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Abstract: Dimensional Analysis (DA) is a widely used methodology in physics and

engineering. The main idea of DA is to extract dimensionless variables based on

physical dimensions. Due to its capability in removing dimensional constraints and

reducing the number of variables, its overlooked importance in statistics has only

been recognized recently. While its properties in physics have been well established,

the fundamental statistical theories behind DA remain absent. Such theories are

critical in integrating DA into statistical procedures. In this paper, we present a

new statistical perspective on DA, which translates the essence of DA into statisti-

cal principles. The basis quantities are represented as linear-space bases, while the

post-DA variables are formulated as maximal invariant statistics. The proposed

statistical properties of DA, the sufficiency and completeness, guarantee the opti-

mality of DA variables. An ocean wave speed example is presented to demonstrate

DA methodology. A Meteorology example of planetary boundary layer problem

is used to illustrate the proposed statistical properties in a practical context. The

proposed representation reveals DA’s structural compliance with statistical theories

and encourages more appropriate statistical applications.

Key words and phrases: Completeness, dimensional reduction, invariance, suffi-

ciency and transformation.

1. Introduction

Combining information from scientific theories and experimental data has

always been a challenging problem. Models derived purely from data perspective

are often subject to questions on their interpretability, generality and control of

sources of errors. It has been widely recognized that incorporating professional

knowledge is useful in both guiding the development of valid scientific models

and reducing potential sources of random errors. However, such incorporation is

often ad hoc, and a systematic framework is desirable. In this paper, we tackle

physical and engineering problems, and introduce dimensional analysis (DA) as

a general approach to unifying the information from physical dimensions.

Dimensional analysis (DA) is a variable extraction method that prevails

in physics and engineering due to its applicability and effectiveness (see Sonin
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(2001); Szirtes (2007)). The principal use of dimensional analysis is to deduce cer-

tain limitations and possible relationships among physical quantities from their

physical dimensions. The method is of great generality and mathematical sim-

plicity, (Bridgman (1931)). It often serves as a starting point for pilot studies

and an ending point for model validation in physical problems. Literature shows

its wide usage in various fields, such as Balaguer (2013) in Control Engineering,

Islam and Lye (2007) in Hydrodynamics, and Grudzewski and Roslanowska-

Plichcinska (2013) in Economics.

Plenty of physical and mathematical theories have contributed to the matu-

rity of DA, supporting its practical applications. In physics, Buckingham (1914)

set the foundation for DA. Monin and Obukhov (1954) specialized DA to mete-

orology, known as Monin-Obukhov similarity theory. In engineering, Zlokarnik

(1991) provided a guide on DA and scale-up principles designed for chemical

process. In mathematics, group theoretical representations were established by

Cariñena, del Olmo and Santander (1981) and Cariñena, del Olmo and Santander

(1985). An informal yet comprehensive mathematical formalization of DA was

provided by Tao (2012). This is only a partial list of many examples.

However, the importance of DA was not recognized by statisticians until very

recently. Little effort has been made to actively incorporate such professional

knowledge in statistical analyses for too long. Recent researches have found that

the incorporation of DA in statistical design and analysis greatly increases effi-

ciency and interpretability, as discussed in Albrecht et al. (2013), and Shen et al.

(2014). Indeed, DA’s physical origin provides an independent way to interpret

and summarize the data in addition to statistical approaches. A comprehensive

discussion on the combined use of DA in statistics is presented in Albrecht et al.

(2013), Davis (2013), Lin and Shen (2013), Frey (2013), Jones (2013), Piepel

(2013), and Plumlee, Joseph and Wu (2013).

While practical successes suggest the potential efficacy of DA in statistical

applications, the theoretical investigation of DA from a statistical point of view

is absent. The statistical essence of DA transformation, the critical assumptions

and limitations, and how it affects statistical modeling are all inevitable issues

to obtain valid analyses. DA is not yet another dimension reduction method;

the beauty and value of DA lies in its ability to deduce key features that better

characterize a system with intrinsic scaling structure. Treating DA merely as

a data preprocessing method is both inefficient and unjustified. In this paper,

we establish how DA extracts scale-free information and where the reduction

comes from via a statistical perspective. We show its vector space and scaling
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structure, establish the DA variables as maximal invariant statistics, and derive

the optimality of DA variables by their sufficiency and completeness.

Our contribution here is to be the first to connect and frame the unfamiliar

DA principles into the rudimentary statistical terminologies, and to articulate the

implication of DA transformation. It embeds physical principles into statistical

modeling under a general setup, which potentially opens the gate toward a series

of innovative methodologies tailored to DA. In fact, DA’s fundamental connec-

tions with statistical theories further justify its applicability and compatibility in

statistical problems. Practically, the developed theories help avoid improper use

of DA and promote designs and analyses based on dimensional constraints and

sufficiency. It generalizes DA beyond engineering problems into general scaling

systems. We also hope that this work sheds some light on the general problem of

how to incorporate information and constraints from scientific background when

learning from experimental data.

The rest of the paper is organized as follows. Section 2 introduces the def-

initions and typical procedures of DA with an illustrative example. Section 3

derives the statistical properties of DA: we represent the unit system as vector

space and basis quantities as the basis vectors, define the scaling group of unit

changes, and establish DA variables as maximal invariant statistics, finally de-

riving the sufficiency and completeness for DA variables in a general setup. In

Section 4, a study of planetary boundary layer problem is presented, focusing

on the practical realization of the proposed properties. Issues on the validation

of the model and the testing of DA assumption are also discussed. Section 5

provides concluding remarks.

2. Dimensional Analysis

2.1. Background

In physics, dimension refers to the physical type of a quantity. Based on

SI system for classical physics, there are seven fundamental physical dimensions,

namely length [L], mass [M], time [T], electrical current [I], absolute temper-

ature [Θ], amount of substance [N] and luminous intensity [J]. Other physical

dimensions can be expressed in terms of these fundamental physical dimensions,

and they are called derived dimensions. For example, speed has the dimension

length per time [LT−1]. Siano (1985a,b) extends the dimensions above and treats

components of vector quantities as different dimensions given a coordinate sys-

tem. Also in practice, dimensions from separate subsystems are also considered
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different. Therefore, the practical size of independent dimensions can be much

larger than seven.

