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S.1. Proofs of Lemmas and Theorems from Section 2

Proof of Lemma 1 and 2:

Note that the Jacobian from Σ to (R,D) is 2p|D|p.

pIW(D,R) = pIW(Σ)

∣∣∣∣ ∂Σ

∂(D,R)

∣∣∣∣ ∝ |Σ|−(δ+2p)/2 etr

{
−1

2
Σ−1

}
× 2p|D|p

∝ |R|−(δ+2p)/2 |D|−δ−p etr

{
−1

2
D−2R−1

}
= |R|−(δ+2p)/2

p∏
j=1

d−δ−pjj exp

{
− 1

d2jj

|E′jREj|
2|R|

}
(
note that the (j, j) element of R−1 is |E′jREj|/|R|

)
pCIW(R) =

∫
pIW(D,R) dD ∝ |R|−(δ+2p)/2

p∏
j=1

[ |E′jREj|
|R|

]−(δ+p−1)/2
= |R|(p+δ)(p−1)/2−p

p∏
j=1

|E′jREj|−(δ+p−1)/2

The normalizing constant and statements (i) and (iv) can be shown simi-

larly. It is clear that (ii) follows from the marginalization property of IW

and interchanging the order of integration, and (iii) is a special case of (ii).
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The CW distribution in Lemma 2 is derived similarly by noting etr{S} =

etr{DRD} = etr{D2}. For S ∼ W(δ,V) with V diagonal, D and R are

also independent with d2jj ∼ Gamma( δ
2
, 2vjj) using the scale parametriza-

tion.

As discussed in the manuscript, Theorem 1 follows from Theorem 3.9

(Dawid and Lauritzen (1993)) because we construct the distribution through

the Markov combination of a consistent family of distributions. Before we

prove Theorem 2, we introduce the following lemma.

Lemma 3.

(i). For Σ ∈ Q(G), |Σ| =
∏

C∈C |ΣC |/
∏

S∈S |ΣS|.

(ii). Consider the separation strategy applied to Σ ∈ Q(G) producing di-

agonal, standard deviation matrix D and correlation matrix R ∈ Rp.

Then, R ∈ R(G), and the Jacobian of this transformation is |∂Σ/∂(D,R)| =

2p
∏

C∈C |DC ||C|/
∏

S∈S |DS||S|.

Statement (i) is well known (e.g., Lauritzen (1996)). That R ∈ R(G)

is clear since R−1 will maintain the zero pattern of Σ−1. For the Jacobian,

one notes that the partial derivatives are with respect to the elements that

are not constrained by G: djj (j = 1, . . . , p), rjk for (j, k) ∈ E, and σjk for

j = k or (j, k) ∈ E. For each j, we have a contribution to the Jacobian of
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2d
ej+1
jj where ej is the number of edges connected to node j. As ej can be

represented as
∑

C∈C |C|I(j ∈ C) −
∑

S∈S |S|I(j ∈ S) − 1, the Jacobian is∏
j∈V 2d

ej+1
jj = 2p

∏
C∈C |DC ||C|/

∏
S∈S |DS||S|.

Proof of Theorem 2:

First, consider the hyper Wishart case.

pHW(D,R) = pHW(Σ)

∣∣∣∣ ∂Σ

∂(D,R)

∣∣∣∣ ∝ ∏C∈C |ΣC |(δ−|C|−1)/2 etr
{
−1

2
ΣC

}∏
S∈S |ΣS|(δ−|S|−1)/2 etr

{
−1

2
ΣS

} ∣∣∣∣ ∂Σ

∂(D,R)

∣∣∣∣
=

∏
C∈C |RC |(δ−|C|−1)/2 |DC |δ−|C|−1 etr

{
−1

2
DCRCDC

}∏
S∈S |RS|(δ−|S|−1)/2 |DS|δ−|S|−1 etr

{
−1

2
DSRSDS

} 2p
∏

C∈C |DC ||C|∏
S∈S |DS||S|

∝ πHCW(R)

p∏
j=1

dδ−1jj exp(−d2jj/2)

Integrating out D gives pHW(R) = πHCW(R), that is, the distribution of

the correlation matrix from the hyper Wishart is the same as the hyper

correlation Wishart distribution. This result will also hold for any diagonal

scale parameter.

