A NONPARAMETRIC REGRESSION MODEL FOR PANEL COUNT DATA ANALYSIS

Huadong Zhao¹, Ying Zhang², Xingqiu Zhao³ and Zhangsheng Yu^{4*}

¹East China Normal University, ²Indiana University,

³The Hong Kong Polytechnic University and ^{2,4}Shanghai Jiao Tong University

Throughput the following theoretical arguments, \mathbb{P}_n and P denote the usual empirical and true probability measures for the observed data. C is a universal constant that may vary from place to place.

Proof of Theorem 1 Let $\mathbb{M}_n(\theta) = \mathbb{P}_n m(\theta; X)$ and $\mathbb{M}(\theta) = Pm(\theta; X)$, where

$$m(\theta; X) = \sum_{j=1}^{K} \left[\mathbb{N}(T_j) \log \Lambda(T_j) + \mathbb{N}(T_j)\beta(Z) - \Lambda(T_j) \exp\{\beta(Z)\} \right].$$

For the consistency of θ , we need to show that

- (i) $\sup_{\theta \in \mathcal{F}_1 \times \mathcal{F}_2} |\mathbb{M}_n(\theta) \mathbb{M}(\theta)| \to 0$ in probability as $n \to \infty$;
- (ii) $\sup_{\theta:d(\theta,\theta_0)\geq\epsilon} \mathbb{M}(\theta) \leq \mathbb{M}(\theta_0)$; and
- (iii) $\mathbb{M}_n(\hat{\theta}_n) \ge \mathbb{M}_n(\theta_0) o_p(1)$

according to Theorem 5.7 of van der Vaart (2000).

First, to show (i), we need to demonstrate that $\mathcal{M}_1 = \{m(\theta; X), \theta \in$ $\Phi_{l_{2,z}} \times \psi_{l_{1,t}}$ is a Glivenko-Cantelli (G-C) Class. By Lemma 1 in Lu, Zhang, and Huang (2007), and Jackson type Theorem (De Boor (2001), page 149), there exists $\Lambda_n \in \psi_{l_1,t}$, and $\beta_n \in \Phi_{l_2,z}$ with order $l_1 \ge r+2, l_2 \ge$ r+2, and knots of T and Z satisfying C2, such that $\|\Lambda_n - \Lambda_0\|_{\infty} =$ $\sup_{t \in O[T]} |\Lambda_n(t) - \Lambda_0(t)| \le Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-r} = O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - \beta_0\|_{\infty} = \sup_{z \in O[Z]} |\beta_n(z) - Cq_{n1}^{-rv_1} + O(n^{-rv_1}), \, \|\beta_n - Cq_{n1}^{-rv_1} + O$ $|\beta_0(z)| \leq Cq_{n2}^{-r} = O(n^{-rv_2})$. By the same argument as in Wellner and Zhang (2007), it follows that Λ_n is also uniformly bounded. Following the calculation of Shen and Wong (1994), for arbitrary $\epsilon > 0$, there exists a set of bracket $\{ [\log \Lambda_i^L, \log \Lambda_i^U] : i = 1, 2, \dots, [(1/\epsilon)^{Cq_{n_1}}] \}$, such that for any $\Lambda \in$ $\psi_{l_1,t}$, we have $\log \Lambda_i^L(t) \le \log \Lambda(t) \le \log \Lambda_i^U(t)$ for some $1 \le i \le [(1/\epsilon)^{Cq_{n_1}}]$ and all $t \in [\sigma_1, \tau_1]$, and $\mathbb{P}_n |\log \Lambda_i^U(t) - \log \Lambda_i^L(t)| \le C\epsilon$. Similarly there exists a set of brackets $\{[\beta_s^L, \beta_s^U] : s = 1, 2, \dots, [(1/\epsilon)^{Cq_{n_2}}]\}$, such that for any $\beta \in \Phi_{l_{2},z}$, we have $\beta_{s}^{L}(z) \leq \beta(z) \leq \beta_{s}^{U}(z)$ for some $1 \leq s \leq [(1/\epsilon)^{c_{2}q_{n^{2}}}]$ and all $z \in [\sigma_2, \tau_2], \mathbb{P}_n |\beta_s^U(Z) - \beta_s^L(Z)| \le C\epsilon$. So we can construct a set of brackets $\{m_{i,s}^L, m_{i,s}^U : i = 1, 2, \dots, [(1/\epsilon)^{Cq_{n1}}], s = 1, 2, \dots, [(1/\epsilon)^{Cq_{n2}}]\}$. For any $m(\theta; X) \in \mathcal{M}_1$, there exist $i \in \{1, 2, \dots, [(1/\epsilon)^{Cq_{n_1}}]\}$ and $s \in \{1, 2, \dots, [(1/\epsilon)^{Cq_{n_2}}]\}$ such that $m(\theta; X) \in [m_{i,s}^L, m_{i,s}^U]$, where

$$m_{i,s}^{L} = \sum_{j=1}^{K} [\mathbb{N}(T_j) \log \Lambda_i^L(T_j) + \mathbb{N}(T_j)\beta_s^L(Z) - \Lambda_i^U(T_j) \exp\{\beta_s^U(Z)\}] \text{ and }$$

$$m_{i,s}^U = \sum_{j=1}^K [\mathbb{N}(T_j) \log \Lambda_i^U(T_j) + \mathbb{N}(T_j)\beta_s^U(Z) - \Lambda_i^L(T_j) \exp\{\beta_s^L(Z)\}].$$

By C1, C5 and Taylor's expansion, it follows that $\mathbb{P}_n |m_{i,s}^U - m_{i,s}^L| \leq C\epsilon$ for all $i \in \{1, 2, \dots, [(1/\epsilon)^{Cq_{n1}}]\}$ and $s \in \{1, 2, \dots, [(1/\epsilon)^{Cq_{n2}}]\}$. So the bracketing number for \mathcal{M}_1 with $L_1(\mathbb{P}_n)$ norm is bounded by $C(1/\epsilon)^{Cq_{n1}+Cq_{n2}}$

. By the relationship of covering and bracketing numbers (page 84 of van der Vaart and Wellner (2000)), we know $N(\epsilon, \mathcal{M}_1, L_1(\mathbb{P}_n)) \leq N_{[\]}(2\epsilon, \mathcal{M}_1, L_1(\mathbb{P}_n))$, and it results in $\log N(\epsilon, \mathcal{M}_1, L_1(\mathbb{P}_n)) = O(Cq_{n1} + Cq_{n2}) = o_p(n)$. Hence \mathcal{M}_1 is a **G-C** class by Theorem 2.4.3 of van der Vaart and Wellner (2000).