A measurement system defines units for each dimension. The magnitude of

a quantity is expressed as a “denominate number”: a real number multiple of the

unit of measure. In SI system of units for example, we measure length by meters

and time by seconds and so on. Other derived physical dimensions are measured

accordingly: speed can be measured by the unit meters per second. Generally,

the magnitude of a physical quantity is characterized by its relative magnitude to

commonly recognized units. Measuring quantities with inappropriate units leads

to undefined multipliers. For example, measuring length by seconds is unde-

fined, and measuring area by meters results in infinity (it should be measured by

square meters). The comparison of the magnitudes of two quantities is also done

through the relative magnitude. It is inappropriate to compare two quantities

with different dimensions.

2.2. Illustrative example

Understanding the speed of ocean waves is crucial for the prediction of a

catastrophe, like tsunami. There are multiple sources of driving force that gen-

erate wave motions on the sea surface, such as the wind, gravity and rotation

of the earth. It is a complicated system whose analytical behavior may not be

tractable. Gravity wave is the wave whose restoring force is the gravity of the

earth. Suppose the phase speed of the gravity waves (v) is of main interest. Our

predictors are the gravity constant of the earth (g), the wavelength (λ), the den-

sity of water (ρ), and the depth of water (H). Assuming v = f(g, λ, ρ,H), our

goal here is to estimate the function f .

Table 1 shows the physical dimensions of the variables. By conducting DA,

two dimensionless variables πv = v/
√
gλ and πH = H/λ are derived. DA claims

that the original model v = f(g, λ, ρ,H) can be rewritten as πv = h(g, λ, ρ, πH) =

h(πH), where h is the function to be estimated. Given πH , g, λ, ρ should not be

in the function h due to the dimensional homogeneity principle. The number of

variables is reduced from 4 to 1. With πv = v/
√
gλ and πH = H/λ, the DA

modeling function is in fact v =
√
gλ · h(H/λ).

As given in Socha (2007), the wave speed relationship can be approximated

analytically by v =
√
gλ/2π×

√
tanh(2πH/λ) (considering the case of gravity

wave). Compared with the DA models, the true function h has the form h(x) =√
(tanh(2πx)/2π). Thus, DA helps us remove the nuisance variable ρ, and reduce

the number of variables to 1 when estimating h. Furthermore, the dimensionless
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Table 1. Dimensions of variables in ocean waves example.

Variables Description Dimensions SI units ri,Length ri,Mass ri,T ime

v Wave speed LT−1 m/s 1 0 −1
g Gravity constant LT−2 m/s2 1 0 −2
λ Wavelength L m 1 0 0
ρ Water density ML−3 kg/m3 −3 1 0
H Sea depth L m 1 0 0

ocean depth πH = H/λ actually characterizes the feature of ocean waves. When

in the deep water, H >> λ, πH >> 1. tanh(2ππH) ≈ 1 and v ≈
√
gλ/2π, mainly

depends on the wavelength; while in the shallow water (as along the coastline),

H << λ, πH << 1. tanh(2ππH) ≈ 2ππH and v ≈
√
gH, mainly depends on the

depth of the water. In short, DA also induces variables and models with better

interpretability.

2.3. DA principles

The principle of DA is based upon the fact that a physical law must be inde-

pendent of units used in the measurement, because units are merely a systematic

way of recording the physical phenomena. Any meaningful physical equation (or

inequality) characterizing the physical laws should remain correct (or incorrect)

regardless of the units used on both sides. Otherwise, changing units would lead

to contradictory observations.

A foundational theorem of DA is the Buckingham’s Π-theorem Buckingham

(1914). A collection of dimensions is called (a) “independent”, if each of them

cannot be represented/derived by other dimensions in the collection; and (b)

“representable”, if they can represent/derive the dimensions associated with any

other variables of interest in the experiment. The Buckingham’s Π-theorem states

that a physically valid equation involving n variables of interest can be reduced

to an equation with p = n − k variables, where k is the size of the subset of

variables whose dimensions form an independent and representable collection.

We call these k variables basis quantities, as they constitute a basis in terms of

dimensions. The size k is uniquely defined while the set of basis quantities is not.

Dimensional analysis provides a scheme to select basis quantities and transform

the other variables into dimensionless (as will be described below). Equivalently,

it is also a scheme to generate dimensionless variables, where each of them is not

a function of the others.
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2.4. DA methodology

A typical procedure of DA in a statistical problem, that is widely used in

existing literature, can be formulated as follows. Suppose Y is the response

of interest and X1, . . . , Xn are potential predictors. X1, . . . , Xn can be a mix-

ture of continuous, categorical and discrete variables. For simplicity, we assume

Y,X1, . . . , Xn are positive continuous physical quantities that are bounded in

probability. Other types of quantities such as categorical variables and negative

values are also possible. Usually, categorical variables are treated as dimension-

less and discrete variables are determined based on their physical dimensions.

Physical variables can also have negative values with proper dimensions such as

the displacement in harmonic oscillation.

Statistically, the prediction problem can be formulated by a multivariate

probability distribution on (Y,X1, . . . , Xn) jointly. The conditional distribution

of (Y |X1, . . . , Xn) is often of main interest. According to the mean squared error

criterion, the conditional mean is a good predictor for Y . In a regression setting,

E(Y |X1, . . . , Xn) is modeled as f(X1, . . . , Xn). A typical DA modeling takes the

following steps.

1. Identify the dimensions of all variables involved.

2. Choose the basis quantities such that their dimensions are independent and

representable. Denote them by X1, . . . , Xk.

3. By representability of basis quantities, transform other variables (Y, Xk+1,

. . . , Xn) into dimensionless (πY , πXk+1
, . . . , πXn

) by the power law using

basis quantities.

4. Rewrite the modeling function as πY = h
(
X1, . . . , Xk, πXk+1

, . . . , πXn

)
=

h(πXk+1
, . . . , πXn

), where X1, . . . , Xk are irrelevant because of the indepen-

dent property of basis quantities. The total number of variables is reduced

by k.

There are several important issues with this DA modeling framework. First,

the choices of the basis quantities and the dimensionless variables are not unique.

