A NONPARAMETRIC REGRESSION MODEL FOR PANEL COUNT DATA ANALYSIS

Huadong Zhao ${ }^{1}$, Ying Zhang ${ }^{2}$, Xingqiu Zhao ${ }^{3}$ and Zhangsheng $\mathrm{Yu}^{4 *}$
${ }^{1}$ East China Normal University, ${ }^{2}$ Indiana University,
${ }^{3}$ The Hong Kong Polytechnic University and ${ }^{2,4}$ Shanghai Jiao Tong University

Throughput the following theoretical arguments, \mathbb{P}_{n} and P denote the usual empirical and true probability measures for the observed data. C is a universal constant that may vary from place to place.

Proof of Theorem 1 Let $\mathbb{M}_{n}(\theta)=\mathbb{P}_{n} m(\theta ; X)$ and $\mathbb{M}(\theta)=P m(\theta ; X)$, where

$$
m(\theta ; X)=\sum_{j=1}^{K}\left[\mathbb{N}\left(T_{j}\right) \log \Lambda\left(T_{j}\right)+\mathbb{N}\left(T_{j}\right) \beta(Z)-\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]
$$

For the consistency of θ, we need to show that
(i) $\sup _{\theta \in \mathcal{F}_{1} \times \mathcal{F}_{2}}\left|\mathbb{M}_{n}(\theta)-\mathbb{M}(\theta)\right| \rightarrow 0$ in probability as $n \rightarrow \infty$;
(ii) $\sup _{\theta: d\left(\theta, \theta_{0}\right) \geq \epsilon} \mathbb{M}(\theta) \leq \mathbb{M}\left(\theta_{0}\right)$; and
(iii) $\mathbb{M}_{n}\left(\hat{\theta}_{n}\right) \geq \mathbb{M}_{n}\left(\theta_{0}\right)-o_{p}(1)$
according to Theorem 5.7 of van der Vaart (2000).
First, to show (i), we need to demonstrate that $\mathcal{M}_{1}=\{m(\theta ; X), \theta \in$ $\left.\Phi_{l_{2}, z} \times \psi_{l_{1}, t}\right\}$ is a Glivenko-Cantelli (G-C) Class. By Lemma 1 in Lu, Zhang, and Huang (2007), and Jackson type Theorem (De Boor (2001), page 149), there exists $\Lambda_{n} \in \psi_{l_{1}, t}$, and $\beta_{n} \in \Phi_{l_{2}, z}$ with order $l_{1} \geq r+2, l_{2} \geq$ $r+2$, and knots of T and Z satisfying C 2 , such that $\left\|\Lambda_{n}-\Lambda_{0}\right\|_{\infty}=$ $\sup _{t \in O[T]}\left|\Lambda_{n}(t)-\Lambda_{0}(t)\right| \leq C q_{n 1}^{-r}=O\left(n^{-r v_{1}}\right),\left\|\beta_{n}-\beta_{0}\right\|_{\infty}=\sup _{z \in O[Z]} \mid \beta_{n}(z)-$ $\beta_{0}(z) \mid \leq C q_{n 2}^{-r}=O\left(n^{-r v_{2}}\right)$. By the same argument as in Wellner and Zhang (2007), it follows that Λ_{n} is also uniformly bounded. Following the calculation of Shen and Wong (1994), for arbitrary $\epsilon>0$, there exists a set of bracket $\left\{\left[\log \Lambda_{i}^{L}, \log \Lambda_{i}^{U}\right]: i=1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 1}}\right]\right\}$, such that for any $\Lambda \in$ $\psi_{l_{1}, t}$, we have $\log \Lambda_{i}^{L}(t) \leq \log \Lambda(t) \leq \log \Lambda_{i}^{U}(t)$ for some $1 \leq i \leq\left[(1 / \epsilon)^{C q_{n 1}}\right]$ and all $t \in\left[\sigma_{1}, \tau_{1}\right]$, and $\mathbb{P}_{n}\left|\log \Lambda_{i}^{U}(t)-\log \Lambda_{i}^{L}(t)\right| \leq C \epsilon$. Similarly there exists a set of brackets $\left\{\left[\beta_{s}^{L}, \beta_{s}^{U}\right]: s=1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 2}}\right]\right\}$, such that for any $\beta \in \Phi_{l_{2}, z}$, we have $\beta_{s}^{L}(z) \leq \beta(z) \leq \beta_{s}^{U}(z)$ for some $1 \leq s \leq\left[(1 / \epsilon)^{c_{2} q_{n 2}}\right]$ and all $z \in\left[\sigma_{2}, \tau_{2}\right], \mathbb{P}_{n}\left|\beta_{s}^{U}(Z)-\beta_{s}^{L}(Z)\right| \leq C \epsilon$. So we can construct a set of brackets $\left\{m_{i, s}^{L}, m_{i, s}^{U}: i=1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 1}}\right], s=1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 2}}\right]\right\}$. For any $m(\theta ; X) \in \mathcal{M}_{1}$, there exist $i \in\left\{1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 1}}\right]\right\}$ and $s \in\left\{1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 2}}\right]\right\}$
such that $m(\theta ; X) \in\left[m_{i, s}^{L}, m_{i, s}^{U}\right]$, where

$$
\begin{gathered}
m_{i, s}^{L}=\sum_{j=1}^{K}\left[\mathbb{N}\left(T_{j}\right) \log \Lambda_{i}^{L}\left(T_{j}\right)+\mathbb{N}\left(T_{j}\right) \beta_{s}^{L}(Z)-\Lambda_{i}^{U}\left(T_{j}\right) \exp \left\{\beta_{s}^{U}(Z)\right\}\right] \text { and } \\
m_{i, s}^{U}=\sum_{j=1}^{K}\left[\mathbb{N}\left(T_{j}\right) \log \Lambda_{i}^{U}\left(T_{j}\right)+\mathbb{N}\left(T_{j}\right) \beta_{s}^{U}(Z)-\Lambda_{i}^{L}\left(T_{j}\right) \exp \left\{\beta_{s}^{L}(Z)\right\}\right]
\end{gathered}
$$

By C1, C5 and Taylor's expansion, it follows that $\mathbb{P}_{n}\left|m_{i, s}^{U}-m_{i, s}^{L}\right| \leq C \epsilon$ for all $i \in\left\{1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 1}}\right]\right\}$ and $s \in\left\{1,2, \ldots,\left[(1 / \epsilon)^{C q_{n 2}}\right]\right\}$. So the bracketing number for \mathcal{M}_{1} with $L_{1}\left(\mathbb{P}_{n}\right)$ norm is bounded by $C(1 / \epsilon)^{C q_{n 1}+C q_{n 2}}$. By the relationship of covering and bracketing numbers (page 84 of van der Vaart and Wellner (2000)), we know $N\left(\epsilon, \mathcal{M}_{1}, L_{1}\left(\mathbb{P}_{n}\right)\right) \leq N_{[]}\left(2 \epsilon, \mathcal{M}_{1}, L_{1}\left(\mathbb{P}_{n}\right)\right)$, and it results in $\log N\left(\epsilon, \mathcal{M}_{1}, L_{1}\left(\mathbb{P}_{n}\right)\right)=O\left(C q_{n 1}+C q_{n 2}\right)=o_{p}(n)$. Hence \mathcal{M}_{1} is a G-C class by Theorem 2.4.3 of van der Vaart and Wellner (2000).