Now, we consider the hyper inverse Wishart case. It follows that

pHIW(D,R) = pHIW(Σ)

∣∣∣∣ ∂Σ

∂(D,R)

∣∣∣∣ ∝ ∏
C∈C |ΣC |−(δ+2|C|)/2 etr
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2
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} ∣∣∣∣ ∂Σ
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∣∣∣∣
∝

∏
C∈C |DC |−δ−|C| |RC |−(δ+2|C|)/2 etr

{
−1

2
D−2C R−1C

}∏
S∈S |DS|−δ−|S| |RS|−(δ+2|S|)/2 etr

{
−1

2
D−2S R−1S

}
=

{∏
C∈C |RC |−(δ+2|C|)/2∏
S∈S |RS|−(δ+2|S|)/2

}
p∏
j=1

d
−δ−ej−1
j exp

{
−mj(R)

2d2j

}
,

where ej is again the number of edges connected to node/variable j and

mj(R) = |E′jREj|/|R| is the (j, j)-element of R−1. It is clear from the
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second line that mj(R) can alternatively be written as

mj(R) =
∑

C∈C:j∈C

[R−1C ](j,j) −
∑

S∈S:j∈S

[R−1S ](j,j), (S1.1)

where [A](j,j) is the diagonal element of A corresponding to the variable j;

see also Lauritzen (1996, Section 5.3).

pHIW(R) =

∫
pHIW(D,R) dD

∝

{∏
C∈C |RC |−(δ+2|C|)/2∏
S∈S |RS|−(δ+2|S|)/2

}
p∏
j=1

[∫
d
−δ−ej−1
j exp

{
−mj(R)

2d2j

}
ddj

]

=

{∏
C∈C |RC |−(δ+2|C|)/2∏
S∈S |RS|−(δ+2|S|)/2

}
p∏
j=1

[
Γ ((δ + ej)/2)

(mj(R)/2)(δ+ej)/2

]
To appropriately normalize pHIW(R), we require a factor of

(∏
C∈C kIW(δ, |C|)

)
/
(∏

S∈S kIW(δ, |S|)
)
,

where kIW(δ, p) is the normalizing constant of IWp(δ, Ip). Note that due to

the form of mj(R) in (S1.1) this distribution cannot be factored as in equa-

tion (1) in terms of the cliques and the separators. Thus, pHIW(R), the

distribution of the correlation matrix of Σ ∼ HIWG(δ, Ip), is not a Markov

distribution. Further, it is clearly not equivalent to the HCIWG(δ) distri-

bution which by construction can be factored according to G.

For additional clarity, consider the following simple example. Let G be

the graph with variables V = {1, 2, 3} and edges E = {(1, 2), (2, 3)}. Then

C1 = {1, 2}, C2 = {2, 3}, and S2 = {2} provide a perfect ordering of the

cliques. For notational convenience, let x = r12 and y = r23. It is easy to

show that |RC1 | = 1 − x2, |RC2| = 1 − y2, |RS2| = 1, e1 = e3 = 1, e2 = 2,
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m1 = (1−x2)−1, m3 = (1−y2)−1, and m2 = (1−x2)−1(1−y2)−1(1−x2y2).

Then,

πHCIW(R) =
pC1(RC1) pC2(RC2)

pS2(RS2)
∝ |RC1 |δ/2−1 |RC2 |δ/2−1 = (1− x2)δ/2−1 (1− y2)δ/2−1

pHIW(R) ∝ |RC1|−δ/2−2|RC2|−δ/2−2

|RS2|−δ/2−1
p∏
j=1

mj(R)−δ/2−ej/2

= (1− x2)(δ−1)/2(1− y2)(δ−1)/2(1− x2y2)−(δ+2)/2 6= πHCIW(R).