One can always multiply two dimensionless variables and get a third one. In prac-

tice, specialists and technicians may have a list of commonly used dimensionless

variables in their discipline with specific physical meanings. An alternative is to

select variables that best explain the systems or the trends in terms of parsimony

and significance. Second, variables may be ruled out due to the lack of presenta-

tion in dimensions (see Albrecht et al. (2013)). This can be a good feature when
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it is a valid reduction, or a bad one when the dropped variable is known to be use-

ful. For example, in Step 2, if the independent set of basis quantities inevitably

include the response Y , then Y is excluded from the model after DA, which is

not reasonable. In such cases, additional variables or dimensional constants are

recommended to supply the missing dimensions. If not available, relevant basis

quantities should be maintained in the model. We think the reverse statement is

particularly true and useful: if the basis quantities are highly significant, there is

high possibility of missing key variables. That is, significant basis quantities can

be good indicators of missing key variables. Further discussions about relevant

statistical issues can be found in Lin and Shen (2013) and in other rejoinders to

Albrecht et al. (2013).

3. Statistical Properties of Dimensional Analysis

The prevailing applications of DA lead to full development in the physical

theories and properties supporting it. See Sonin (2001) and Szirtes (2007). How-

ever, the statistical theory for DA remains primitive. First, the implication of the

transformation has rarely been perceived from a statistical point of view. Second,

the evaluation of DA assumptions is ad hoc and beyond statistical justification.

Finally, the absence of adapted modeling and analysis techniques for post-DA

variables impedes the development and extension of DA. In this section, we take

the first step to address the above issues by introducing statistical properties of

DA and their implication on statistical modeling.

In the DA procedure, information from the variables can be classified into

information from the basis quantities and information from the transformed di-

mensionless quantities. We first investigate properties of the basis quantities.

It turns out that the dimension space is isomorphic to the vector space with

basis quantities being the basis vectors. Second, we investigate properties of

the transformed dimensionless quantities. It is shown that they are maximal

invariant statistics subject to a scaling group of unit changes. Third, since in-

variant statistics are not unique, a natural question is which one is “optimal”.

We show that the dimensionless variables produced by DA are both sufficient

and complete, and are thus the optimal invariant statistic. We solve the issues

(1) DA transformation is “principle-driven PCA” that reduces through vector

subspace; (2) explicit assumptions are given for DA’s invariance and sufficiency

property, that are verifiable in statistical problems; (3) we extend the family of

DA models based on DA’s invariance and sufficiency structure. For simplicity of

the presentation, proofs are given in Appendix A.
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3.1. Linear space representation

Here, we show that the collection of all dimensions forms a linear space. The

basis quantities are interpreted as the basis vectors in the linear space context.

Such a structure has been discussed in physical and mathematical literatures

(such as Taylor et al. (2008); Drobot (1953); and Cariñena, del Olmo and San-

tander (1985)), but they are not straightforward from a statistical point of view.

The physical principle (of “absolute significance of relative magnitude”) leads

to the fact that physical dimensions can only be generated by fundamental di-

mensions through power law (Bridgman (1931)). Let e1, . . . , em be fundamental

dimensions, and F =
{
D = ed11 , . . . , e

dm
m : d1, . . . , dm ∈ Q

}
. F is the collection of

all dimensions derived from the fundamental dimensions e1, . . . , em.

Lemma 1. (Q,F) is a vector space.

Lemma 1 shows that the mapping from dimension D to vector (d1, . . . , dm)

is isomorphic. It maps multiplication and scalar power on dimensions in the

usual sense into addition and scalar multiplication operators of linear space,

respectively. Since V = {(d1, . . . , dm) : d1, . . . , dm ∈ Q} is the m-dimensional

rational vector space, F is also an m-dimensional vector space, with scalars in

Q.

From the linear space interpretation, the basis quantities are merely the anal-

ogy of basis for linear space, shown in the following. In a statistical setting, sup-

pose X1, . . . , Xn are variables with dimensions D1, . . . ,Dn. Denote e1, . . . , em as

the relevant fundamental dimensions. Then Di =
∏m
j=1 e

dij
j and each dimension

Di can be coded by a vector vi = (di1, . . . , dim). For example, suppose e1 is time;

e2 is length, then speed
(
length/time = e−1

1 e2

)
can be coded as (−1, 1, 0, . . . , 0)

and area
(
length2 = e2

2

)
can be coded as (0, 2, 0, . . . , 0). The requirements of

independence and representativity for the basis quantities can be interpreted as

the same two requirements for the basis vectors in the vector space V .

Let D =
(
dij
)

be the dimensional matrix whose
(
i, j
)

element is dij men-

tioned above. k = rank(D). Without loss of generality, suppose the first

k rows (v1, . . . , vk) are linearly independent and the other rows can be linear

represented as dtj =
∑k

i=1 btidij for t = k + 1, . . . , n; j = 1, . . . ,m. Then,

(X1, . . . , Xk) can be taken as basis quantities. They are dimensionally indepen-

dent: if D1 = Dα2

2 . . .Dαk

k , then v1 = α2v2 + · · ·+αkvk. v1, . . . , vk are linearly in-

dependent, so α2, . . . , αk does not exist. Similar statements apply for D2, . . . ,Dk.

These basis quantities are also dimensionally representable: Dt = Dbt1
1 . . .Dbtk

k ,

for t = k + 1, . . . , n. Thus the size of basis quantities equals to k = rank(D). It
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is clear that basis vectors for a linear space is not unique. Correspondingly, the

basis quantities are not unique.

Due to representativity, Xk+1, . . . , Xn can be transformed into dimensionless

as πt = XtX
−bt1
1 . . . X−btkk , for t = k + 1, . . . , n. Suppose the original model-

ing function is f(X1, . . . , Xn) = 0. Then it can always be rewritten as g(X1,

. . . , Xk, πk+1, . . . , πn)=f
(
X1, . . . , Xk, πk+1

∏k
i=1X

bk+1,i

i , . . . , πn
∏k
i=1X

bn,i

i

)
=0.

The Buckingham’s Π-theorem indicates that the scales of the coordinate

system (X1, . . . , Xk) do not contribute to the physical phenomena. It is the

“relative magnitude” that matters, which is summarized by the dimensionless

variables (πk+1, . . . , πn) DA generates. Therefore, g(X1, . . . , Xk, πk+1, . . . , πn) =

g(πk+1, . . . , πn) = 0.