Second, to show (ii), we only need to prove $\mathbb{M}\left(\theta_{0}\right)-\mathbb{M}(\theta) \geq C d^{2}\left(\theta, \theta_{0}\right)$. Following the same lines as given in Wellner and Zhang (2007), we have

$$
\mathbb{M}\left(\theta_{0}\right)-\mathbb{M}(\theta) \geq C \mathrm{E}\left(\sum_{j=1}^{\mathrm{K}}\left[\Lambda_{0}\left(\mathrm{~T}_{j}\right) \exp \left\{\beta_{0}(Z)\right\}-\Lambda\left(\mathrm{T}_{j}\right) \exp \{\beta(Z)\}\right]^{2}\right)
$$

With conditions (C1)-(C5) and C7, by the same arguments as in Wellner and Zhang (2007)(page 2126-2127), yields that

$$
\mathbb{M}\left(\theta_{0}\right)-\mathbb{M}(\theta) \geq \mathrm{C}\left\{\left\|\beta-\beta_{0}\right\|_{\mathrm{L}_{2}\left(\mu_{2}\right)}^{2}+\left\|\Lambda-\Lambda_{0}\right\|_{\mathrm{L}_{2}\left(\mu_{1}\right)}^{2}\right\}=\mathrm{C} d^{2}\left(\theta, \theta_{0}\right)
$$

Third, we use the relationship of P-Donsker Class and asymptotic equicontinuity to prove (iii). Similar to the proof for (i), for $\left(\beta_{0}, \Lambda_{0}\right) \in \mathcal{F}_{1} \times$ \mathcal{F}_{2}, there exists $\beta_{n} \in \Phi_{l_{2}, z}$ and $\log \Lambda_{n} \in \psi_{l_{1}, t}$ with order $l_{1} \geq r+2, l_{2} \geq r+2$ such that $\left\|\beta_{n}-\beta_{0}\right\|_{\infty} \leq C q_{n 1}^{-r}=O\left(n^{-r v_{1}}\right),\left\|\log \Lambda_{n}-\log \Lambda_{0}\right\|_{\infty} \leq C q_{n 2}^{-r}=$ $O\left(n^{-r v_{2}}\right)$. Now let $\theta_{n}=\left(\Lambda_{n}, \beta_{n}\right)$, we have

$$
\begin{aligned}
\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) & =\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{n}\right)+\mathbb{M}_{n}\left(\theta_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \\
& \geq \mathbb{M}_{n}\left(\theta_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \\
& =\left(\mathbb{P}_{n}-P\right)\left\{m\left(\theta_{n} ; X\right)-m\left(\theta_{0} ; X\right)\right\}+\mathbb{M}\left(\theta_{n}\right)-\mathbb{M}\left(\theta_{0}\right) .
\end{aligned}
$$

We consider the class: $\mathcal{M}_{2}=\left\{m(\theta ; X): \theta \in \Phi_{l_{2}, z} \times \psi_{l_{1}, t},\left\|\Lambda-\Lambda_{0}\right\|_{\infty} \leq\right.$ $\left.C q_{n 1}^{-r},\left\|\beta-\beta_{0}\right\|_{\infty} \leq C q_{n 2}^{-r}\right\}$. It is obvious that $m(\theta ; X) \leq m^{B}(\theta ; X)$ with

$$
m^{B}(\theta ; X)=\sum_{j=1}^{K}\left(\mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]-\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right)
$$

By the boundness of $\beta(Z)$ and $\Lambda(t)$ in \mathcal{M}_{2}, we can have $a \leq \Lambda(T) \exp \{\beta(Z)\} \leq$ b for some $a<1$ and $b>1$ and then $\{a \leq \Lambda(T) \exp \beta(Z) \leq b\}=\{a \leq$ $\Lambda(T) \exp \beta(Z)<1\} \bigcup\{1 \leq \Lambda(T) \exp \beta(Z) \leq b\}$.

For $\{a \leq \Lambda(t) \exp \beta(Z) \leq 1\}$, denote $B_{1, j}=\left\{\log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right] / \log a\right\}$ and $\mathcal{G}_{1, j}=\left\{I_{\left[\sigma_{1}, T_{j}\right] \times\left[\sigma_{2}, Z\right]}, \sigma_{1} \leq T_{j} \leq \tau_{1}, \sigma_{2} \leq Z \leq \tau_{2}\right\}$. We know that

$$
0 \leq \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right] / \log a \leq 1,
$$

therefore $B_{1, j} \subseteq \overline{\operatorname{sconv}} \mathcal{G}_{1, j}$, the closure of the symmetric convex hull of $\mathcal{G}_{1, j}$.

Hence we have

$$
N\left(\varepsilon, \mathcal{G}_{1, j}, L_{2}\left(Q_{C_{1}, C_{2}}\right)\right) \leq C(1 / \varepsilon)^{8}
$$

for any probability measure $Q_{C_{1}, C_{2}}$ of $\left(C_{1}, C_{2}\right)$. Since $V\left(\mathcal{G}_{1, j}\right)=5$ and the envelop function of $\mathcal{G}_{1, j}$ is 1 . The above equation yields that

$$
\log N\left(\varepsilon, \overline{\operatorname{sconv}} \mathcal{G}_{1, j}, L_{2}\left(Q_{C_{1}, C_{2}}\right)\right) \leq C(1 / \varepsilon)^{10 / 7}
$$

according to Theorem of 2.6.9 in van der Vaart and Wellner (2000). Hence it follows that $\log N\left(\varepsilon, B_{1, j}, L_{2}\left(Q_{C_{1}, C_{2}}\right)\right) \leq C(1 / \varepsilon)^{10 / 7}$.

Let $B_{1, j}^{\prime}=\left\{\mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]\right\}$. Suppose the centers of ε balls of $B_{1, j}$ are $f_{i, j}^{B_{1}}$, for $i=1,2, \ldots,\left[C(1 / \varepsilon)^{10 / 7}\right]$, then for any probability measure Q,

$$
\begin{aligned}
& \left\|\sum_{j=1}^{K} \mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]-\sum_{j=1}^{K} \mathbb{N}\left(T_{K}\right) \log a f_{i, j}^{B_{1}}\right\|_{L_{2}(Q)}^{2} \\
= & Q\left(\sum_{j=1}^{K} \mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]-\sum_{j=1}^{K} \mathbb{N}\left(T_{K}\right) \log a f_{i, j}^{B_{1}}\right)^{2} \\
\leq & C Q\left(\sum_{j=1}^{K} \mathbb{N}^{2}\left(T_{K}\right)\right) Q\left(\sum_{j=1}^{K}\left\{\log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]-\log a f_{i, j}^{B_{1}}\right\}\right)^{2} \text { by C9 } \\
\leq & E\left\{e^{C \mathbb{N}\left(T_{K}\right)}\right\}(\log a)^{2} Q\left(\sum_{j=1}^{K}\left\{\frac{\log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]}{\log a}-f_{i, j}^{B_{1}}\right\}\right)^{2}
\end{aligned}
$$