Second, to show (ii), we only need to prove $\mathbb{M}(\theta_0) - \mathbb{M}(\theta) \ge Cd^2(\theta, \theta_0)$. Following the same lines as given in Wellner and Zhang (2007), we have

$$\mathbb{M}(\theta_0) - \mathbb{M}(\theta) \ge C \mathbb{E}\Big(\sum_{j=1}^{K} [\Lambda_0(\mathbf{T}_j) \exp\{\beta_0(Z)\} - \Lambda(\mathbf{T}_j) \exp\{\beta(Z)\}]^2\Big).$$

With conditions (C1)-(C5) and C7, by the same arguments as in Wellner and Zhang (2007)(page 2126-2127), yields that

$$\mathbb{M}(\theta_0) - \mathbb{M}(\theta) \ge C\{\|\beta - \beta_0\|_{L_2(\mu_2)}^2 + \|\Lambda - \Lambda_0\|_{L_2(\mu_1)}^2\} = Cd^2(\theta, \theta_0).$$

Third, we use the relationship of *P*-Donsker Class and asymptotic equicontinuity to prove (iii). Similar to the proof for (i), for $(\beta_0, \Lambda_0) \in \mathcal{F}_1 \times \mathcal{F}_2$, there exists $\beta_n \in \Phi_{l_{2,z}}$ and $\log \Lambda_n \in \psi_{l_{1,t}}$ with order $l_1 \geq r+2, l_2 \geq r+2$ such that $\|\beta_n - \beta_0\|_{\infty} \leq Cq_{n1}^{-r} = O(n^{-rv_1}), \|\log \Lambda_n - \log \Lambda_0\|_{\infty} \leq Cq_{n2}^{-r} = O(n^{-rv_2})$. Now let $\theta_n = (\Lambda_n, \beta_n)$, we have

$$\begin{split} \mathbb{M}_{n}(\hat{\theta}_{n}) - \mathbb{M}_{n}(\theta_{0}) &= \mathbb{M}_{n}(\hat{\theta}_{n}) - \mathbb{M}_{n}(\theta_{n}) + \mathbb{M}_{n}(\theta_{n}) - \mathbb{M}_{n}(\theta_{0}) \\ &\geq \mathbb{M}_{n}(\theta_{n}) - \mathbb{M}_{n}(\theta_{0}) \\ &= (\mathbb{P}_{n} - P)\{m(\theta_{n}; X) - m(\theta_{0}; X)\} + \mathbb{M}(\theta_{n}) - \mathbb{M}(\theta_{0}). \end{split}$$

We consider the class: $\mathcal{M}_2 = \{m(\theta; X) : \theta \in \Phi_{l_{2}, z} \times \psi_{l_{1}, t}, \|\Lambda - \Lambda_0\|_{\infty} \leq Cq_{n1}^{-r}, \|\beta - \beta_0\|_{\infty} \leq Cq_{n2}^{-r}\}$. It is obvious that $m(\theta; X) \leq m^B(\theta; X)$ with

$$m^{B}(\theta; X) = \sum_{j=1}^{K} \left(\mathbb{N}(T_{K}) \log[\Lambda(T_{j}) \exp\{\beta(Z)\}] - \Lambda(T_{j}) \exp\{\beta(Z)\} \right)$$

By the boundness of $\beta(Z)$ and $\Lambda(t)$ in \mathcal{M}_2 , we can have $a \leq \Lambda(T) \exp\{\beta(Z)\} \leq b$ for some a < 1 and b > 1 and then $\{a \leq \Lambda(T) \exp\beta(Z) \leq b\} = \{a \leq \Lambda(T) \exp\beta(Z) < 1\} \bigcup \{1 \leq \Lambda(T) \exp\beta(Z) \leq b\}.$

For $\{a \leq \Lambda(t) \exp \beta(Z) \leq 1\}$, denote $B_{1,j} = \{\log[\Lambda(T_j) \exp\{\beta(Z)\}]/\log a\}$ and $\mathcal{G}_{1,j} = \{I_{[\sigma_1,T_j] \times [\sigma_2,Z]}, \sigma_1 \leq T_j \leq \tau_1, \sigma_2 \leq Z \leq \tau_2\}$. We know that

$$0 \le \log[\Lambda(T_j) \exp\{\beta(Z)\}] / \log a \le 1,$$

therefore $B_{1,j} \subseteq \overline{sconv}\mathcal{G}_{1,j}$, the closure of the symmetric convex hull of $\mathcal{G}_{1,j}$.

Hence we have

 $N(\varepsilon, \mathcal{G}_{1,j}, L_2(Q_{C_1,C_2})) \leq C (1/\varepsilon)^8$

for any probability measure Q_{C_1,C_2} of (C_1,C_2) . Since $V(\mathcal{G}_{1,j}) = 5$ and the envelop function of $\mathcal{G}_{1,j}$ is 1. The above equation yields that

$$\log N(\varepsilon, \overline{sconv}\mathcal{G}_{1,j}, L_2(Q_{C_1,C_2})) \le C \left(1/\varepsilon\right)^{10/7},$$

according to Theorem of 2.6.9 in van der Vaart and Wellner (2000). Hence it follows that $\log N(\varepsilon, B_{1,j}, L_2(Q_{C_1,C_2})) \leq C (1/\varepsilon)^{10/7}$.