Again, it is clear that πHCIW(R) and pHIW(R) are not the same. Further,

pHIW is not Markov. The separating set S2 has no correlation parameters,

so for pHIW(R) to be Markov, the parameters from C1 (x = r12) and C2

(y = r23) would have to be independent. Note that the Markov property of

HIW implies that (σ11, σ12) ⊥⊥ (σ23, σ33) |σ22, which implies r12 ⊥⊥ r23 | d2.

However, marginalizing out the standard deviation destroys the indepen-

dence between the correlations.

S.2. Additional computational details from simulation study

In Section 5 of the manuscript, we introduced a simulation study to

evaluate the performance of our proposal. Here we provide additional de-

tails.

We choose µj ∼ N(0, 502), σ2
j ∼ InvGamma(0.1, 0.1), and νj ∼ Unif(2, 30)

as relatively uninformative prior distributions. The degrees of freedom is

bounded by 2, so that Yj has at least two moments. Table S.1 contains the
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Table S.1: Tuning parameter specification and average run time for simulation study of Section

5. Burn-in is the number of burn-in iterations. A thinning value of k means that every kth

iteration is retained for inference; the total number of iterations run is burn-in plus 2000k. ε

is the tuning parameter for the block sampler for R, and graph steps indicates the number of

edge proposal made per iteration (see final paragraph of Section 3). The standard deviation for

the dimension-matching parameter U in the reversible jump proposal is σ (Section 3.2). ζβ , ζσ,

and ζν represent the standard deviation for the (univariate) random walk Metropolis-Hasting

steps required to sample the marginal distributions of the Gaussian copula. Time denotes the

average time per data set that the sampler runs.

Model
Correlation A Correlation B Correlation C

N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

HCIWG(δ)π(G)

burn-in 250 200 300 120 200 400

thinning 10 10 15 20 40 80

graph steps 100 150 50 80 25 20

ε 50 50 50 150 150 1100

σ 0.1 0.1 0.1 0.1 0.1 0.1

ζµ 0.3 0.1 0.2 0.1 0.2 0.1

ζσ 0.4 0.2 0.4 0.2 0.4 0.3

ζν 5 3 5 3 5 3

time(δ = 2) 10.1 h 15.4 h 12.1 h 22.2 h 17.3 h 38.3 h

time(δ = 1) 10.1 h 14.8 h 11.7 h 17.5 h 21.4 h 36.6 h

HCWG(δ)π(G)

burn-in 200 200 300 1000 1200 500

thinning 5 5 15 20 20 50

graph steps 100 100 50 75 50 20

ε 50 50 50 250 200 1200

σ 0.1 0.1 0.1 0.1 0.1 0.1

ζµ 0.3 0.1 0.2 0.1 0.2 0.1

ζσ 0.4 0.2 0.4 0.2 0.4 0.2

ζν 5 3 5 3 5 3

time(δ = 25) 5.0 h 5.6 h 12.4 h 22.1 h 16.7 h 23.3 h

time(δ = 10) 5.0 h 5.6 h 12.1 h 20.2 h 14.7 h 22.5 h

π(R) ∝ I(R ∈ R)

burn-in 600 25,000 30,000 1000 30,000 1,200

thinning 300 250 200 200 200 150

ε 6000 30,000 7000 30,000 7000 30,000

ζµ 0.2 0.1 0.2 0.1 0.2 0.1

ζσ 0.4 0.2 0.4 0.2 0.4 0.2

ζν 5 3 5 3 5 3

time 16.1 h 19.6 h 11.2 h 15.4 h 11.1 h 11.7 h

R = Ip

burn-in 100 1200 100 120 100 100

thinning 2 3 3 3 2 2

ζµ 0.3 0.2 0.4 0.2 0.3 0.2

ζσ 0.4 0.3 0.5 0.4 0.4 0.3

ζν 5 4 5 3 5 3

time 0.05 h 0.2 h 0.04 h 0.2 h 0.05 h 0.1 h
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values chosen for the tuning parameters for this simulation study. These

are chosen by trail and error from running the sampler for a small number

of iterations, evaluating the mixing, and adjusting the values. The value

of ε determines how similar the block proposal R?
Ck

is to the current value

RCk , and following the advice of Zhang et al. (2006), we choose ε for an

acceptance rate near 15–20%. As the sample size gets larger, the posterior

is more concentrated, and smaller moves (larger ε) are required. Addition-

ally, larger clique sizes |C| typically require larger ε to achieve acceptance.