$$
\leq C \varepsilon^{2} \text { by } \mathrm{C} 10
$$

Let $\tilde{\varepsilon}=\sqrt{C} \varepsilon$, then $\left.\mathbb{N}\left(T_{K, K}\right)\right) \log a f_{i, j}^{B_{1}}, i=1,2, \ldots,\left[C(1 / \varepsilon)^{10 / 7}\right]$, are the centers of $\tilde{\varepsilon}$ balls of $B_{1, j}^{\prime}$. Hence we have $\log N\left(\tilde{\varepsilon}, B_{1, j}^{\prime}, L_{2}(Q)\right) \leq C(1 / \varepsilon)^{10 / 7}$,
and this yields that

$$
\int_{0}^{1} \sup _{Q} \sqrt{\log N\left(\tilde{\varepsilon}, B_{1, j}^{\prime}, L_{2}(Q)\right)} d \varepsilon \leq \int_{0}^{1} \sqrt{C}(1 / \varepsilon)^{5 / 7} d \varepsilon \leq \infty
$$

The envelop function of $B_{1, j}^{\prime}$ is $-\mathbb{N}\left(T_{K, K}\right) \log a$, which has finite moments by C3, C5 and C10. Therefore $B_{1, j}^{\prime}$ is a P-Donsker by Theorem 2.5.2 in van der Vaart and Wellner (2000). Similarly, for $\{1 \leq \Lambda(t) \exp \beta(Z) \leq b\}$, we can show that $B_{1, j}^{\prime}=\left\{\mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]\right\}$ is P-Donsker class, which implies that the class made by $\mathbb{N}\left(T_{K}\right) \log \left[\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right]$ is P Donsker for $\Lambda(T)$ and $\beta(Z)$ satisfying $a \leq \Lambda(T) \exp \{\beta(Z)\} \leq b$. Following the same argument, we can show that the class made by $\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}$ is also P-Donsker and hence the class made by $m^{B}(\Lambda, \beta ; X)$ is P-Donsker. Therefore \mathcal{M}_{2} is P-Donsker due to the fact that every element in \mathcal{M}_{2} is bounded by $m^{B}(\Lambda, \beta ; X)$.

Moreover it is easily shown by dominated convergence theorem that

$$
P\left\{m(\theta ; X)-m\left(\theta_{0} ; X\right)\right\}^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

for any $m(\Lambda, \beta) \in \mathcal{M}_{2}$. Hence by Corollary 2.3.12 in van der Vaart and Wellner (2000), it follows that $\left(\mathbb{P}_{n}-P\right)\left\{m\left(\theta_{n} ; X\right)-m\left(\theta_{0} ; X\right)\right\}=o_{p}\left(n^{-1 / 2}\right)$. Using the dominated convergence theorem again, it can be concluded that $\mathbb{M}\left(\theta_{n}\right)-\mathbb{M}\left(\theta_{0}\right)>-o(1)$ as $n \rightarrow \infty$. Hence $\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \geq o_{p}\left(n^{-1 / 2}\right)-$ $o(1)=-o_{p}(1)$. Therefore, $d\left(\hat{\theta}_{n}, \theta_{0}\right) \rightarrow_{p} 0$ as $n \rightarrow \infty$.

PANEL COUNT DATA ANALYSIS

Proof of Theorem 2 In order to derive the rate of convergence, we need to verify the conditions of theorem 3.2.5 of van der Vaart and Wellner (2000).

First, we have already shown that $\mathbb{M}\left(\theta_{0}\right)-\mathbb{M}(\theta) \geq C d^{2}\left(\theta, \theta_{0}\right)$.
Second, in the previous proof, we know $\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \geq I_{1, n}+I_{2, n}$, where $I_{1, n}=\left(\mathbb{P}_{n}-P\right)\left\{m\left(\theta_{n} ; X\right)-m\left(\theta_{0} ; X\right)\right\}$ and $I_{2, n}=P\left(m\left(\theta_{n} ; X\right)-\right.$ $\left.m\left(\theta_{0} ; X\right)\right)$. Let $\theta_{\xi}=\theta_{0}+\xi\left(\theta_{n}-\theta_{0}\right)$ for $0<\xi<1$. Taylor expansion of $m\left(\theta_{n} ; X\right)$ at θ_{0} leads to,

$$
\begin{aligned}
I_{1, n}= & \left(\mathbb{P}_{n}-P\right)\left\{\dot{m}_{1}\left(\theta_{\xi} ; X\right)\left(\Lambda_{n}-\Lambda_{0}\right)+\dot{m}_{2}\left(\theta_{\xi} ; X\right)\left(\beta_{n}-\beta_{0}\right)\right\} \\
& =n^{-r v_{1}+\varepsilon}\left(\mathbb{P}_{n}-P\right) \frac{\dot{m}_{1}\left(\theta_{\xi} ; X\right)\left(\Lambda_{n}-\Lambda_{0}\right)}{n^{-r v_{1}+\varepsilon}}+n^{-r v_{2}+\varepsilon}\left(\mathbb{P}_{n}-P\right) \frac{\dot{m}_{2}\left(\theta_{\xi} ; X\right)\left(\beta_{n}-\beta_{0}\right)}{n^{-r v_{2}+\varepsilon}}
\end{aligned}
$$

for some $0<\xi<1$ and $0<\varepsilon<\min \left\{1 / 2-r v_{1}, 1 / 2-r v_{2}\right\}$, here $\dot{m}_{1}\left(\theta_{\xi} ; X\right)=$ $\sum_{j=1}^{K}\left[\frac{\mathbb{N}\left(T_{j}\right)}{\Lambda_{\xi}}-\exp \left\{\beta_{\xi}\right\}\right], \dot{m}_{2}\left(\theta_{\xi} ; X\right)=\sum_{j=1}^{K}\left[\mathbb{N}\left(T_{j}\right)-\Lambda_{\xi} \exp \left\{\beta_{\xi}\right\}\right]$. Because $\left\|\beta_{n}-\beta_{0}\right\|_{\infty} \leq C q_{n 1}^{-r}=O\left(n^{-r v_{1}}\right),\left\|\Lambda_{n}-\Lambda_{0}\right\|_{\infty} \leq C q_{n 2}^{-r}=O\left(n^{-r v_{2}}\right)$ and $\dot{m}_{1}\left(\theta_{\xi} ; X\right)\left(\Lambda_{n}-\Lambda_{0}\right), \dot{m}_{2}\left(\theta_{\xi} ; X\right)\left(\beta_{n}-\beta_{0}\right)$ are uniformly bounded. We can conclude that $P\left\{\frac{\dot{m}_{1}\left(\theta_{\xi} ; X\right)\left(\Lambda_{n}-\Lambda_{0}\right)}{n^{-r v_{1}+e}}\right\}^{2} \rightarrow 0$ and $P\left\{\frac{\dot{m}_{2}(\theta \xi ; X)\left(\beta_{n}-\beta_{0}\right)}{n-r v_{2}+e}\right\}^{2} \rightarrow 0$. We know \mathcal{M}_{2} is Donsker in the proof of consistency, according to corollary 2.3.12 of van der Vaart and Wellner (2000) again, we can obtain that $\left(\mathbb{P}_{n}-\right.$ $P)\left\{\frac{\dot{m}_{1}\left(\theta_{\xi} ; X\right)\left(\Lambda_{n}-\Lambda_{0}\right)}{n^{-r v_{1}+\varepsilon}}\right\}+\left(\mathbb{P}_{n}-P\right)\left\{\frac{\dot{m}_{2}\left(\theta_{\xi} ; X\right)\left(\beta_{n}-\beta_{0}\right)}{n^{-r v_{2}+\varepsilon}}\right\}=o_{p}\left(n^{-1 / 2}\right)$. Hence $I_{1, n}=$ $o_{p}\left(n^{-r v_{1}+\varepsilon} n^{-1 / 2}\right)+o_{p}\left(n^{-r v_{2}+\varepsilon} n^{-1 / 2}\right)=o_{p}\left(n^{-2 r \max \left(v_{1}, v_{2}\right)}\right)$. By the inequality of $h(x)=x \log x-x+1 \leq(x-1)^{2}$ in the neighbourhood of $x=1$, it can
be easily to conclude that
$\mathbb{M}\left(\theta_{0}\right)-\mathbb{M}\left(\theta_{n}\right) \leq C\left(\left\|\Lambda_{0}-\Lambda_{n}\right\|_{L_{2}\left(\mu_{1}\right)}^{2}+\left\|\beta_{0}-\beta_{n}\right\|_{L_{2}\left(\mu_{2}\right)}^{2}\right)=O\left(n^{-2 \min \left\{r v_{1}, r v_{2}\right\}}\right)$.