Let $B'_{1,j} = \{\mathbb{N}(T_K) \log[\Lambda(T_j) \exp\{\beta(Z)\}]\}$. Suppose the centers of ε balls of $B_{1,j}$ are $f^{B_1}_{i,j}$, for $i = 1, 2, \ldots, [C(1/\varepsilon)^{10/7}]$, then for any probability measure Q,

$$\begin{split} & \left\| \sum_{j=1}^{K} \mathbb{N}(T_{K}) \log[\Lambda(T_{j}) \exp\{\beta(Z)\}] - \sum_{j=1}^{K} \mathbb{N}(T_{K}) \log a f_{i,j}^{B_{1}} \right\|_{L_{2}(Q)}^{2} \\ = & Q \bigg(\sum_{j=1}^{K} \mathbb{N}(T_{K}) \log[\Lambda(T_{j}) \exp\{\beta(Z)\}] - \sum_{j=1}^{K} \mathbb{N}(T_{K}) \log a f_{i,j}^{B_{1}} \bigg)^{2} \\ \leq & CQ \left(\sum_{j=1}^{K} \mathbb{N}^{2}(T_{K}) \right) Q \bigg(\sum_{j=1}^{K} \big\{ \log[\Lambda(T_{j}) \exp\{\beta(Z)\}] - \log a f_{i,j}^{B_{1}} \big\} \bigg)^{2} \quad \text{by C9} \\ \leq & E \big\{ e^{C\mathbb{N}(T_{K})} \big\} (\log a)^{2} Q \bigg(\sum_{j=1}^{K} \big\{ \frac{\log[\Lambda(T_{j}) \exp\{\beta(Z)\}]}{\log a} - f_{i,j}^{B_{1}} \big\} \bigg)^{2} \end{split}$$

 $\leq C\varepsilon^2$ by C10.

Let $\tilde{\varepsilon} = \sqrt{C}\varepsilon$, then $\mathbb{N}(T_{K,K})$) $\log a f_{i,j}^{B_1}$, $i = 1, 2, \ldots, [C(1/\varepsilon)^{10/7}]$, are the centers of $\tilde{\varepsilon}$ balls of $B'_{1,j}$. Hence we have $\log N(\tilde{\varepsilon}, B'_{1,j}, L_2(Q)) \leq C(1/\varepsilon)^{10/7}$,

and this yields that

$$\int_0^1 \sup_Q \sqrt{\log N(\tilde{\varepsilon}, B'_{1,j}, L_2(Q))} d\varepsilon \le \int_0^1 \sqrt{C} (1/\varepsilon)^{5/7} d\varepsilon \le \infty.$$

The envelop function of $B'_{1,j}$ is $-\mathbb{N}(T_{K,K}) \log a$, which has finite moments by C3, C5 and C10. Therefore $B'_{1,j}$ is a *P*-Donsker by Theorem 2.5.2 in van der Vaart and Wellner (2000). Similarly, for $\{1 \leq \Lambda(t) \exp \beta(Z) \leq b\}$, we can show that $B'_{1,j} = \{\mathbb{N}(T_K) \log[\Lambda(T_j) \exp\{\beta(Z)\}]\}$ is *P*-Donsker class, which implies that the class made by $\mathbb{N}(T_K) \log[\Lambda(T_j) \exp\{\beta(Z)\}]$ is *P*-Donsker for $\Lambda(T)$ and $\beta(Z)$ satisfying $a \leq \Lambda(T) \exp\{\beta(Z)\} \leq b$. Following the same argument, we can show that the class made by $\Lambda(T_j) \exp\{\beta(Z)\}$ is also *P*-Donsker and hence the class made by $m^B(\Lambda, \beta; X)$ is *P*-Donsker. Therefore \mathcal{M}_2 is *P*-Donsker due to the fact that every element in \mathcal{M}_2 is bounded by $m^B(\Lambda, \beta; X)$.

Moreover it is easily shown by dominated convergence theorem that

$$P\{m(\theta; X) - m(\theta_0; X)\}^2 \to 0 \text{ as } n \to \infty$$

for any $m(\Lambda, \beta) \in \mathcal{M}_2$. Hence by Corollary 2.3.12 in van der Vaart and Wellner (2000), it follows that $(\mathbb{P}_n - P)\{m(\theta_n; X) - m(\theta_0; X)\} = o_p(n^{-1/2})$. Using the dominated convergence theorem again, it can be concluded that $\mathbb{M}(\theta_n) - \mathbb{M}(\theta_0) > -o(1)$ as $n \to \infty$. Hence $\mathbb{M}_n(\hat{\theta}_n) - \mathbb{M}_n(\theta_0) \ge o_p(n^{-1/2}) - o(1) = -o_p(1)$. Therefore, $d(\hat{\theta}_n, \theta_0) \to_p 0$ as $n \to \infty$. **Proof of Theorem 2** In order to derive the rate of convergence, we need to verify the conditions of theorem 3.2.5 of van der Vaart and Wellner (2000).

First, we have already shown that $\mathbb{M}(\theta_0) - \mathbb{M}(\theta) \ge Cd^2(\theta, \theta_0)$.

Second, in the previous proof, we know $\mathbb{M}_n(\hat{\theta}_n) - \mathbb{M}_n(\theta_0) \ge I_{1,n} + I_{2,n}$, where $I_{1,n} = (\mathbb{P}_n - P)\{m(\theta_n; X) - m(\theta_0; X)\}$ and $I_{2,n} = P(m(\theta_n; X) - m(\theta_0; X))$. Let $\theta_{\xi} = \theta_0 + \xi(\theta_n - \theta_0)$ for $0 < \xi < 1$. Taylor expansion of $m(\theta_n; X)$ at θ_0 leads to,

$$I_{1,n} = (\mathbb{P}_n - P)\{\dot{m}_1(\theta_{\xi}; X)(\Lambda_n - \Lambda_0) + \dot{m}_2(\theta_{\xi}; X)(\beta_n - \beta_0)\}$$
$$= n^{-rv_1 + \varepsilon} (\mathbb{P}_n - P)\frac{\dot{m}_1(\theta_{\xi}; X)(\Lambda_n - \Lambda_0)}{n^{-rv_1 + \varepsilon}} + n^{-rv_2 + \varepsilon} (\mathbb{P}_n - P)\frac{\dot{m}_2(\theta_{\xi}; X)(\beta_n - \beta_0)}{n^{-rv_2 + \varepsilon}}$$