In this representation, DA is closely related to PCA after variables take log

transformation. DA constrains variables into a linear subspace by the dimen-

sional requirements, similar to when we keep the n − k largest eigenvalues in

PCA and set the other k to be 0. In the canonical procedure, the basis quan-

tities we drop in the end correspond to the eigenvectors whose eigenvalues are

set to 0. From this perspective, we might label DA as “principle-driven PCA”,

and clearly we can do better by combining data-driven PCA into DA rather than

hand-picking basis quantities to drop in the end.

3.2. Invariance and equivariance

In this section, a statistical interpretation of dimensionless variables is es-

tablished: the dimensionless variables are maximal invariant statistics to scale

transformation in fundamental dimensions. In the well-established statistical

decision theory (see Lehmann and Casella (2003); Eaton (1989)), invariant de-

cisions are desirable: decisions, such as hypothesis testing results, should not

not be influenced by simple transformations on the data. Theoretically, decision

a is called completely invariant if it satisfies a(X) = a(g(X)), where X is the

observations, g is any transformation from a group G. In other cases, equivariant

decisions are appropriate: decisions, such as point estimates, should scale in a

proper and meaningful way reflecting the transformations on the data. Theo-

retically a(X) = ¯̄g(a(g(X))), where ¯̄g is the appropriate transformation on the

decision space, also forming a group ¯̄G. We believe that the principle of DA (the

physical phenomena should be invariant to the measurement system), fits well

into the context of invariant decisions. Complete invariant decisions are dimen-

sionless; while equivariant decisions are associated with appropriate dimensions.

To model a physical system that is intrinsically free from the physical dimensions,
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it is preferable to implement an invariant probabilistic procedure that does not

depend on the units used. We take an invariant probability model to be one

that satisfies Pḡ(θ)(X
′ ∈ g(A)) = Pθ(X ∈ A), where X ′ = g(X) is the trans-

formed variables, A and g(A) are some events before and after transformation,

θ is the parameter and ḡ is the corresponding transformation in the parame-

ter space. We define an invariant probabilistic procedure as one that satisfies

L(¯̄g(a), X ′) = L(a,X), where L is some invariant loss function, a is the decision

and ¯̄g is the corresponding transformation in the decision space.

To understand the invariance structure of DA (especially the transforma-

tion of event g(A)), it is necessary to investigate the physical dimensions and

measurement systems in terms of measures and probabilities. The real line and

usual Lebesgue measure should be adjusted by associating them with the unit

used, and we call them “physical Lebesgue measure”. Here a quantity refers to a

quantifiable feature of a subject. It stands for an abstract magnitude. A physical

Lebesgue measure can be imposed on it to quantify its relative magnitude to the

unit used, acting like a ruler. By the physical Lebesgue measure, the abstract

magnitude is mapped into a real value, just as the read on the ruler. Different

real values can be achieved by imposing different physical Lebesgue measures

(Lebesgue measures associated with different units), but the abstract magnitude

does not change. We call a collection of physical Lebesgue measures for each

dimension a measurement system.

For example, define the physical Lebesgue measure λu with unit u on a unit

quantity interval [0, 1]u as λu([0, 1]u) = λu([0, 1u]) = 1. Take the (measured)

value of an abstract quantity Q using unit u as λu([0, Q]). The mapping λu
returns the multiplier in terms of the units for each abstract quantity. Generally,

λS(E) denotes the measurement of quantity interval E using appropriate units

in the measurement system S, and is abbreviated as λ(E). In the previous

example, if a physical Lebesgue measure with a different unit 10u is used, then by

definition λ10u([0, 1]u) = λ10u([0, 0.1]10u) = 0.1. Therefore, when unit changes

occur in the measurement system, the physical Lebesgue measure will change

correspondingly. So will the measured values of physical quantities. It turns

out that, from scale changes in units, both the induced changes on Lebesgure

measure and the induced changes on quantity values form scaling groups.

Lemma 2. Suppose unit change Ta transforms fundamental units ui into u′i =

aiui. Then all unit changes T =
{
Ta : ai > 0, ai ∈ R, a = (a1, ..., am)T

}
form

a scaling group. The induced changes on Lebesgue measure T̃ =
{
T̃a : ai >

0, ai ∈ R, a = (a1, ..., am)T
}

is also a scaling group. The induced changes on the
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measured values of physical quantities T̂ =
{
T̂a ◦ · · · ◦ T̂a : ai > 0, ai ∈ R, a =

(a1, ..., am)T
}

is also a scaling group.

We define a quantity Q to be dimensionless, if its value does not depend

on the measurement system. The dimension of a dimensionless quantity is the

zero vector under the linear space representation of dimensions. Its unit is w =∏m
i=1 u

0
i = 1. Thus its numerical value stays the same T̃a(λS)(Q) = λS(Q) for

any induced change T̃a on measure λS with measurement system S due to unit

change Ta. Therefore, if Q is dimensionless, its value serves as an invariant

statistic to the scale group of unit changes.

Based on the first principle, physical phenomena are consistent regardless

of the measurement systems. Therefore, the probability of an event should not

depend on the units used.

Lemma 3. The probability of an event is dimensionless.

Lemma 3 suggests DA applications in logistic regression ln(p)− ln(1− p) =

βX where the left hand side of the regression model is log odds and responses

are categorical. In this case, it is natural to constrain the right hand side of the

regression βX to be dimensionless to reflect dimensionless log odds and dimen-

sionless probability.

We define two quantities to have same dimensions, if the ratio of their values

is dimensionless. We can conclude in the following, that the value of any mea-

surable quantity set under a physical Lebesgue measure shares the same physical

dimension with the quantity itself. In other words, any measurable set for a

certain quantity has the same unit.

Lemma 4. If X is a quantity whose dimension is D and E is a measurable set

of values X, then E also has dimension D.