So we conclude that $\mathbb{M}\left(\theta_{n}\right)-\mathbb{M}\left(\theta_{0}\right) \geq-O\left(n^{-2 \min \left\{r v_{1}, r v_{2}\right\}}\right)$. Thus, we conclude that $\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \geq-O\left(n^{-2 \min \left\{r v_{1}, r v_{2}\right\}}\right)$.

Third, for any $\delta>0$, define the class

$$
\mathcal{M}_{\delta}\left(\theta_{0}\right)=\left\{m(\theta ; X)-m\left(\theta_{0} ; X\right): \theta \in \Phi_{l_{2}, z} \times \psi_{l_{1}, t}, d\left(\theta, \theta_{0}\right) \leq \delta\right\}
$$

Some algebra yields that $\left|\mathbb{M}(\theta)-\mathbb{M}\left(\theta_{0}\right)\right| \leq C \delta^{2}$ for any $m(\theta)-m\left(\theta_{0}\right) \in$ $\mathcal{M}_{\delta}\left(\theta_{0}\right)$. Hence, by the Lemma 3.4.3 in van der Vaart and Wellner (2000), we obtain

$$
E_{P}\left\|n^{1 / 2}\left(\mathbb{P}_{n}-P\right)\right\|_{\mathcal{M}_{\delta}} \leq C J_{[]}\left(\delta, \mathcal{M}_{\delta},\|\cdot\|_{P, B}\right)\left\{1+\frac{J_{[]}\left(\delta, \mathcal{M}_{\delta},\|\cdot\|_{P, B}\right)}{\delta^{2} n^{1 / 2}}\right\}
$$

where $J_{[]}\left(\delta, \mathcal{M}_{\delta},\|\cdot\|_{P, B}\right)=\int_{0}^{\delta} \sqrt{1+\log N_{[]}\left(\varepsilon, \mathcal{M}_{\delta},\|\cdot\|_{P, B}\right)} d \varepsilon \leq C q_{n}^{1 / 2} \delta$, $q_{n}=q_{n 1}+q_{n 2}$. The right side of the last equation yields $\phi_{n}(\delta)=C\left(q_{n}^{1 / 2} \delta+\right.$ $\left.q_{n} / n^{1 / 2}\right)$. Because $\phi(\delta) / \delta$ is a decrease function of δ, and $r_{n}^{2} \phi\left(1 / r_{n}\right)=$ $r_{n} q_{n}^{1 / 2}+r_{n}^{2} q_{n} / n^{1 / 2} \leq n^{1 / 2}$ yields that $r_{n} \leq n^{\left(1-\max \left\{v_{1}, v_{2}\right\}\right) / 2}$, and we have proved that $\mathbb{M}_{n}\left(\hat{\theta}_{n}\right)-\mathbb{M}_{n}\left(\theta_{0}\right) \geq-O\left(n^{-2 \min \left\{r v_{1}, r v_{2}\right\}}\right)$ in the second part. So by theorem 3.2.5 of van der Vaart and Wellner (2000),

When $r_{n}=n^{\min \left\{\min \left\{r v_{1}, r v_{2}\right\},\left(1-\max \left\{v_{1}, v_{2}\right\}\right) / 2\right\}}$, we conclude that $r_{n} d\left(\hat{\theta}_{n}, \theta_{0}\right)=$ $O_{p}(1)$. If $v_{1}=v_{2}=1 /(1+2 r)$, then $n^{r /(1+2 r)} d\left(\hat{\theta}_{n}, \theta_{0}\right)=O_{p}(1)$.

Proof of Theorem 3 Define the set

$$
\mathcal{H} \equiv \mathrm{H}_{\Lambda} \times \mathrm{H}_{\beta}=\left\{h=\left(h_{1}, h_{2}\right): h_{1} \in B V\left[\sigma_{1}, \tau_{1}\right], h_{2} \in C\left[\sigma_{2}, \tau_{2}\right]\right\},
$$

where $B V\left[\sigma_{1}, \tau_{1}\right]$ is the Banach space consisting of all the functions with bounded total variation in $\left[\sigma_{1}, \tau_{1}\right]$, and $C\left[\sigma_{2}, \tau_{2}\right]$ is the Banach space consisting of all the continuous functions in $\left[\sigma_{2}, \tau_{2}\right]$. We define a sequence of maps S_{n} mapping a neighborhood of $\left(\Lambda_{0}, \beta_{0}\right)$, denoted by \mathcal{U}, in the parameter space for $\theta=(\beta, \Lambda)$ into $l^{\infty}(\mathcal{H})$ as:

$$
\begin{aligned}
S_{n}(\theta)\left[h_{1}, h_{2}\right] & =\left.n^{-1} \frac{d l_{n}\left(\Lambda+\varepsilon h_{1}, \beta+\varepsilon h_{2}\right)}{d \varepsilon}\right|_{\varepsilon=0}=A_{n_{1}}(\theta)\left[h_{1}\right]+A_{n_{2}}(\theta)\left[h_{2}\right] \\
& =\mathbb{P}_{n} \varphi(\theta ; X)[h],
\end{aligned}
$$

where

$$
\begin{aligned}
& l_{n}(\Lambda, \beta)=\sum_{i=1}^{n} m\left(\theta ; X_{i}\right) \\
& A_{n_{1}}(\theta)\left[h_{1}\right] \equiv n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}}\left\{\frac{\mathbb{N}\left(\mathrm{~T}_{i, j}\right)}{\Lambda\left(\mathrm{T}_{i, j}\right)}-\exp \left\{\beta\left(Z_{i}\right)\right\}\right\} h_{1}\left(\mathrm{~T}_{i, j}\right), \\
& A_{n_{2}}(\theta)\left[h_{2}\right] \equiv n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}}\left\{\mathbb{N}\left(\mathrm{~T}_{i, j}\right)-\Lambda\left(\mathrm{T}_{i, j}\right) \exp \left\{\beta\left(Z_{i}\right)\right\}\right\} h_{2}\left(Z_{i}\right),
\end{aligned}
$$

and

$$
\varphi(\theta ; X)[h]=\sum_{j=1}^{K}\left\{\frac{\mathbb{N}\left(T_{j}\right)}{\Lambda\left(T_{j}\right)}-\exp \{\beta(Z)\}\right\} h_{1}\left(T_{j}\right)+\sum_{j=1}^{K}\left\{\mathbb{N}\left(T_{j}\right)-\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right\} h_{2}(Z) .
$$