for some $0 < \xi < 1$ and $0 < \varepsilon < \min\{1/2 - rv_1, 1/2 - rv_2\}$, here $\dot{m}_1(\theta_{\xi}; X) = \sum_{j=1}^{K} \left[\frac{\mathbb{N}(T_j)}{\Lambda_{\xi}} - \exp\{\beta_{\xi}\}\right]$, $\dot{m}_2(\theta_{\xi}; X) = \sum_{j=1}^{K} [\mathbb{N}(T_j) - \Lambda_{\xi} \exp\{\beta_{\xi}\}]$. Because $\|\beta_n - \beta_0\|_{\infty} \leq Cq_{n1}^{-r} = O(n^{-rv_1}), \|\Lambda_n - \Lambda_0\|_{\infty} \leq Cq_{n2}^{-r} = O(n^{-rv_2})$ and $\dot{m}_1(\theta_{\xi}; X)(\Lambda_n - \Lambda_0), \dot{m}_2(\theta_{\xi}; X)(\beta_n - \beta_0)$ are uniformly bounded. We can conclude that $P\{\frac{\dot{m}_1(\theta_{\xi}; X)(\Lambda_n - \Lambda_0)}{n^{-rv_1 + \varepsilon}}\}^2 \to 0$ and $P\{\frac{\dot{m}_2(\theta_{\xi}; X)(\beta_n - \beta_0)}{n^{-rv_2 + \varepsilon}}\}^2 \to 0$. We know \mathcal{M}_2 is Donsker in the proof of consistency, according to corollary 2.3.12 of van der Vaart and Wellner (2000) again, we can obtain that $(\mathbb{P}_n - P)\{\frac{\dot{m}_1(\theta_{\xi}; X)(\Lambda_n - \Lambda_0)}{n^{-rv_1 + \varepsilon}}\} + (\mathbb{P}_n - P)\{\frac{\dot{m}_2(\theta_{\xi}; X)(\beta_n - \beta_0)}{n^{-rv_2 + \varepsilon}}\} = o_p(n^{-1/2})$. Hence $I_{1,n} = o_p(n^{-rv_1 + \varepsilon}n^{-1/2}) + o_p(n^{-rv_2 + \varepsilon}n^{-1/2}) = o_p(n^{-2r\max(v_1, v_2)})$. By the inequality of $h(x) = x \log x - x + 1 \leq (x - 1)^2$ in the neighbourhood of x = 1, it can be easily to conclude that

$$\mathbb{M}(\theta_0) - \mathbb{M}(\theta_n) \le C(\|\Lambda_0 - \Lambda_n\|_{L_2(\mu_1)}^2 + \|\beta_0 - \beta_n\|_{L_2(\mu_2)}^2) = O(n^{-2\min\{rv_1, rv_2\}}).$$

So we conclude that $\mathbb{M}(\theta_n) - \mathbb{M}(\theta_0) \ge -O(n^{-2\min\{rv_1, rv_2\}})$. Thus, we conclude that $\mathbb{M}_n(\hat{\theta}_n) - \mathbb{M}_n(\theta_0) \ge -O(n^{-2\min\{rv_1, rv_2\}})$.

Third, for any $\delta > 0$, define the class

$$\mathcal{M}_{\delta}(\theta_0) = \{ m(\theta; X) - m(\theta_0; X) : \theta \in \Phi_{l_2, z} \times \psi_{l_1, t}, d(\theta, \theta_0) \le \delta \}.$$

Some algebra yields that $|\mathbb{M}(\theta) - \mathbb{M}(\theta_0)| \leq C\delta^2$ for any $m(\theta) - m(\theta_0) \in \mathcal{M}_{\delta}(\theta_0)$. Hence, by the Lemma 3.4.3 in van der Vaart and Wellner (2000), we obtain

$$E_P \| n^{1/2} (\mathbb{P}_n - P) \|_{\mathcal{M}_{\delta}} \leq C J_{[]}(\delta, \mathcal{M}_{\delta}, \| . \|_{P,B}) \left\{ 1 + \frac{J_{[]}(\delta, \mathcal{M}_{\delta}, \| . \|_{P,B})}{\delta^2 n^{1/2}} \right\}$$

where $J_{[]}(\delta, \mathcal{M}_{\delta}, \| \cdot \|_{P,B}) = \int_{0}^{\delta} \sqrt{1 + \log N_{[]}(\varepsilon, \mathcal{M}_{\delta}, \| \cdot \|_{P,B})} d\varepsilon \leq Cq_{n}^{1/2}\delta,$ $q_{n} = q_{n1} + q_{n2}.$ The right side of the last equation yields $\phi_{n}(\delta) = C(q_{n}^{1/2}\delta + q_{n}/n^{1/2}).$ Because $\phi(\delta)/\delta$ is a decrease function of δ , and $r_{n}^{2}\phi(1/r_{n}) = r_{n}q_{n}^{1/2} + r_{n}^{2}q_{n}/n^{1/2} \leq n^{1/2}$ yields that $r_{n} \leq n^{(1-\max\{v_{1},v_{2}\})/2}$, and we have proved that $\mathcal{M}_{n}(\hat{\theta}_{n}) - \mathcal{M}_{n}(\theta_{0}) \geq -O(n^{-2\min\{rv_{1},rv_{2}\}})$ in the second part. So by theorem 3.2.5 of van der Vaart and Wellner (2000),

When $r_n = n^{\min\{\min\{rv_1, rv_2\}, (1-\max\{v_1, v_2\})/2\}}$, we conclude that $r_n d(\hat{\theta}_n, \theta_0) = O_p(1)$. If $v_1 = v_2 = 1/(1+2r)$, then $n^{r/(1+2r)} d(\hat{\theta}_n, \theta_0) = O_p(1)$. Proof of Theorem 3 Define the set

$$\mathcal{H} \equiv \mathrm{H}_{\Lambda} \times \mathrm{H}_{\beta} = \{ h = (h_1, h_2) : h_1 \in BV[\sigma_1, \tau_1], h_2 \in C[\sigma_2, \tau_2] \},\$$

where $BV[\sigma_1, \tau_1]$ is the Banach space consisting of all the functions with bounded total variation in $[\sigma_1, \tau_1]$, and $C[\sigma_2, \tau_2]$ is the Banach space consisting of all the continuous functions in $[\sigma_2, \tau_2]$. We define a sequence of maps S_n mapping a neighborhood of (Λ_0, β_0) , denoted by \mathcal{U} , in the parameter space for $\theta = (\beta, \Lambda)$ into $l^{\infty}(\mathcal{H})$ as:

$$S_{n}(\theta)[h_{1},h_{2}] = n^{-1} \frac{dl_{n}(\Lambda + \varepsilon h_{1},\beta + \varepsilon h_{2})}{d\varepsilon}|_{\varepsilon=0} = A_{n_{1}}(\theta)[h_{1}] + A_{n_{2}}(\theta)[h_{2}]$$
$$= \mathbb{P}_{n}\varphi(\theta;X)[h],$$