In principle, random variables are usually measured values of an abstract

physical quantity by a certain measurement system. Unit changes in the mea-

surement system induce a scale change in the random variables. (The variables

invariant to the unit changes are dimensionless.) Meanwhile, the probability of

the physical events should be invariant to this change. Thus, we prefer a prob-

abilistic model/procedure that compensates the changes in variables. Such an

appropriate modeling measure will guarantee an invariant risk measure provided

an invariant loss function, leading to appropriate invariant or equivariant deci-

sions. There are several ways to generate such a probabilistic model. One way

is to base the model on equivariant statistics with equivariant parameters.
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In practice, the equivariant structure of the parameters usually depends on

the context. It is often tedious to build a special model (equipped with equiv-

ariant parameters) and the corresponding analysis techniques for the specific

dimensions of interest case by case. Besides, the equivariant counterparts are

difficult to derive, and may involve too many parameters to be practical. Fur-

thermore, equivariant parameters have physical dimensions. They complicate the

interpretation and extrapolation of the model. These parameters share informa-

tion about the scales implicitly, and usually are not good characteristics of the

physical features of the system that can be compared between platforms. Thus,

we resort to another way to construct the model that is applicable to all kinds

of scale-change structures in the dimensions. We build it on the dimensionless

variables, the invariant statistic. Then the corresponding parameters become

completely invariant to unit changes, and so is the distribution. The above com-

plications of the equivariant structures are avoided. We define the probability

distribution/model as invariant if its form is invariant to the group transforma-

tion. Specifically, we call the probabilistic model as dimensionless model if its

form is invariant to the unit changes in the measurement system.

Such invariant models are especially desirable to practitioners. For arbitrary

models on physical quantities, extrapolation to different units or different ranges

of variables is risky. If the considered model is invariant to the joint scaling

of variables defined by the measurement system, extrapolation can be achieved.

Scaling of original variables may result in DA variables still remaining in the

experimental domain. Dimensionless models are of great interest to engineers,

particularly in the fields of reliability engineering and accelerated life testings.

The DA variables πXk+1
, . . . , πXn

are dimensionless and therefore invariant

statistics. In fact, they are maximal invariant.

Lemma 5. If M is the DA transformation that satisfies M(X1, . . . , Xn) = (πXk+1
,

. . . , πXn
)T , where πt = XtX

−bt1
1 . . . X−btkk for t = k + 1, . . . , n, then M is max-

imal invariant over the unit change scaling group T̂ and (πXk+1
, . . . , πXn

)T is a

maximal invariant statistic.

Any invariant (dimensionless) statistics is a function of the DA variables.

If a model is built on the dimensionless variables, it suffices to construct the

model via DA variables to reduce the parameter space to completely invariant

parameters.

3.3. Equivalence to original models

Invariant statistics are useful in building invariant models. However, there
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are possibly many other invariant models built on the original variables, instead

of invariant statistics. It is possible that the selected invariant statistics lose

necessary information about the original variables and thus lead to models that

are not equivalent to those on the original statistics. In this section, we directly

show that the dimensionless variables derived through DA are sufficient statistics

if we consider dimensionless models, and are also complete to the family including

all dimensionless models. For this family, the minimal sufficiency of DA variables

is proved and the maximal reduction is achieved.

In order to study the probabilistic models on physical quantities with dimen-

sions, it is necessary to investigate the dimensions of the cumulative distribution

function (c.d.f.), probability mass function (p.m.f.) and probability density func-

tion (p.d.f.). Since the c.d.f. and p.m.f. yield the probability of an event, they

are dimensionless (see Lemma 3). The p.d.f. of continuous dimensional variables

is dimensional.

Lemma 6. Consider the probability space (Ω,F ,P). If random vector (X1, . . . ,

Xn)T follows a continuous distribution F with probability density function f with

respect to Lebesgue measure λ, and Xi has dimension rmDi, then f(X1, . . . , Xn)

has dimension
(∏n

i=1Di

)−1
, for each given ω ∈ Ω.

Example 1 (Normalization). If random variable X has dimension D, then its

expectation µ = E(X) has dimension D, its variance var(X) has dimension D2

and its standard deviation σ has dimension D. Thus, the normalization (X−µ)/σ

is dimensionless.

In general, the kth moment of X has dimension Dk. Here, we retrieve our

intuition about the commonly used statistics of random variables with physi-

cal dimensions. The expectation and standard deviation of a random variable

should maintain the same scale as itself. (It is easy to show that the sample

expectation and standard deviation also have the same dimension.) The stan-

dardization/normalization of a random variable {X − E(X)}/sd(X) is dimen-

sionless, which leads us to the great usage of z score and t score: they can be

compared across scenarios with different scales but have a common distribution.

Similar applications include correlation coefficient and R squares. The concept is

related to the invariance of scaling group. It is also straightforward to prove that

the method-of-moments estimators have the same dimensions as parameters esti-

mated. However, the maximal likelihood estimators depend on the chosen models

and may not share the same dimensions.

Example 2 (Power-law form). If random variable X has dimension D and
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f(X) is a valid analytic function, then f(x) = axb with dimensionless constants

a,b. Conversely, if f(X) is a valid analytic function but not a power-law form,

such as X +X2 and eX , then X should be dimensionless.

This can be derived as follows. The analytic function f has Taylor expansion:

f(X) = f(0)X0/0! + f (1)(0)X/1! + f (2)(0)X2/2! + · · · . For all r ≥ 0, f (r)(0) is

dimensionless because it is a derivative of an analytic function that does not

involve dimensions. However, the power terms X0, X, X2, . . . have distinct

dimensions 1, D, D2, . . . . In order to make the infinite summation valid, only

one derivative f (r)(0) is nonzero. That is f (r)(0) = 0 except when r = b, which

leads to f(x) = axb. The converse-negative counterpart is obvious.

In the above example, it is assumed that the only part in f having dimen-

sion is its argument X. We call this type of functions numerical functions. It

is shown that the power function is the only valid univariate numerical function

for variables having dimensions. Similar conclusions can be drawn for numeri-

cal functions of several dimensionally independent quantities. For functions of

arbitrary physical quantities, DA should be used to derive all the possible forms.

For parametric cases, dimensionless models refer to the models with dimen-

sionless parameters. DA variables are sufficient for the family of dimensionless

models. But first, we requires some assumptions.

Assumption 1. On the probability space (Ω,F ,P), positive random variables

Y,X1, . . . , Xn have respective dimensions D0, D1, . . . , Dn; if X1, . . . , Xk are the k

basis quantities and π0, πk+1, . . . , πn are dimensionless transformations of Y,Xk+1,

. . . , Xn, then π0 = π0(Y,X1, . . . , Xk), πk+1 = πk+1(Xk+1, X1, . . . , Xk),. . . , πn =

πn(Xn, X1, . . . , Xk).