Correspondingly, we define the limit map $S: \mathcal{U} \rightarrow l^{\infty}(\mathcal{H})$ as

$$
S(\theta)=A_{1}(\theta)\left[h_{1}\right]+A_{2}(\theta)\left[h_{2}\right]=P \varphi(\theta ; X)[h],
$$

where

$$
\begin{aligned}
& A_{1}(\theta)\left[h_{1}\right]=P\left[\sum_{j=1}^{K}\left\{\frac{\mathbb{N}\left(T_{j}\right)}{\Lambda\left(T_{j}\right)}-\exp \{\beta(Z)\}\right\} h_{1}\left(T_{j}\right)\right] \\
& A_{2}(\theta)\left[h_{2}\right]=P\left[\sum_{j=1}^{K}\left\{\mathbb{N}\left(T_{j}\right)-\Lambda\left(T_{j}\right) \exp \{\beta(Z)\}\right\} h_{2}(Z)\right]
\end{aligned}
$$

To derive the asymptotic normality of a class of smooth functionals of the estimator of $\left(\hat{\beta}_{n}, \hat{\Lambda}_{n}\right)$, we need to verify the following five conditions given by Theorem 3.3.1 of van der Vaart and Wellner (2000).
(A1) $\left(S_{n}-S\right)\left(\hat{\beta}_{n}, \hat{\Lambda}_{n}\right)[h]-\left(S_{n}-S\right)\left(\beta_{0}, \Lambda_{0}\right)[h]=o_{p}\left(n^{-1 / 2}\right)$.
(A2) $S\left(\beta_{0}, \Lambda_{0}\right)[h]=0$ and $S_{n}\left(\hat{\beta}_{n}, \hat{\Lambda}_{n}\right)[h]=o_{p}\left(n^{-1 / 2}\right)$.
(A3) $\sqrt{n}\left(S_{n}-S\right)\left(\beta_{0}, \Lambda_{0}\right)[h]$ converges in distribution to a tight Gaussian process on $l^{\infty}(\mathcal{H})$.
(A4) $S(\beta, \Lambda)[h]$ is Frechet-differential at $\left(\beta_{0}, \Lambda_{0}\right)$ with a continuously invertible derivative $\dot{S}\left(\beta_{0}, \Lambda_{0}\right)[h]$.
(A5) $S\left(\hat{\beta}_{n}, \hat{\Lambda}_{n}\right)[h]-S\left(\beta_{0}, \Lambda_{0}\right)[h]-\dot{S}\left(\beta_{0}, \Lambda_{0}\right)\left(\hat{\Lambda}_{n}-\Lambda_{0}, \hat{\beta}_{n}-\beta_{0}\right)[h]=$ $o_{p}\left(n^{-1 / 2}\right)$.

For (A1), define
$\mathcal{G}_{n}^{\delta}[h]=\{\varphi(\theta ; X)[h]:$

$$
\left.\sup _{\sigma_{1} \leq t \leq \tau_{1}}\left|\Lambda(t)-\Lambda_{0}(t)\right|<\delta, \sup _{\sigma_{2} \leq z \leq \tau_{2}}\left|\beta(z)-\beta_{0}(z)\right|<\delta, \Lambda \in \psi_{l_{1}, t}, \beta \in \Phi_{l_{2}, z},\left(h_{1}, h_{2}\right) \in \mathcal{H}\right\}
$$

Similar to the same argument as that in the proof of consistency, we can show that $\mathcal{G}_{n}^{\delta}[h]$ is P-Donsker.

By Corollary 2.3.12 of van der Vaart and Wellner (2000), we can obtain

$$
\left(\mathbb{P}_{n}-P\right)\left(\varphi\left(\hat{\theta}_{n} ; X\right)[h]-\varphi\left(\theta_{0} ; X\right)[h]\right)=o_{p}\left(n^{-1 / 2}\right),
$$

uniformly in h. Thus, (A1) holds.
For (A2), the assumption of the proportional mean model immediately leads to $S\left(\theta_{0}\right)[h]=0$ for $h \in \mathcal{H}$. Next we show that $S_{n}\left(\hat{\theta}_{n}\right)[h]=o_{p}\left(n^{-1 / 2}\right)$.

Note that $\hat{\theta}_{n}$ maximizes $l_{n}(\Lambda, \beta)$ over $\Lambda \in \psi_{l_{1}, t}$ and $\beta \in \Phi_{l_{2}, z}$. It implies that

$$
0 \equiv \frac{\partial l_{n}\left(\hat{\Lambda}_{n}+\varepsilon h_{n 1}, \hat{\beta}_{n}+\varepsilon h_{n 2}\right)}{\partial \varepsilon}
$$

for any $h_{n 1} \in \psi_{l_{1}, t}$ and $h_{n 2} \in \Phi_{l_{2}, z}$, which yields $S_{n}\left(\hat{\theta}_{n}\right)\left[h_{n 1}, h_{n 2}\right]=0$.
For any $h=\left(h_{1}, h_{2}\right) \in \mathcal{H}$, there exist $h_{n}=\left(h_{n 1}, h_{n 2}\right)$ for $h_{n_{1}} \in \psi_{l_{1}, t}$ and $h_{n_{2}} \in \Phi_{l_{2}, z}$ such that $\left\|h_{n_{1}}-h_{1}\right\|_{\infty}=O\left(n^{-r v_{1}}\right),\left\|h_{n_{2}}-h_{2}\right\|_{\infty}=O\left(n^{-r v_{2}}\right)$.