where

$$l_{n}(\Lambda,\beta) = \sum_{i=1}^{n} m(\theta; X_{i})$$

$$A_{n_{1}}(\theta)[h_{1}] \equiv n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}} \left\{ \frac{\mathbb{N}(\mathrm{T}_{i,j})}{\Lambda(\mathrm{T}_{i,j})} - \exp\{\beta(Z_{i})\} \right\} h_{1}(\mathrm{T}_{i,j}),$$

$$A_{n_{2}}(\theta)[h_{2}] \equiv n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}} \left\{ \mathbb{N}(\mathrm{T}_{i,j}) - \Lambda(\mathrm{T}_{i,j}) \exp\{\beta(Z_{i})\} \right\} h_{2}(Z_{i}),$$

and

$$\varphi(\theta; X)[h] = \sum_{j=1}^{K} \left\{ \frac{\mathbb{N}(T_j)}{\Lambda(T_j)} - \exp\{\beta(Z)\} \right\} h_1(T_j) + \sum_{j=1}^{K} \left\{ \mathbb{N}(T_j) - \Lambda(T_j) \exp\{\beta(Z)\} \right\} h_2(Z).$$

Correspondingly, we define the limit map $S: \mathcal{U} \to l^{\infty}(\mathcal{H})$ as

$$S(\theta) = A_1(\theta)[h_1] + A_2(\theta)[h_2] = P\varphi(\theta; X)[h],$$

where

$$A_1(\theta)[h_1] = P\left[\sum_{j=1}^K \left\{\frac{\mathbb{N}(T_j)}{\Lambda(T_j)} - \exp\{\beta(Z)\}\right\} h_1(T_j)\right],$$
$$A_2(\theta)[h_2] = P\left[\sum_{j=1}^K \left\{\mathbb{N}(T_j) - \Lambda(T_j)\exp\{\beta(Z)\}\right\} h_2(Z)\right].$$

To derive the asymptotic normality of a class of smooth functionals of the estimator of $(\hat{\beta}_n, \hat{\Lambda}_n)$, we need to verify the following five conditions given by Theorem 3.3.1 of van der Vaart and Wellner (2000).

- (A1) $(S_n S)(\hat{\beta}_n, \hat{\Lambda}_n)[h] (S_n S)(\beta_0, \Lambda_0)[h] = o_p(n^{-1/2}).$
- (A2) $S(\beta_0, \Lambda_0)[h] = 0$ and $S_n(\hat{\beta}_n, \hat{\Lambda}_n)[h] = o_p(n^{-1/2}).$

(A3) $\sqrt{n}(S_n - S)(\beta_0, \Lambda_0)[h]$ converges in distribution to a tight Gaussian process on $l^{\infty}(\mathcal{H})$.

(A4) $S(\beta, \Lambda)[h]$ is Frechet-differential at (β_0, Λ_0) with a continuously invertible derivative $\dot{S}(\beta_0, \Lambda_0)[h]$.

(A5)
$$S(\hat{\beta}_n, \hat{\Lambda}_n)[h] - S(\beta_0, \Lambda_0)[h] - \dot{S}(\beta_0, \Lambda_0)(\hat{\Lambda}_n - \Lambda_0, \hat{\beta}_n - \beta_0)[h] = o_p(n^{-1/2}).$$

For (A1), define

$$\mathcal{G}_{n}^{\delta}[h] = \left\{ \varphi(\theta; X)[h] : \\ \sup_{\sigma_{1} \leq t \leq \tau_{1}} |\Lambda(t) - \Lambda_{0}(t)| < \delta, \sup_{\sigma_{2} \leq z \leq \tau_{2}} |\beta(z) - \beta_{0}(z)| < \delta, \Lambda \in \psi_{l_{1},t}, \beta \in \Phi_{l_{2},z}, (h_{1}, h_{2}) \in \mathcal{H} \right\}.$$

Similar to the same argument as that in the proof of consistency, we

can show that $\mathcal{G}_n^{\delta}[h]$ is *P*-Donsker.

By Corollary 2.3.12 of van der Vaart and Wellner (2000), we can obtain

$$(\mathbb{P}_n - P)(\varphi(\hat{\theta}_n; X)[h] - \varphi(\theta_0; X)[h]) = o_p(n^{-1/2}),$$

uniformly in h. Thus, (A1) holds.

For (A2), the assumption of the proportional mean model immediately leads to $S(\theta_0)[h] = 0$ for $h \in \mathcal{H}$. Next we show that $S_n(\hat{\theta}_n)[h] = o_p(n^{-1/2})$.

Note that $\hat{\theta}_n$ maximizes $l_n(\Lambda, \beta)$ over $\Lambda \in \psi_{l_1,t}$ and $\beta \in \Phi_{l_2,z}$. It implies that

$$0 \equiv \frac{\partial l_n(\hat{\Lambda}_n + \varepsilon h_{n1}, \hat{\beta}_n + \varepsilon h_{n2})}{\partial \varepsilon},$$

for any $h_{n1} \in \psi_{l_1,t}$ and $h_{n2} \in \Phi_{l_2,z}$, which yields $S_n(\hat{\theta}_n)[h_{n1}, h_{n2}] = 0$.

For any $h = (h_1, h_2) \in \mathcal{H}$, there exist $h_n = (h_{n1}, h_{n2})$ for $h_{n_1} \in \psi_{l_1, t}$ and $h_{n_2} \in \Phi_{l_{2, z}}$ such that $||h_{n_1} - h_1||_{\infty} = O(n^{-rv_1}), ||h_{n_2} - h_2||_{\infty} = O(n^{-rv_2}).$ Then it suffices to show that

$$S_n(\hat{\theta}_n)[h-h_n] = S_n(\hat{\theta}_n)[h_1 - h_{n1}, h_2 - h_{n2}] = o_p(n^{-1/2})$$

