(θ0)), i = 1, . . . , n, we have

1√
n
Sn(θ0)→ N(0,J(θ0)).

By Assumption A3 and Slutsky’s theorem, θ̂ is consistent and asymptoti-

cally normal with asymptotic covariance matrix G(θ0).

Proof of Theorem 3. Using a Taylor expansion of the log-pairwise

likelihood function pl around θ, we obtain

pl(θ̂) = pl(θ) + (θ̂ − θ)TSn(θ) +
1

2
(θ̂ − θ)T(−nH(θ))(θ̂ − θ) + op(1).

Notice that 0 = Sn(θ̂) = Sn(θ) + (−nH(θ))(θ̂ − θ) + op(n
1/2). We then

have

pl(θ̂) = pl(θ) +
n

2
(θ̂ − θ)TH(θ)(θ̂ − θ) + op(1).
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It can be rewritten via a partitioned matrix notation

pl(θ̂1, θ̂2) = pl(θ1,θ2)

+
n

2
((θ̂1 − θ1)

T, (θ̂2 − θ2)
T)

 H11 H12

H21 H22


 θ̂1 − θ1

θ̂2 − θ2

+ op(1).

(A.5)

Assuming that the null hypothesis is true, a Taylor expansion of the score

Sn,2 around (θ1,0,θ2) gives

0 = Sn,2(θ1,0, θ̃2) = Sn,2(θ1,0,θ2) + (−nH22)(θ̃2 − θ2) + op(n
1/2).

Equating this with the corresponding part of Sn(θ1,0,θ2), we find

θ̃2 − θ2 = H−1
22 H21(θ̂1 − θ1,0) + (θ̂2 − θ2) + op(n

1/2).

Therefore under the null hypothesis, it is true that

2{pl(θ1,0, θ̃2)− pl(θ1,0, θ̃2)} = n(θ̃2 − θ2)
TH22(θ1,0,θ2)(θ̃2 − θ2) + op(1)

= n[(θ̂1 − θ1,0)H12H
−1
22 H21(θ̂1 − θ1,0) + 2(θ̂1 − θ1,0)

TH12(θ̂2 − θ2)

+ (θ̂2 − θ2)
TH22(θ̂2 − θ2)] + op(1). (A.6)
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Combing (A.5) and (A.6) we have

2{pl(θ̂)− pl(θ1,0, θ̃2)} = 2{pl(θ̂)− pl(θ1,0,θ2)} − 2{pl(θ1,0, θ̃2)− pl(θ1,0, θ̃2)}

= n(θ̂1 − θ1,0)
T(H11 −H12H

−1
22 H21)(θ̂1 − θ1,0) + op(1)

= n(θ̂1 − θ1,0)
T(H11)−1(θ̂1 − θ1,0) + op(1).

Because under the null hypothesis
√
n(θ̂1 − θ1,0) → N(0,G11), it follows

from the properties of a multivariate normal distribution that

n(θ̂1 − θ1,0)
T(H11)−1(θ̂1 − θ1,0)

d→
r∑
j=1

λjVj,

where V1, . . . , Vr denote independent χ2
1 random variables and λ1 ≥ · · · ≥ λr

are the eigenvalues of (H11)−1G11. The proof is completed.

Toenail data

We applied our mean-correlation regression method to analyze a data

set from the toenail dermatophyte onychomycosis study (De Backer et al.

(1996)). This data set consists of 294 participants in two treatment groups

with a total of 1907 observations. Subjects were initially examined every

month during a 12-week (3 months) treatment period, and then followed

up further every 3 months for up to a total of 48 weeks (12 months). Due
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to various unknown reasons, in total there are 23.8% subjects dropping

out, and consequently measurement numbers per subject range from 1 to

7. Therefore, this data set is unbalanced. The response variable of interest

for our analysis is the severity of the infection of the toenail, coded as 0 (not

severe) or 1 (severe). By analyzing this response variable, one aims to reveal

the trend of the infection severity over time, and compare patterns, if any,

between the two treatment groups. Following Molenberghs and Verbeke

(2005), in the marginal model, we used the logistic model for the conditional

mean function for the jth measurements of the ith subject:

Yij ∼ Bernoulli(πij), logit(πij) = β0 + β1Ti + β2tij + β3Titij,

where Ti is the treatment indicator for subject i (1 for the experimental arm,

0 for the standard arm), tij is the time point at which the jth measurement

is taken for the ith subject.