Then it suffices to show that

$$
S_{n}\left(\hat{\theta}_{n}\right)\left[h-h_{n}\right]=S_{n}\left(\hat{\theta}_{n}\right)\left[h_{1}-h_{n 1}, h_{2}-h_{n 2}\right]=o_{p}\left(n^{-1 / 2}\right)
$$

Note that

$$
\begin{aligned}
S_{n}\left(\hat{\theta}_{n}\right)\left[h-h_{n}\right] & =\mathbb{P}_{n} \varphi\left(\hat{\theta}_{n} ; X\right)\left[h-h_{n}\right] \\
& =\left(\mathbb{P}_{n}-P\right) \varphi\left(\hat{\theta}_{n} ; X\right)\left[h-h_{n}\right]+P \varphi\left(\hat{\theta}_{n} ; X\right)\left[h-h_{n}\right] \\
& =\left(\mathbb{P}_{n}-P\right) \varphi\left(\hat{\theta}_{n} ; X\right)\left[h-h_{n}\right]+P\left(\varphi\left(\hat{\theta}_{n} ; X\right)-\varphi\left(\theta_{0} ; X\right)\right)\left[h-h_{n}\right] \\
& =I_{1 n}+I_{2 n} .
\end{aligned}
$$

Because $\mathcal{G}_{n}^{\delta}[h]$ is P-Donsker demonstrated for (A1) and $P\left(\varphi\left(\hat{\theta}_{n} ; X, Z\right)\left[h-h_{n}\right]\right)^{2} \rightarrow_{p}$ 0 due to the approximation of h_{n} to h, it follows $I_{1 n}=o_{p}\left(n^{-1 / 2}\right)$ by Corollary 2.3.12 of van der Vaart and Wellner (2000). The rate of convergence of $\hat{\theta}_{n}$ and the approximation of h_{n} to h immediately leads to $I_{2 n}=o_{p}\left(n^{-1 / 2}\right)$. Hence (A2) is justified.

Condition (A3) holds because \mathcal{H} is P-Donsker and the functionals $A_{n 1}, A_{n 2}$ are bounded Lipschitz functions with respect to \mathcal{H} (the same argument as in van der Vaart and Wellner (2000), Example 3.3.7 on page 312).

For (A4), by the smoothness of $S(\beta, \lambda)$, the Frechet differentiability holds and the derivative of S at $\left(\Lambda_{0}, \beta_{0}\right)$, denoted by $\dot{S}\left(\beta_{0}, \Lambda_{0}\right)$, is a map from the space $\left\{\left(\Lambda-\Lambda_{0}, \beta-\beta_{0}\right):(\Lambda, \beta) \in \mathcal{U}\right\}$ to $l^{\infty}(\mathcal{H})$ and

$$
\begin{aligned}
& \dot{S}\left(\beta_{0}, \Lambda_{0}\right)\left(\Lambda-\Lambda_{0}, \beta-\beta_{0}\right)[h] \\
= & \left.\frac{d}{d \varepsilon}\left\{A_{1}\left(\theta_{0}+\varepsilon\left(\theta-\theta_{0}\right)\right)\left[h_{1}\right]\right\}\right|_{\varepsilon=0}+\left.\frac{d}{d \varepsilon}\left\{A_{2}\left(\theta_{0}+\varepsilon\left(\theta-\theta_{0}\right)\right)\left[h_{2}\right]\right\}\right|_{\varepsilon=0} \\
= & \int\left(\beta(z)-\beta\left(z_{0}\right)\right) d Q_{1}\left(h_{1}, h_{2}\right)(z)+\int\left(\Lambda(t)-\Lambda_{0}(t)\right) d Q_{2}\left(h_{1}, h_{2}\right)(t),
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{1}\left(h_{1}, h_{2}\right)(z)=P\left\{\exp \left(\beta_{0}(Z)\right) I(Z \leq z) \sum_{j=1}^{K}\left(h_{1}\left(T_{j}\right)+\Lambda_{0}\left(T_{j}\right) h_{2}(Z)\right)\right\} \\
& Q_{2}\left(h_{1}, h_{2}\right)(t)=P\left\{\exp \left(\beta_{0}(Z)\right) \sum_{j=1}^{K} \frac{I\left(\left(T_{j}\right) \leq t\right)}{\Lambda_{0}\left(T_{j}\right)}\left(h_{1}\left(T_{j}\right)+\Lambda_{0}\left(T_{j}\right) h_{2}(Z)\right)\right\}
\end{aligned}
$$

To demonstrate $\dot{S}\left(\beta_{0}, \Lambda_{0}\right)[h]$ is invertible, we need to show that $Q=\left(Q_{1}, Q_{2}\right)$ is one to one and it is equivalent to show that for $h \in \mathcal{H}$, if $Q\left(h_{1}, h_{2}\right)=0$, then $h_{1}=0, h_{2}=0$. Suppose that $Q\left(h_{1}, h_{2}\right)=0$. Then $\dot{S}\left(\beta_{0}, \Lambda_{0}\right)(\Lambda-$ $\left.\Lambda_{0}, \beta-\beta_{0}\right)\left[h_{1}, h_{2}\right]=0$ for any (β, Λ) in the neighborhood \mathcal{U}. In particular, we take $\Lambda=\Lambda_{0}+\varepsilon h_{1}$ and $\beta=\beta_{0}+\varepsilon h_{2}$, for a small constant ε. A simple algebra leads to

$$
\dot{S}\left(\beta_{0}, \Lambda_{0}\right)\left(\Lambda-\Lambda_{0}, \beta-\beta_{0}\right)\left[h_{1}, h_{2}\right]=-\varepsilon P\left[\exp \left(\beta_{0}(Z)\right) \sum_{j=1}^{K} \Lambda_{0}\left(T_{j}\right)\left\{\frac{h_{1}\left(T_{j}\right)}{\Lambda_{0}\left(T_{j}\right)}+h_{2}(Z)\right\}^{2}\right]
$$

which yields

$$
\frac{h_{1}\left(T_{j}\right)}{\Lambda_{0}\left(T_{j}\right)}+h_{2}(Z)=0, \quad j=1, \ldots, K, \quad \text { a.e. }
$$

and so $h_{1} \equiv 0, h_{2} \equiv 0$ by C 6 .
Next we show that (A5) holds. By Taylor expansion

$$
\begin{aligned}
S\left(\hat{\beta}_{n}, \hat{\Lambda}_{n}\right)[h] & -S\left(\beta_{0}, \Lambda_{0}\right)[h] \\
& =\dot{S}\left(\beta_{0}, \Lambda_{0}\right)\left(\hat{\Lambda}_{n}-\Lambda_{0}, \hat{\beta}_{n}-\beta_{0}\right)[h]+O_{p}\left(\left\|\hat{\Lambda}_{n}-\Lambda_{0}\right\|_{L_{2}\left(\mu_{1}\right)}^{2}+\left\|\hat{\beta}_{n}-\beta_{0}\right\|_{L_{2}\left(\mu_{2}\right)}^{2}\right) \\
& =\dot{S}\left(\beta_{0}, \Lambda_{0}\right)\left(\hat{\Lambda}_{n}-\Lambda_{0}, \hat{\beta}_{n}-\beta_{0}\right)[h]+o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

by the rate of convergence of $\hat{\theta}_{n}$ given in Theorem 2.
Finally, it follows that

$$
\begin{gathered}
\sqrt{n} \int\left(\hat{\Lambda}_{n}(t)-\Lambda_{0}(t)\right) d Q_{2}\left(h_{1}, h_{2}\right)(t)+\sqrt{n} \int\left(\hat{\beta}_{n}(z)-\beta\left(z_{0}\right)\right) d Q_{1}\left(h_{1}, h_{2}\right)(z) \\
=\sqrt{n}\left(S_{n}-S\right)\left(\beta_{0}, \Lambda_{0}\right)[h]+o_{p}(1) \quad \text { by (A1) and (A2). }
\end{gathered}
$$