Note that

$$S_{n}(\hat{\theta}_{n})[h - h_{n}] = \mathbb{P}_{n}\varphi(\hat{\theta}_{n}; X)[h - h_{n}]$$

$$= (\mathbb{P}_{n} - P)\varphi(\hat{\theta}_{n}; X)[h - h_{n}] + P\varphi(\hat{\theta}_{n}; X)[h - h_{n}]$$

$$= (\mathbb{P}_{n} - P)\varphi(\hat{\theta}_{n}; X)[h - h_{n}] + P\left(\varphi(\hat{\theta}_{n}; X) - \varphi(\theta_{0}; X)\right)[h - h_{n}]$$

$$= I_{1n} + I_{2n}.$$

Because $\mathcal{G}_n^{\delta}[h]$ is *P*-Donsker demonstrated for (A1) and $P\left(\varphi(\hat{\theta}_n; X, Z)[h - h_n]\right)^2 \to_p 0$ due to the approximation of h_n to h, it follows $I_{1n} = o_p(n^{-1/2})$ by Corollary 2.3.12 of van der Vaart and Wellner (2000). The rate of convergence of $\hat{\theta}_n$ and the approximation of h_n to h immediately leads to $I_{2n} = o_p(n^{-1/2})$. Hence (A2) is justified.

Condition (A3) holds because \mathcal{H} is *P*-Donsker and the functionals A_{n1}, A_{n2} are bounded Lipschitz functions with respect to \mathcal{H} (the same argument as in van der Vaart and Wellner (2000),Example 3.3.7 on page 312).

For (A4), by the smoothness of $S(\beta, \lambda)$, the Frechet differentiability holds and the derivative of S at (Λ_0, β_0) , denoted by $\dot{S}(\beta_0, \Lambda_0)$, is a map from the space $\{(\Lambda - \Lambda_0, \beta - \beta_0) : (\Lambda, \beta) \in \mathcal{U}\}$ to $l^{\infty}(\mathcal{H})$ and

$$\begin{split} \dot{S}(\beta_0, \Lambda_0)(\Lambda - \Lambda_0, \beta - \beta_0)[h] \\ = & \frac{d}{d\varepsilon} \{ A_1(\theta_0 + \varepsilon(\theta - \theta_0))[h_1] \} \mid_{\varepsilon=0} + \frac{d}{d\varepsilon} \{ A_2(\theta_0 + \varepsilon(\theta - \theta_0))[h_2] \} \mid_{\varepsilon=0} \\ = & \int (\beta(z) - \beta(z_0)) dQ_1(h_1, h_2)(z) + \int (\Lambda(t) - \Lambda_0(t)) dQ_2(h_1, h_2)(t) + \int (\Lambda(t) - \Lambda(t)) dQ_2(h$$

where

$$Q_{1}(h_{1},h_{2})(z) = P\left\{\exp(\beta_{0}(Z))I(Z \leq z)\sum_{j=1}^{K} \left(h_{1}(T_{j}) + \Lambda_{0}(T_{j})h_{2}(Z)\right)\right\}$$
$$Q_{2}(h_{1},h_{2})(t) = P\left\{\exp(\beta_{0}(Z))\sum_{j=1}^{K}\frac{I((T_{j}) \leq t)}{\Lambda_{0}(T_{j})}\left(h_{1}(T_{j}) + \Lambda_{0}(T_{j})h_{2}(Z)\right)\right\}$$

To demonstrate $\dot{S}(\beta_0, \Lambda_0)[h]$ is invertible, we need to show that $Q = (Q_1, Q_2)$ is one to one and it is equivalent to show that for $h \in \mathcal{H}$, if $Q(h_1, h_2) = 0$, then $h_1 = 0, h_2 = 0$. Suppose that $Q(h_1, h_2) = 0$. Then $\dot{S}(\beta_0, \Lambda_0)(\Lambda - \Lambda_0, \beta - \beta_0)[h_1, h_2] = 0$ for any (β, Λ) in the neighborhood \mathcal{U} . In particular, we take $\Lambda = \Lambda_0 + \varepsilon h_1$ and $\beta = \beta_0 + \varepsilon h_2$, for a small constant ε . A simple algebra leads to

$$\dot{S}(\beta_0,\Lambda_0)(\Lambda-\Lambda_0,\beta-\beta_0)[h_1,h_2] = -\varepsilon P\Big[\exp(\beta_0(Z))\sum_{j=1}^K \Lambda_0(T_j)\Big\{\frac{h_1(T_j)}{\Lambda_0(T_j)} + h_2(Z)\Big\}^2\Big],$$

which yields

$$\frac{h_1(T_j)}{\Lambda_0(T_j)} + h_2(Z) = 0, \quad j = 1, \dots, K, \quad a.e$$

and so $h_1 \equiv 0, h_2 \equiv 0$ by C6.

Next we show that (A5) holds. By Taylor expansion

$$\begin{aligned} S(\hat{\beta}_{n}, \hat{\Lambda}_{n})[h] &- S(\beta_{0}, \Lambda_{0})[h] \\ &= \dot{S}(\beta_{0}, \Lambda_{0})(\hat{\Lambda}_{n} - \Lambda_{0}, \hat{\beta}_{n} - \beta_{0})[h] + O_{p} \left(\|\hat{\Lambda}_{n} - \Lambda_{0}\|_{L_{2}(\mu_{1})}^{2} + \|\hat{\beta}_{n} - \beta_{0}\|_{L_{2}(\mu_{2})}^{2} \right) \\ &= \dot{S}(\beta_{0}, \Lambda_{0})(\hat{\Lambda}_{n} - \Lambda_{0}, \hat{\beta}_{n} - \beta_{0})[h] + o_{p}(n^{-1/2}) \end{aligned}$$

by the rate of convergence of $\hat{\theta}_n$ given in Theorem 2.

Finally, it follows that

$$\sqrt{n} \int (\hat{\Lambda}_n(t) - \Lambda_0(t)) dQ_2(h_1, h_2)(t) + \sqrt{n} \int (\hat{\beta}_n(z) - \beta(z_0)) dQ_1(h_1, h_2)(z)$$

= $\sqrt{n} (S_n - S)(\beta_0, \Lambda_0)[h] + o_p(1)$ by (A1) and (A2).