Assumption 2. If Y |X1, . . . , Xn has a probability density function f(y;X1,

. . . , Xn; θ), where θ is an unknown identifiable parameter, then the (X1, . . . , Xn)T

have a probability density function p(x1, . . . , xn), and are independent

of θ.

Theorem 1 (Sufficient Dimension Reduction for Parametric Case). If Assump-

tions 1 and 2 hold, θ is dimensionless if and only if (π0, πk+1, . . . , πn)T is a

sufficient statistic for θ.

Theorem 1 shows that if the parametric model is invariant to changes in

physical dimensions, DA variables contain all the information needed to infer the

parameters: if the statistical model is independent of the measurement system,

we only need the observations based on DA variables. This corresponds to the



THEORIES FOR DIMENSIONAL ANALYSIS 541

physical concept that any physical phenomenon should be independent of the

measurement system. Therefore, if the statistical model resembles the physical

phenomenon, it is necessary to reduce the observations from raw variables to

the DA variables. On the other hand, if the DA variables are not sufficient in

capturing the behavior of the system, this is a signal to build a statistical model

that depends on the dimensions. Conversely, if the DA variables are considered as

sufficient information in describing the system, then the statistical model should

be built with dimensionless parameters.

Theorem 1 suggests that DA is a sufficient dimension reduction under As-

sumption 1 and 2, and θ is dimensionless. Given (π0, πk+1, . . . , πn)T is a suffi-

cient statistic for θ, it is easy to derive that the distribution of π0|πk+1, . . . , πn is

the same as that of π0|X1, . . . , Xn, thus proving the sufficiency of the reduction

πk+1, . . . , πn (Adragni and Cook (2009)). The sufficient reduction proclaimed by

Buckingham’s Π-theorem – basis quantities should be dropped from the equation

– is the result of the sufficiency of DA variables.

Corollary 1. Under Assumptions 1 and 2,

(a) If IX(θ) is the information matrix of the parameter θ based on variable set

X, then Iπ0,πk+1,...,πn
(θ) ≤ IY,X1,...,Xn

(θ), with equality if and only if θ is

dimensionless.

(b) If δ(Y,X1, . . . , Xn) is an estimate for θ; and δ1(π0, πk+1, . . . , πn) = E{δ(Y,
X1, . . . , Xn)| (π0, πk+1, . . . , πn)} is the Rao-Blackwellized version of δ, then

E{δ1(π0, πk+1, . . . , πn)− θ}2 ≤ E{δ(Y,X1, . . . , Xn)− θ}2.

(c) If θ̂(π0, πk+1, . . . , πn) is a Maximum Likelihood Estimate for θ then,

under some regularity conditions,
√
n(θ̂ − θ)→ N

(
0, I−1

π0,πk+1,...,πn

)
.

For a similar result for nonparametric models, we need another assumption.

Assumption 2′. If C is a dominated identifiable family of probability distribu-

tions on Rn+1, Y,X1, . . . , Xn follows a distribution P within C.

Theorem 2 (Sufficient Dimension Reduction for Nonparametric Case). If As-

sumptions 1 and 2′ hold, a distribution P in family C is invariant to changes in

physical dimensions if and only if T = (π0, πk+1, . . . , πn)T is a sufficient statistic

for C.

Let PS be the joint distribution of ~XS = (Y,X1, . . . , Xn)T when the values

of variables Y,X1, . . . , Xn are recorded using measurement system S. Here PS is
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merely a nominal measure on the measured values of variables of interest, not on

the abstract physical quantities themselves. It may not always be dimensionally

invariant like the probability of an event P
(
in fact, P = PS◦ ~XS = PS′◦ ~XS′

)
. The

changes in dimensions from S to S′ lead to the change of measure from PS to PS′

and the change of variable values from ~XS to ~XS′ . On the other hand, a similar

interpretation holds for Theorem 2: in case of capturing physical phenomena

that are invariant to dimensional changes, the nonparametric statistical model

should be built upon DA variables. If DA variables are not adequate to describe

the system, models that do depend on the measurement system are suggested.

Similar to the previous parametric case, if we assume models PS are invariant

to changes in measurement system, πk+1, . . . , πn is then a sufficient dimension

reduction from X1, . . . , Xn for regressing on π0 under Assumption 1 and 2′.

In addition to the sufficiency, which displays the capability of DA variables

in retaining full information, to some family they are actually the smallest in size.

The completeness of DA variables indicates that unbiased dimensionless statistics

are unique and optimal. In these cases, the DA variables are the optimal statistics

to work with.

Assumption 3. If C is the dominated identifiable family of all probability distri-

butions on Rn+1 that are invariant to dimensional changes, then (Y,Xk+1, . . . ,

Xn)T ∼ P ∈ C.

Theorem 3 (Completeness). If Assumptions 1 and 3 hold, (π0, πk+1, . . . , πn) is

complete for family C,

∀F ∈ C, EFh(π0, πk+1, . . . , πn) = 0⇒ ∀F ∈ C,PF (h(π0, πk+1, . . . , πn) = 0) = 1.

This guarantees the optimality and uniqueness of estimates based on DA

variables.

Corollary 2. If Assumptions 1 and 3 hold, then

(a) (Lehmann-Scheffe) If θ̂ = θ̂(π0, πk+1, . . . , πn) is an unbiased estimator for θ,

θ̂ is the unique best unbiased estimator (UMVUE);

(b) (Basu) (π0, πk+1, . . . , πn) is independent of ancillary statistics of family C;

(c) (Bahadur) (π0, πk+1, . . . , πn) is the minimal sufficient statistics for distribu-

tions in family C.