For any $h=\left(h_{1}, h_{2}\right) \in \mathcal{H}$, since Q is invertible, there exists an $h^{*}=$ $\left(h_{1}^{*}, h_{2}^{*}\right) \in \mathcal{H}$ such that

$$
Q_{2}\left(h_{1}^{*}, h_{2}^{*}\right)=h_{1}, \quad Q_{1}\left(h_{1}^{*}, h_{2}^{*}\right)=h_{2} .
$$

Therefore, we have

$$
\begin{aligned}
\sqrt{n} \int\left(\hat{\Lambda}_{n}(t)-\right. & \left.\Lambda_{0}(t)\right) d h_{1}(t)+\sqrt{n} \int\left(\hat{\beta}_{n}(z)-\beta_{0}(z)\right) d h_{2}(z) \\
& =\sqrt{n}\left(S_{n}-S\right)\left(\beta_{0}, \Lambda_{0}\right)\left[h^{*}\right]+o_{p}(1) \rightarrow_{d} N\left(0, \sigma^{2}\right)
\end{aligned}
$$

where $\sigma^{2}=E\left\{\varphi^{2}\left(\theta_{0} ; X\right)\left[h^{*}\right]\right\}$. The proof is complete.
In fact, we can establish the asymptotic normality for the functionals of $\hat{\Lambda}_{n}(t)$ and $\hat{\beta}_{n}(z)$ separately by choosing a proper h^{*}. For example, if we take

$$
h_{1}^{*}\left(T_{j}\right)=\frac{-\Lambda_{0}\left(T_{j}\right) E\left\{h_{2}^{*}(Z) \exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}{E\left\{\exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}, \text { for all } j=1,2, \cdots, K
$$

then

$$
\begin{aligned}
& Q_{2}\left(h_{1}^{*}, h_{2}^{*}\right)(t) \\
& \quad=E\left[\sum_{j=1}^{K} \exp \left(\beta_{0}(Z)\right) \frac{I\left(T_{j} \leq t\right)}{\Lambda_{0}\left(T_{j}\right)}\left\{\Lambda_{0}\left(T_{j}\right) h_{2}^{*}(Z)+h_{1}^{*}\left(T_{j}\right)\right\}\right] \\
& \quad=E\left[\sum_{j=1}^{K} I\left(T_{j} \leq t\right)\left\{E\left\{h_{2}^{*}(Z) \exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}+\frac{h_{1}^{*}\left(T_{j}\right)}{\Lambda_{0}\left(T_{j}\right)} E\left\{\exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}\right\}\right] \\
& \quad=0
\end{aligned}
$$

Furthermore, for this chosen h^{*}, we have

$$
\begin{aligned}
& Q_{1}\left(h_{1}^{*}, h_{2}^{*}\right)(z) \\
& \quad=E\left[\exp \left(\beta_{0}(Z)\right) I(Z \leq z) \sum_{j=1}^{K} \Lambda_{0}\left(T_{j}\right)\left\{h_{2}^{*}(Z)-\frac{E\left\{h_{2}^{*}(Z) \exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}{E\left\{\exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}\right\}\right]
\end{aligned}
$$

and

$$
\sigma_{\beta}^{2}=E\left[\sum_{j=1}^{K}\left\{\left(\mathbb{N}\left(T_{j}\right)-\Lambda_{0}\left(T_{j}\right) \exp \left(\beta_{0}(Z)\right)\right)\left(h_{2}^{*}(Z)-\frac{E\left\{h_{2}^{*}(Z) \exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}{E\left\{\exp \left(\beta_{0}(Z)\right) \mid K, T_{j}\right\}}\right)\right\}\right]^{2}
$$

Then Theorem 3 results in

$$
\sqrt{n} \int\left(\hat{\beta}_{n}(z)-\beta_{0}(z)\right) d Q_{1}\left(h_{1}^{*}, h_{2}^{*}\right)(z) \rightarrow_{d} N\left(0, \sigma_{\beta}^{2}\right) .
$$

Validity of bootstrap nonparametric inference

Finally, we provide a justification for validating the test statistic described in Section 3. Following the discussion above, we can choose a specific $h^{*}=\left(h_{1}^{*}, h_{2}^{*}\right)$ such that

$$
Q_{1}\left(h_{1}^{*}, h_{2}^{*}\right)(t)=0 \text { and } Q_{2}\left(h_{1}^{*}, h_{2}^{*}\right)(z)=H(z)
$$

and

$$
\sqrt{n} \int\left(\hat{\beta}_{n}(z)-\beta(z)\right) d H(z) \rightarrow_{d} N\left(0, \sigma_{\beta}^{2}\right) .
$$

In the following, let \mathbb{P}_{n} and P denote the empirical and true probability measures of Z, respectively, then we can rewrite the above asymptotic normality as

$$
\sqrt{n} P\left(\hat{\beta}_{n}-\beta\right) \rightarrow_{d} N\left(0, \sigma_{\beta}^{2}\right)
$$

Note that

$$
\begin{aligned}
& \sqrt{n}\left(\int \hat{\beta}_{n}(z) d \mathbb{H}_{n}(z)-\int \beta(z) d H(z)\right)=\sqrt{n}\left(\mathbb{P}_{n} \hat{\beta}_{n}(Z)-P \beta(Z)\right) \\
& \quad=\sqrt{n}\left[\left(\mathbb{P}_{n}-P\right) \hat{\beta}_{n}(Z)+P\left(\hat{\beta}_{n}(Z)-\beta(Z)\right)\right] \\
& \quad=\sqrt{n}\left(\mathbb{P}_{n}-P\right) \beta(Z)+\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left(\hat{\beta}_{n}(Z)-\beta(Z)\right)+\sqrt{n} P\left(\hat{\beta}_{n}(Z)-\beta(Z)\right)
\end{aligned}
$$

By the ordinary central limit theorem, it follows that

$$
\sqrt{n}\left(\mathbb{P}_{n}-P\right) \beta(Z) \rightarrow_{d} N\left(0, P(\beta(Z)-P \beta(Z))^{2}\right)
$$

Using the same empirical process theorem arguments as above, we can show that of $\mathcal{G}^{1}=\left\{\left(\beta_{n}-\beta\right) ; \beta_{n} \in \Phi_{l_{2}, z}\right\}$ is P-Donsker.By the consistency $\hat{\beta}_{n}, P\left(\hat{\beta}_{n}-\beta\right)^{2} \rightarrow_{p} 0$ and the asymptotic equicontinuity theorem (Corollary 2.3.12 of van der Vaart and Wellner (2000), it follows that $\sqrt{n}\left(\mathbb{P}_{n}-\right.$ $P)\left(\hat{\beta}_{n}(Z)-\beta(Z)\right)=o_{p}(1)$ and hence

$$
\sqrt{n}\left(\int \hat{\beta}_{n}(z) d \mathbb{H}_{n}(z)-\int \beta(z) d H(z)\right) \rightarrow_{d} N(0, \Omega)
$$

for some Ω in a complicated form. Therefore proposed test statistic

$$
T_{n}=\int \hat{\beta}_{n}(z) d d \mathbb{H}_{n}(z)=\frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_{n}\left(Z_{i}\right)
$$

is asymptotically normal with mean zero and variance Ω / n in a complicated form under $H_{0}: \beta(z)=0$ for all z. The variance can be estimated through the bootstrap method with the validity justified by the asymptotic normality just proved.