For any $h = (h_1, h_2) \in \mathcal{H}$, since Q is invertible, there exists an $h^* = (h_1^*, h_2^*) \in \mathcal{H}$ such that

$$Q_2(h_1^*, h_2^*) = h_1, \quad Q_1(h_1^*, h_2^*) = h_2.$$

Therefore, we have

$$\begin{split} \sqrt{n} \int (\hat{\Lambda}_n(t) - \Lambda_0(t)) dh_1(t) + \sqrt{n} \int (\hat{\beta}_n(z) - \beta_0(z)) dh_2(z) \\ &= \sqrt{n} (S_n - S) (\beta_0, \Lambda_0) [h^*] + o_p(1) \rightarrow_d N(0, \sigma^2), \end{split}$$

where $\sigma^2 = E\{\varphi^2(\theta_0; X)[h^*]\}$. The proof is complete.

In fact, we can establish the asymptotic normality for the functionals of $\hat{\Lambda}_n(t)$ and $\hat{\beta}_n(z)$ separately by choosing a proper h^* . For example, if we take

$$h_1^*(T_j) = \frac{-\Lambda_0(T_j)E\{h_2^*(Z)\exp(\beta_0(Z))|K, T_j\}}{E\{\exp(\beta_0(Z))|K, T_j\}}, \text{ for all } j = 1, 2, \cdots, K$$

then

$$Q_{2}(h_{1}^{*}, h_{2}^{*})(t) = E\left[\sum_{j=1}^{K} \exp(\beta_{0}(Z)) \frac{I(T_{j} \leq t)}{\Lambda_{0}(T_{j})} \{\Lambda_{0}(T_{j})h_{2}^{*}(Z) + h_{1}^{*}(T_{j})\}\right]$$
$$= E\left[\sum_{j=1}^{K} I(T_{j} \leq t) \left\{E\{h_{2}^{*}(Z)\exp(\beta_{0}(Z))|K, T_{j}\} + \frac{h_{1}^{*}(T_{j})}{\Lambda_{0}(T_{j})}E\{\exp(\beta_{0}(Z))|K, T_{j}\}\right\}\right]$$
$$= 0.$$

Furthermore, for this chosen h^* , we have

$$Q_{1}(h_{1}^{*}, h_{2}^{*})(z) = E\left[\exp(\beta_{0}(Z))I(Z \leq z)\sum_{j=1}^{K} \Lambda_{0}(T_{j})\left\{h_{2}^{*}(Z) - \frac{E\{h_{2}^{*}(Z)\exp(\beta_{0}(Z))|K, T_{j}\}}{E\{\exp(\beta_{0}(Z))|K, T_{j}\}}\right\}\right]$$

and

$$\sigma_{\beta}^{2} = E\left[\sum_{j=1}^{K} \left\{ \left(\mathbb{N}(T_{j}) - \Lambda_{0}(T_{j}) \exp(\beta_{0}(Z))\right) \left(h_{2}^{*}(Z) - \frac{E\{h_{2}^{*}(Z) \exp(\beta_{0}(Z))|K, T_{j}\}}{E\{\exp(\beta_{0}(Z))|K, T_{j}\}}\right) \right\}\right]^{2}.$$

Then Theorem 3 results in

$$\sqrt{n} \int (\hat{\beta}_n(z) - \beta_0(z)) dQ_1(h_1^*, h_2^*)(z) \to_d N(0, \sigma_\beta^2).$$

Validity of bootstrap nonparametric inference

Finally, we provide a justification for validating the test statistic described in Section 3. Following the discussion above, we can choose a specific $h^* = (h_1^*, h_2^*)$ such that

$$Q_1(h_1^*, h_2^*)(t) = 0$$
 and $Q_2(h_1^*, h_2^*)(z) = H(z)$

and

$$\sqrt{n} \int \left(\hat{\beta}_n(z) - \beta(z)\right) dH(z) \to_d N(0, \sigma_\beta^2).$$

In the following, let \mathbb{P}_n and P denote the empirical and true probability measures of Z, respectively, then we can rewrite the above asymptotic normality as

$$\sqrt{n}P(\hat{\beta}_n - \beta) \to_d N(0, \sigma_\beta^2).$$

Note that

$$\sqrt{n} \left(\int \hat{\beta}_n(z) d\mathbb{H}_n(z) - \int \beta(z) dH(z) \right) = \sqrt{n} (\mathbb{P}_n \hat{\beta}_n(Z) - P\beta(Z))$$
$$= \sqrt{n} \left[(\mathbb{P}_n - P) \hat{\beta}_n(Z) + P(\hat{\beta}_n(Z) - \beta(Z)) \right]$$
$$= \sqrt{n} (\mathbb{P}_n - P) \beta(Z) + \sqrt{n} (\mathbb{P}_n - P) (\hat{\beta}_n(Z) - \beta(Z)) + \sqrt{n} P(\hat{\beta}_n(Z) - \beta(Z))$$

By the ordinary central limit theorem, it follows that

$$\sqrt{n}(\mathbb{P}_n - P)\beta(Z) \to_d N\left(0, P(\beta(Z) - P\beta(Z))^2\right)$$

Using the same empirical process theorem arguments as above, we can show that of $\mathcal{G}^1 = \{(\beta_n - \beta); \beta_n \in \Phi_{l_2,z}\}$ is *P*-Donsker.By the consistency $\hat{\beta}_n, P(\hat{\beta}_n - \beta)^2 \rightarrow_p 0$ and the asymptotic equicontinuity theorem (Corollary 2.3.12 of van der Vaart and Wellner (2000), it follows that $\sqrt{n}(\mathbb{P}_n - P)(\hat{\beta}_n(Z) - \beta(Z)) = o_p(1)$ and hence

$$\sqrt{n}\left(\int \hat{\beta}_n(z) d\mathbb{H}_n(z) - \int \beta(z) dH(z)\right) \to_d N(0,\Omega)$$

for some Ω in a complicated form. Therefore proposed test statistic

$$T_n = \int \hat{\beta}_n(z) dd \mathbb{H}_n(z) = \frac{1}{n} \sum_{i=1}^n \hat{\beta}_n(Z_i)$$

is asymptotically normal with mean zero and variance Ω/n in a complicated form under H_0 : $\beta(z) = 0$ for all z. The variance can be estimated through the bootstrap method with the validity justified by the asymptotic normality just proved.

Figure 1 for simulation of spline-based semiparametric model.

Some reserved simulation results

Here we just kept the following simulation results under sample size 100 and 400.