We can now conclude that if we consider dimensionless models, then DA

variables are the optimal choice to construct estimators with smallest variance

given the bias.
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In addition to studies of families where DA variables are sufficient and com-

plete, previous literature has considered the preservation of (minimal) sufficiency

and completeness under invariance structure. In their notations, Hall, Wijsman

and Ghosh (1965) stated that B ∩ AG is sufficient for AG if (i) B is a sufficient

and G-stable (g(B) = B) σ-field, and (ii) B ∩ AG ∼ B ∩ AA(P) for G-invariant

family P
(
Pg−1 ⊂ P

)
, where AG is the σ-field of G-invariant sets

(
g−1(A) = A

)
;

AA is the σ-field of almost-G-invariant sets
(
g−1(A) ∼ A(P)

)
. In our context,

AG is the induced σ-field M−1(Rn) of M , due to the maximal invariant prop-

erty of M in Lemma 5. By Hall, Wijsman and Ghosh (1965), it can be inferred

that the dimensionless version of a sufficient statistic for the original model is

still sufficient for DA invariant models. The completeness of model families is

also inherited through invariance reduction by DA, but minimal sufficiency is

not. If B is a minimal sufficient σ-field, the dimensionless version B ∩ AG is not

guaranteed to be minimal sufficient. Counterexamples were provided by Hall,

Wijsman and Ghosh (1965) and Chacón et al. (2006). (An equivalent statement

of (ii) was given by Berk (1972): the ancillary invariant σ-field is independent of

an appropriate sufficient σ-field. Landers and Rogge (1973) proved the necessity

of condition (ii) and a substitution of G-stability condition in (i), g(B) = B, by

dominated P.)

Implications in our context are as follows. For the probability family P that

is G-invariant with B∩AG ∼ B∩AA(P), a dimensionless version of sufficient and

complete statistics is still sufficient and complete (implying minimal sufficient)

for induced models based on DA variables. This is particularly applicable to ex-

ponential families. In general, the dimensionless version of the minimal sufficient

statistics for the original model may not be minimal sufficient for the induced

model on DA variables. Our theory articulates the complete family and thus the

condition for minimal sufficiency.

In summary, DA generates variables that are maximal invariant, sufficient

and complete under an appropriate probability family. Although these proposed

properties can be perceived easily in the DA procedure described in Section 2.4,

the proofs given here proceed with minimal assumptions as DA requires. The

procedure in Section 2.4 is merely a special case that satisfies the conditions.

Through the proposed representation, DA can be properly incorporated into a

more general probabilistic approach, without restricting to such special form.

On the other hand, the proofs are more direct and specialized compared to the

general theories of invariance and sufficiency, which induces the following ad-

vantages that include (i) it is not necessary to establish a probability model to
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Figure 1. Illustration of planetary boundary layer.

prove the maximal invariant property; (ii) sufficiency is given as an “if and only

if” statement; (iii) the probability family for which DA variables are complete

is the most generic family; (iv) practitioners do not need to verify the textbook

invariance setting case by case.

4. Case Study: A Meteorology Example

An important topic in Meteorology is to investigate the dynamics and pro-

cesses at the atmospheric boundary layer. The planetary boundary layer, il-

lustrated as the shaded area in Figure 1, is the lowest part of the atmosphere,

starting from the surface layer where we live to the cloud layer. Its behavior is

categorized into different zones based on the local time and height (the x- and

y-axises in Figure 1, respectively). Modeling difficulties arise in such regions be-

cause the physical laws governing the atmosphere’s dynamics are complex and

non-linear. Physical quantities such as temperature, moisture and flow velocity

in this layer fluctuate rapidly because of its interactive dynamics with the plan-

etary surface. Extensive progress has been made in theoretical, numerical and

experimental studies.

Here, we consider developing the relationship between the vertical velocity

variance
(
Y = w2

)
and the height where it is measured (X1 = z). Similar

problems can be found in Young (1988); Lin and Shen (2013). In the convective

mixed layer where turbulence is driven by buoyancy and capped at a well-defined

height, it is obvious that the convective velocity scale (X2 = w∗), and the depth
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of the boundary layer (X3 = zi), are important scales for all quantities concerned

(Stull (1988)). Thus we intend to model an numerical expression of the velocity

variance w2 based on the height z, as well as the scales w∗ and zi.

Figure 2(a) displays the scatterplot of w2 and z, based on the measurements

from the Phoenix 78 experiment (see Young (1988)). The relevant data set

is presented in Appendix B in the supplementary material. The purpose of the

Phoenix 78 experiment was to study the turbulence of convective boundary layer.

During the experiment, the profiles of turbulence statistics were recorded through

aircraft observations. From Figure 2(a), the dependence between w2 and z is not

obvious. Data points scatter apart quite randomly. This may be attributed to

different magnitudes of the velocity scale (X2 = w∗) and the boundary layer

depth (X3 = zi). Statistical models on raw data would conclude insignificant

dependence. Furthermore, predictions on w2 generate unreasonable (negative)

results when extrapolating to low w∗ and zi, which is not desirable.

4.1. Dimensional analysis and statistical properties

Following the DA procedure in Section 2.1.3, we need first to identify the

dimensions of variables involved. The corresponding physical dimensions of the

vertical velocity variance w2, the height z, the convective velocity scale w∗ and

the depth of boundary layer zi are listed in Table 2.

The two fundamental dimensions involved are the length [L] and the time

[T]. Based on Section 3.1, these two dimensions generate a group of dimensions

F =
{
D = Ld1Td2 : d1, d2 ∈ Q

}
and the 2-dimensional vector space (Q,F)

with multiplication and power as two valid operations. The dimensions of the

variables of interest are elements of F . They can be coded as vector forms as in

Table 2. Therefore the dimensional matrix D is

D =


2 −2

1 0

1 −1

1 0


. . . [Y ]

. . . [X1]

. . . [X2]

. . . [X3]

.

The rank of D is 2. The last two rows (X2, X3) are selected to be the basis;

then the other two row can be represented as [Y ] = [X2]2 and [X1] = [X3]. Con-

sequently, dimensionless variables are π0 = Y/X2 = w2/w2
∗ and π1 = X1/X3 =

z/zi. The original model is w2 = f
(
z, w2

∗, zi
)
, where f is to be estimated. The

DA model is π0 = g(π1), i.e., w2 = w2
∗g(z/zi). Our task is to estimate function

g (instead of f).

In SI measurement system, length [L] has unit meter and time [T] has unit
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Table 2. Dimensions of variables from the phoenix 78 experiment.