Figure 1 for simulation of spline-based semiparametric model.

Some reserved simulation results

Here we just kept the following simulation results under sample size 100 and 400 .

S2. Linear regression functions $\beta(Z)=0.5 * Z$

S3. Nonlinear regression functions $\beta(Z)=0.5 * \operatorname{Beta}(Z, 2,2)$, where $\operatorname{Beta}(\cdot)$ is the Beta density function.

S4. Nonlinear regression functions that oscillate at 0: $\beta(Z)=1.5 \sin (2 \pi Z) I(Z \leq$ $0.5)$ where $I(\cdot)$ is the indicator function

References

De Boor, C. (2001). A Practical Guide to Splines. Springer-Verlag, New York.

Figure 1: The solid curve is the true regression function $\beta(z)$, the dotted, dashed and dash dotted curves are the pointwise 2.5-quantile, mean and 97.5 quantile of $\hat{\beta}_{n}(z) \mathrm{s} ;(\mathrm{a} 1)-(\mathrm{a} 3)$ are the results of $\beta(Z)=0.5 * \operatorname{Beta}(Z, 2,2)$ (where $\operatorname{Beta}(\cdot)$ is the Beta density function.) under sample size 100 and 400;

Du, P., Jiang, Y. and Wang, Y. (2011). Smoothing spline ANOVA frail ty model for recurrent event data. Biometrics 67, 1330-1339.

Hu, XJ., Lagakos, SW., and Lockhart. RA. (1998). Marginal Analysis of Panel Counts through

REFERENCES

Table 1: SP, Sample size; M-C, Monte Carlo; ASE, average of standard errors; SD, standard deviation.

Parameter	SP True value	Bias	M-C SD ASE Probability of rejecting H_{0}			
$\beta(Z)=0.5 * Z$	100	0.25	0.012	0.218	0.178	0.374
$\beta(Z)=0.5 * \operatorname{Beta}(Z, 2,2)$	100	0.5	-0.011	0.216	0.173	0.581
	400		0.001	0.127	0.117	0.772
$1.5 \sin (2 \pi Z) I(Z \leq 0.5)$	100	0.477	-0.080	0.225	0.189	0.559
	400		-0.028	0.116	0.109	0.983

Estimating Functions. Biometrika 96, 445-456.

Hua L, Zhang Y, Tu W. (2014) A spline-based semiparametric sieve likelihood method for over-dispersed panel count data. Canadian Journal of Statistics-revue Canadienne De Statistique 42, 217-245.

Huang, C. Y., Qin, J., and Wang, M. C. (2010). Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring. Biometrics 66, 39-49.

Lange, K.(1994) An adaptive barrier method for convex programming. Methods and Applications of Analysis $\mathbf{1}, 392-402$.

Lee, EW. and Kim, MY. (1998). The analysis of correlated panel data using a continuous-time Markov model. Biometrics. 54, 1638-1644.

REFERENCES

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94, 705-718.

Lu, M., Zhang, Y. and Huang, J. (2009). Semiparametric estimation methods for panel count data using monotone B-splines. J. Amer. Statist. Assoc. 104, 1060-1070.

Nielsen, J. D. and Dean, C. B. (2008). Clustered mixed nonhomogeneous Poisson process spline models for the analysis of recurrent event panel data. Biometrics 64, 751-761.

Nielsen, J. D. and Dean, C. B. (2008). Adaptive functional mixed NHPP models for the analysis of recurrent event panel data.Computational Statistics and Data Analysis 52, 3670-3685.

Schumaker L. (2007). Spline Functions: Basic Theory. Cambridge University Press.

Shen, X. and Wong, WH. (1994). Convergence rate of sieve estimates. Ann. Statist. 22, 580-615.

Sun, J. and Kalbfleisch, JD. (1995). Estimation of the mean function of point processes based on panel count data. Statist. Sinica. 5, 279-290.

Sun, J. and Zhao, X. (2013). Statistical Analysis of Panel Count Data. Springer-Verlag, New York.

Sun, J. and Wei, LJ. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. J. Roy.Statist. Soc. B. 62, 293-302.

Sun, L., Zhu, L., and Sun, J.(2009). Regression analysis of multivariate recurrent event data with time-varying covariate effects. J Multivariate Anal. 100, 2214-2223.

Thall, PF. and Lachin, JM. (1988) Analysis of recurrent events: Nonparametric methods for

REFERENCES

random-interval count data. J. Amer. Statist. Assoc. 83, 339-347.
van der Vaart, AW. (2000). Asymptotic Statistics. Cambridge university press.
van der Vaart, AW. and Wellner, JA. (2000). Weak Convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York.

Wellner, JA. and Zhang, Y. (2000). Two estimators of the mean of a counting process with panel count data. Ann. Statist. 28, 779-814.

Wellner, JA. and Zhang, Y. (2007). Two likelihood-based semiparametric estimation methods for panel count data with covariates. Ann. Statist. 35, 2106-2142.

Wu, Y. and Zhang, Y. (2012). Partially monotone tensor spline estimation of the joint distribution function with bivariate current status data. Ann. Statist. 40, 1609-1636.

Yao, W., Barb-Tuana, F.M., Llapur, C.J., Jones, M.H., Tiller, C., Kimmel, R., Kisling, J., Nguyen, E.T., Nguyen, J., Yu, Z. and Kaplan, M.H. (2010). Evaluation of airway reactivity and immune characteristics as risk factors for wheezing early in life. Journal of Allergy and Clinical Immunology 126, 483-488.

Yu, Z., Liu, L., Bravata, DM., Williams, LS., Tepper, RS. (2013). A semiparametric recurrent events model with time-varying coefficients. Statistics in Medicine. 32, 1016-1026.

Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89, 39-48.

Zhu, L., Zhao, H., Sun, J., Leisenring, W., and Robison, LL. (2015). Regression analysis of

REFERENCES

mixed recurrent-event and panel-count data with additive rate models. Biometrics 71, 71-79.

Figure 2: Estimation results for the regression function: The solid curve is the true regression function $\beta(z)$, the dotted, dashed and dash dotted curves are the pointwise 2.5-quantile, mean and 97.5 quantile of $\hat{\beta}_{n}(z) \mathrm{s}$; (a1)-(a2) are the results of $\beta(Z)=0.5 * Z$ under sample sizes 100 and 400; (b1)-(b2) are the results of $\beta(Z)=0.5 * \operatorname{Beta}(Z, 2,2)$ under sample sizes 100 and 400. (c1)-(c2) are the results of $\beta(Z)=1.5 \sin (2 \pi Z) I(Z \leq 0.5)$ under sample sizes 100 and 400.