- S2. Linear regression functions $\beta(Z) = 0.5 * Z$
- S3. Nonlinear regression functions $\beta(Z) = 0.5*Beta(Z, 2, 2)$, where $Beta(\cdot)$ is the *Beta* density function.
- S4. Nonlinear regression functions that oscillate at 0: $\beta(Z) = 1.5 \sin(2\pi Z) I(Z \le 0.5)$ where $I(\cdot)$ is the indicator function

References

De Boor, C. (2001). A Practical Guide to Splines. Springer-Verlag, New York.

Figure 1: The solid curve is the true regression function $\beta(z)$, the dotted, dashed and dash dotted curves are the pointwise 2.5-quantile, mean and 97.5 quantile of $\hat{\beta}_n(z)$ s; (a1)-(a3) are the results of $\beta(Z) = 0.5 * Beta(Z, 2, 2)$ (where $Beta(\cdot)$ is the *Beta* density function.) under sample size 100 and 400;

Du, P., Jiang, Y. and Wang, Y. (2011). Smoothing spline ANOVA frail ty model for recurrent event data. *Biometrics* 67, 1330-1339.

Hu, XJ., Lagakos, SW., and Lockhart. RA. (1998). Marginal Analysis of Panel Counts through

Table 1: SP, Sample size; M-C, Monte Carlo; ASE, average of standard

errors; SD, standard deviation.

Parameter	SP	True value	Bias	M-C SD	ASE	Probability of rejecting H_0
$\beta(Z) = 0.5 * Z$	100	0.25	0.012	0.218	0.178	0.374
	400		0.001	0.127	0.117	0.581
$\beta(Z) = 0.5 * Beta(Z, 2$,2) 100	0.5	-0.011	0.216	0.173	0.772
	400		-0.01	0.124	0.113	0.969
$1.5\sin(2\pi Z)I(Z \le 0.5)$	5) 100	0.477	-0.080	0.225	0.189	0.559
	400		-0.028	0.116	0.109	0.983

Estimating Functions. Biometrika 96, 445-456.

- Hua L, Zhang Y, Tu W. (2014) A spline-based semiparametric sieve likelihood method for over-dispersed panel count data. Canadian Journal of Statistics-revue Canadienne De Statistique 42, 217-245.
- Huang, C. Y., Qin, J., and Wang, M. C. (2010). Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring. *Biometrics* **66**, 39-49.
- Lange, K.(1994) An adaptive barrier method for convex programming. Methods and Applications of Analysis1, 392-402.
- Lee, EW. and Kim, MY. (1998). The analysis of correlated panel data using a continuous-time Markov model. *Biometrics.* **54**, 1638-1644.

- Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function with panel count data using monotone polynomial splines. *Biometrika* **94**, 705-718.
- Lu, M., Zhang, Y. and Huang, J. (2009). Semiparametric estimation methods for panel count data using monotone B-splines. J. Amer. Statist. Assoc. 104, 1060-1070.
- Nielsen, J. D. and Dean, C. B. (2008). Clustered mixed nonhomogeneous Poisson process spline models for the analysis of recurrent event panel data. *Biometrics* 64, 751-761.
- Nielsen, J. D. and Dean, C. B. (2008). Adaptive functional mixed NHPP models for the analysis of recurrent event panel data. *Computational Statistics and Data Analysis* **52**, 3670-3685.

Schumaker L. (2007). Spline Functions: Basic Theory. Cambridge University Press.

Shen, X. and Wong, WH. (1994). Convergence rate of sieve estimates. Ann. Statist. 22, 580-615.

- Sun, J. and Kalbfleisch, JD. (1995). Estimation of the mean function of point processes based on panel count data. Statist. Sinica. 5, 279-290.
- Sun, J. and Zhao, X. (2013). Statistical Analysis of Panel Count Data. Springer-Verlag, New York.
- Sun, J. and Wei, LJ. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. J. Roy.Statist. Soc. B. 62, 293-302.
- Sun, L., Zhu, L., and Sun, J.(2009). Regression analysis of multivariate recurrent event data with time-varying covariate effects. J Multivariate Anal. 100, 2214-2223.
- Thall, PF. and Lachin, JM. (1988) Analysis of recurrent events: Nonparametric methods for

random-interval count data. J. Amer. Statist. Assoc. 83, 339-347.

van der Vaart, AW. (2000). Asymptotic Statistics. Cambridge university press.

- van der Vaart, AW. and Wellner, JA. (2000). Weak Convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York.
- Wellner, JA. and Zhang, Y. (2000). Two estimators of the mean of a counting process with panel count data. Ann. Statist. 28, 779-814.
- Wellner, JA. and Zhang, Y. (2007). Two likelihood-based semiparametric estimation methods for panel count data with covariates. Ann. Statist. **35**, 2106-2142.
- Wu, Y. and Zhang, Y. (2012). Partially monotone tensor spline estimation of the joint distribution function with bivariate current status data. Ann. Statist. 40, 1609-1636.
- Yao, W., Barb-Tuana, F.M., Llapur, C.J., Jones, M.H., Tiller, C., Kimmel, R., Kisling, J., Nguyen, E.T., Nguyen, J., Yu, Z. and Kaplan, M.H. (2010). Evaluation of airway reactivity and immune characteristics as risk factors for wheezing early in life. *Journal of Allergy and Clinical Immunology* **126**, 483-488.
- Yu, Z., Liu, L., Bravata, DM., Williams, LS., Tepper, RS. (2013). A semiparametric recurrent events model with time-varying coefficients. *Statistics in Medicine*. **32**, 1016-1026.
- Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89, 39-48.
- Zhu, L., Zhao, H., Sun, J., Leisenring, W., and Robison, LL. (2015). Regression analysis of

mixed recurrent-event and panel-count data with additive rate models. Biometrics 71,

71-79.

Figure 2: Estimation results for the regression function: The solid curve is the true regression function $\beta(z)$, the dotted, dashed and dash dotted curves are the pointwise 2.5-quantile, mean and 97.5 quantile of $\hat{\beta}_n(z)$ s; (a1)-(a2) are the results of $\beta(Z) = 0.5 * Z$ under sample sizes 100 and 400; (b1)-(b2) are the results of $\beta(Z) = 0.5 * Beta(Z, 2, 2)$ under sample sizes 100 and 400. (c1)-(c2) are the results of $\beta(Z) = 1.5 \sin(2\pi Z)I(Z \le 0.5)$ under sample sizes 100 and 400.