As for the correlation modeling, considering that the data set is un-

balanced with homogeneously spaced time points for all subjects, we first

investigated a reasonable model using a common 7 × 7 correlation matrix

R by letting Ri = R for all subjects. Thus the equivalent unknown pa-

rameters for R by the parametrization (2.4) were ωjk (1 ≤ j < k ≤ 7).
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Then the pairwise likelihood approach was applied to obtain estimators

ω̃jk, leading to an estimated correlation matrix. The plot of the function

tan(π/2− ω̃jk) versus the time lag was given in Figure 5 (a) with solid dots,

suggesting some monotone decreasing associations. Clearly, this method

for incorporating the correlations involves 7× 6/2 = 21 parameters.

Now let us demonstrate the application of the parsimonious correla-

tion regression. Suggested by Figure 5 (a) and the composite likelihood

versions of Bayesian information criterion (BIC) described by Gao and

Song (2010), we link these angles with covariates via the parsimonious

model specified in (5) using a quadratic polynomial function of the time

lag between measurements with unknown parameters γ0, γ1, γ2. The es-

timated parameters of the mean-correlation joint model with estimated

standard deviation shown in the subscript were β̂0 = −0.55650.1711, β̂1 =

0.02360.2407, β̂2 = −0.18300.0232, β̂3 = −0.07740.0344, suggesting that the

time was a significant covariate in the mean model, while the evidence

for the treatment effect and its interaction with time was not statisti-

cally significant. For comparisons, we also obtained a GEE estimates of

the parameters in the same mean model with unstructured working cor-

relations: β̃0 = −0.68980.1679, β̃1 = 0.08280.2430, β̃2 = −0.14830.0283 and

β̃3 = −0.10430.0514. We found that the two sets of estimates are largely com-



DISCRETE LONGITUDINAL DATA MODELING

parable with each other. The estimated parameters in the correlation re-

gression model were γ̂0 = 3.02360.2750, γ̂1 = −0.46900.0658, γ̂2 = 0.02040.0043,

all highly significant. Denoted by ω̂jk the estimated angles from the par-

simonious model, Figure 5 (a) also shows the plot of the fitted angles

tan(π/2 − ω̂jk) versus time lag, which indicates a competent fitting of the

angles with far fewer parameters where only 3 parameters are involved com-

pared with 21 parameters in a common correlation matrix R. Figure 5 (b)

indicates, not surprisingly, that the correlation decreases as the time lag in-

creases, suggesting a high correlation between the severity of the infection

at current visit with the those at the nearest visit times.
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Figure 5: The toenail data: (a) plot of fitted angles tan(π/2− ω̂jk) versus
time lag, (b) plot of fitted correlations versus time lag. In panel (a), solid
dots are fitted angles with a common correlation matrix for all subjects
with parametrization (4), the solid black line is from fitting a LOWESS
curve to the solid dots, the solid red line is from the proposed model, and
the dashed curves represent asymptotic 95% confidence intervals.

Additional simulations

Study 4. We generated n observations y1, . . . ,yn, each with dimension

mi set as the two cases in Study 1. In this study we considered a Gaussian

copula model in which the marginal distributions Fij(j = 1, ...,m) are nega-

tive binomial as yij ∼ NegBin(δ, µij) with mean µij and variance µij+µ
2
ij/δ,

where δ > 0 is the over-dispersion parameter. The mean was parameterised

as µij = exp(xT
ijβ) to allow dependence on covariates, and the variance ex-

ceeds its mean (i.e. overdispersion). The covariate xij1 and xij2 were bivari-

ate normal with correlation 0.5. The angles in the correlation matrix was
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set as ωijk = π/2− atan(γ0 +wijk1γ1) with wijk = {1, tij − tik, (tij − tik)2}T.

The true parameters were taken as β = (β0, β1, β2) = (1,−0.5, 0.5), δ = 4

and γ = (γ0, γ1, γ2) = (0.5,−0.3, 0.5).

Table 4 shows that all the biases for the proposed method are small and

that the SD and SE are quite close, especially for large n. Interestingly, the

MLEs perform slightly better in this study for Case I, but we observed that

it took much more time to obtain them. For Case II, the large bias of the

MLEs suggest again that the MLE may encounter severe numerical prob-

lems when the multi-dimensional integrations are computed. In terms of

the estimation efficiency of the parameters in the mean model, the proposed

PLEs again performs very competitively compared with the GEE method

with unstructured correlations in this case.

Table 4: Simulation results for Study 4. Mean bias (MB) and standard
deviation (SD) of each parameter us reported. SE is the average standard
error calculated using the formula in Theorem 2. PL: Partial Likelihood; FL:
Full Likelihood; GEE: Generalized Estimating Equation.