Variables Y = w2 X1 = z X2 = w∗ X3 = zi
Dimensions L2T−2 LT 0 LT−1 LT 0

Vector representation (2,−2) (1, 0) (1,−1) (1, 0)

second. Imperial system is another alternative to the metric system, where the

unit for [L] is 1 feet = 0.3048 meters. According to the statistical decision the-

ory, we advocate statistical methods that yield the same result, no matter which

measurement system is used. Without dimensionless variables, the transition

of results between different measurement systems can be difficult. For instance,

suppose one decides to use a local polynomial regression type method to estimate

the function f of the original z, w2
∗, zi. Between different platforms, the band-

width/smoothing parameter and the weight function may need to be adjusted

corresponding to different scales in order to obtain the same result. But if DA

is used and g is estimated, π0 = Y/X2 = w2/w2
∗ and π1 = X1/X3 = z/zi have

the same numerical value regardless whether metric system or imperial system

is used. The subsequent procedure will thus be invariant to the scale changes of

dimensions as well.

Consequently, we reduce the number of variables of interest from 4 to 2.

According to Section 3.3, π0 and π1 are sufficient and complete statistics to

the family of all invariant statistical models of original variables. If finding an

appropriate model from the invariant family is of interest, it is sufficient and

optimal to focus/condition on the two dimensionless π0 and π1. As stated by

Corollary 1(b), estimators based on π0 and π1 have less mean squared errors. By

Corollary 2(a), the unbiased estimators are unique UMVUE.

4.2. Further remarks on model building and scalability

Figure 2(b) is the scatterplot of π0 = w2/w2
∗ and π1 = z/zi. To capture the

nonparametric relationship between π0 and π1, we fit a local linear regression

via LOESS (R Development Core Team (2011)). Based on Theorem 2, (π0, π1)

is sufficient. It gives four curves in Figure 2(b) (corresponding to four different

dates). The individual curve shares a similar shape. We anticipate building a

common empirical model π0 = f(π1) that is adequate to describe their common

feature.

Now we switch to the parametric case in Theorem 1. Assuming the func-

tion is of power law form (with some boundary conditions at π1 = 0 and mul-

tiplicative log-normal errors of µ = 0 and constant σ), the empirical model
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Figure 2. Scatter plots and estimates of Phoenix 78 data. (a) Original data set. Dif-
ferent symbols stand for different dates. (b) Transformed data and LOESS fits for four
different dates. (c) Empirical and conventional model based on the transformed data
set.

can be built as: π0 = 1.554π
1/2
1

(
1 − 0.866π

1/2
1

)
or w2/w2

∗ = 1.554(z/zi)
1/2{

1−0.866(z/zi)
1/2
}

, using maximum likelihood estimate. By Corollary 1(c), esti-

mates are asymptotically Normal under some regularity conditions. To compare

the empirical model with the conventional model in meteorology (Stull (1988)):

π0 = 1.8π
2/3
1 (1− 0.8π1)2 or w2/w2

∗ = 1.8(z/zi)
2/3(1− 0.8z/zi)

2, Figure 2(c) dis-

plays both models. The empirical model is close to the conventional model, but

with a better fit. Moreover, they share a similar analytical form.

It is also possible to test the Buckingham’s Π-theorem. One can build a

model with the dimensionless ones π0 and π1 and basis quantities w∗, zi, and test

the significance of the latter two. If Buckingham’s Π-theorem holds, they should
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not be involved in the model. As pointed out in Section 2.4, the significance of

basis quantities is an indicator of missing key variables. In case of the significance

of w∗ and zi, we should maintain them in the model while searching for other

related quantities.

The importance of DA certainly lies beyond the convenience of transiting

results between systems. More importantly, the dimensionless variables better

characterize the intrinsic shape and comparative magnitude of the system rather

than the scales. Dimensionless variables constitute dimensionless models with

good extrapolation capabilities. This is essential for engineering problems. For

example, in order to study the product reliability in the real scale, accelerated

laboratory testing is usually conducted with much less cost. Engineers use wind

tunnels and small-scale experiments as pilot studies. Modeling the relative mag-

nitude could help one generalize the experimental results to the real scale. From

the pilot forecast, it is also easier to design the follow-up real scale experiment,

such as determining how many data points are necessary for controlling the er-

rors. Hence, in order to maintain both the physical insight from the physical

dimensions and the simplicity of the empirical analysis, dimensionless models

based on DA dimensionless variables are recommended.

5. Conclusion

We hope this paper sheds some light on the proper usage of DA and the

post-DA modeling. We believe that when conducting DA, we utilize the inherent

scaling structure and assume that the scales do not affect the physical outcomes.

It is the “absolute significance of relative magnitude”, that characterizes the

physical system. Thus, the probability models ought to provide invariant and

equivariant decisions under such dimensional scaling. DA transforms variables

as dimensionless, while preserving the sufficiency and completeness. Therefore,

estimates based on DA variables are automatically invariant and optimal under

squared loss. Modeling on the relative magnitude generates good scalability,

essential in engineering problems such as accelerated life testing.

Supplementary Materials

The online supplementary material contains the proofs of the Lemmas and

Theorems and the data set of the Phoenix 78 experiment.



THEORIES FOR DIMENSIONAL ANALYSIS 549

References

Adragni, K. P. and R. D. Cook (2009). Sufficient dimension reduction and prediction in re-

gression. Philosophical Transactions of the Royal Society A: Physical, Mathematical and

Engineering Sciences 367, 4385–4405.

Albrecht, M. C., Nachtsheim, C. J., Albrecht, T. A. and Cook, R. D. (2013). Experimental

design for engineering dimensional analysis. Technometrics 55, 257–270; with Rejoinder

292–295.

Balaguer, P. (2013). Application of Dimensional Analysis in Systems Modeling and Control

Design. IET control engineering. stevenage: The institution of engineering and technology.

Berk, R. H. (1972). A note on sufficiency and invariance. The Annals of Mathematical Statis-

tics 43, 647–650.

Bridgman, P. (1931). Dimensional Analysis (2nd Edition). Yale University Press.

Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional

equations. Physical Review 4, 345–376.
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Cariñena, J. F., del Olmo, M. A. and Santander, M. (1985). A new look at dimensional analysis

from a group theoretical viewpoint. Journal of Physics A: Mathematical and General 18,

1855–1872.

Chacón, J. E., Montanero, J., Nogales, A. G. and Pérez, P. (2006). A note on minimal sufficiency.
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