Pairwise Likelihood Full Likelihood GEE
n 50 100 200 50 100 200 50 100 200

Case I
MBβ0 -0.002 -0.002 -0.001 -0.004 -0.004 -0.004 -0.008 -0.002 -0.001
SD (0.047) (0.058) (0.046) (0.051) (0.063) (0.050) (0.093) (0.058) (0.044)
SE 0.056 0.041 0.029 - - - - - -
Std (0.006) (0.005) (0.003) - - - - - -
MBβ1 0.008 -0.004 -0.003 0.004 -0.006 -0.004 -0.001 -0.001 -0.001
SD (0.018) (0.031) (0.022) (0.024) (0.032) (0.024) (0.044) (0.027) (0.021)
SE 0.032 0.023 0.016 - - - - - -
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Std (0.005) (0.003) (0.002) - - - - - -
MBβ2 0.003 -0.002 -0.002 0.001 -0.004 -0.004 -0.002 0.001 -0.000
SD (0.010) (0.035) (0.025) (0.019) (0.036) (0.025) (0.044) (0.030) (0.020)
SE 0.032 0.023 0.016 - - - - - -
Std (0.005) (0.003) (0.002) - - - - - -
MBδ 0.561 0.313 0.111 0.282 0.395 0.224 1.407 0.791 0.500
SD (0.746) (1.048) (0.640) (0.453) (1.138) (0.750) (2.559) (1.848) (1.416)
SE 1.128 0.724 0.469 - - - - - -
Std (0.382) (0.273) (0.103) - - - - - -
MBγ0 -0.006 -0.004 -0.001 0.003 -0.091 -0.093 - - -
SD (0.113) (0.079) (0.058) (0.025) (0.187) (0.193) - - -
SE 0.100 0.073 0.051 - - - - - -
Std (0.013) (0.007) (0.003) - - - - - -
MBγ1 -0.019 -0.009 0.011 0.002 0.447 0.4318 - - -
SD (0.654) (0.433) (0.332) (0.081) (0.459) (0.426) - - -
SE 0.471 0.332 0.231 - - - - - -
Std (0.083) (0.049) (0.022) - - - - - -
MBγ2 0.052 0.022 -0.006 0.004 -0.413 -0.387 - - -
SD (0.764) (0.522) (0.398) (0.112) (0.401) (0.329) - - -
SE 0.549 0.384 0.266 - - - - - -
Std (0.107) (0.066) (0.031) - - - - - -

Case II
MBβ0 -0.009 -0.001 -0.005 -0.010 0.001 -0.004 -0.012 0.000 -0.004
SD (0.090) (0.068) (0.047) (0.088) (0.065) (0.045) (0.088) (0.065) (0.045)
SE 0.031 0.020 0.014 - - - - - -
Std (0.060) (0.027) (0.013) - - - - - -
MBβ1 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000 -0.001
SD (0.046) (0.032) (0.023) (0.044) (0.031) (0.022) (0.046) (0.031) (0.023)
SE 0.037 0.026 0.018 - - - - - -
Std (0.007) (0.004) (0.002) - - - - - -
MBβ2 -0.001 -0.001 0.000 -0.000 -0.000 0.000 -0.001 -0.000 0.000
SD (0.049) (0.032) (0.024) (0.046) (0.030) (0.022) (0.047) (0.031) (0.024)
SE 0.037 0.026 0.019 - - - - - -
Std (0.007) (0.004) (0.002) - - - - - -
MBδ 0.777 0.310 0.120 0.864 0.405 0.228 1.340 0.0.907 0.600
SD (1.953) (1.051) (0.659) (2.073) (1.176) (0.831) (2.624) (1.984) (1.461)
SE 1.358 0.770 0.502 - - - - - -
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Std (0.944) (0.306) (0.123) - - - - - -
MBγ0 -0.001 -0.011 -0.005 -0.063 -0.070 -0.057 - - -
SD (0.145) (0.067) (0.070) (0.114) (0.056) (0.069) - - -
SE 0.125 0.086 0.061 - - - - - -
Std (0.019) (0.008) (0.005) - - - - - -
MBγ1 -0.042 -0.044 0.021 0.407 0.458 0.379 - - -
SD (0.826) (0.096) (0.382) (0.550) (0.086) (0.364) - - -
SE 0.591 0.403 0.285 - - - - - -
Std (0.118) (0.061) (0.032) - - - - - -
MBγ2 0.070 -0.037 -0.018 -0.477 -0.520 -0.442 - - -
SD (0.994) (0.657) (0.451) (0.643) (0.480) (0.418) - - -
SE 0.704 0.475 0.335 - - - - - -
Std (0.165) (0.081) (0.043) - - - - - -
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