One could allow ε to vary by clique size (Table 1, Step 2), but due to the

additional tuning needed, we did not pursue this. When using the flat prior

on the full graph, we employ the sampling scheme of Section 3.1 using the

single clique C = V (similar to Zhang et al. (2006)). Updating the full

R requires very large ε (greater than 6000 for N = 100 and 30,000 for

N = 500) to obtain acceptance rates between 15–20% as this represents a

large clique. We select the number of times to repeat the graph-update step

(Section 3.2), so that we average between 0.5 and 1 accepted edge changes

per iteration. Burn-in values are chosen by trace plots and the Geweke

tests on the data likelihood from preliminary runs; chain length and thin-

ning values are taken so that 2000 iterations, having an effective sample

size of at least 400, are retained for inference. Parameters of the marginal
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distributions are updated through independent Metropolis-Hastings steps.

Table S.2 contains the estimated risk of the four quantities of interest:

the location parameters, scale parameters, correlation matrix, and graph

structure. For the location and scale parameters, we use sum of squared

error loss: L(µ̂,µ) =
∑

j(µj − µ̂j)2 and L(σ̂,σ) =
∑

j(σj − σ̂j)2. For the

correlation matrix, we employ the log-likelihood loss function L(R̂,R) =

tr{R̂R−1} − log |R̂R−1| − p. The Bayes estimators for the locations and

scales are the posterior means, and for R, the Bayes estimator is R̂ =

[E(R−1|y) − Λ]−1 where Λ is a diagonal matrix of Lagrange multipliers

constraining R̂ to have unit diagonal (Pitt et al. (2006)). To evaluate the

accuracy of graph recovery, we consider the total number of errors, the

sum of false positives (edges included in G not in the true graph G̃) and

false negatives (edges excluded from G that are in G̃), averaged across

iterations in the posterior sample. Box plots containing the location, scale,

correlation, and graph losses from the simulation study in Section 5 of the

manuscript are contained in Figure S.1 for N = 100 and in Figure S.2 for

N = 500.

In addition to this simulation study, we also consider another small

simulation study to explore the use of the sampling algorithm in Section

3.1 when the graph structure is fixed. Using the data drawn under true cor-
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Table S.2: Estimated risk from the simulation study. Monte Carlo standard errors are in

parentheses. Loss functions are sum of squared errors for location and scale parameters,

L(R̂,R) = tr{R̂R−1} − log |R̂R−1| − p for correlation matrix, and average number of

error for the graph.

Correlation
N

Loss Prior Choice

Matrix Fcn HCIWG(2) HCIWG(1) HCWG(10) HCWG(25) Flat Indep

A 100 Location 0.294(0.012) 0.294(0.012) 0.293(0.012) 0.295(0.012) 0.307(0.013) 0.327(0.013)

A 100 Scale 0.269(0.008) 0.271(0.009) 0.263(0.008) 0.297(0.009) 0.385(0.012) 0.362(0.014)

A 100 Corr 0.402(0.013) 0.399(0.013) 0.572(0.018) 1.006(0.026) 4.114(0.035) 29.957(−)

A 100 Graph 1.02(0.04) 0.89(0.04) 1.53(0.05) 2.45(0.06) 276(−) 24(−)

A 500 Location 0.055(0.002) 0.056(0.002) 0.056(0.002) 0.056(0.002) 0.056(0.002) 0.066(0.003)

A 500 Scale 0.063(0.002) 0.063(0.002) 0.065(0.002) 0.071(0.002) 0.065(0.002) 0.090(0.003)

A 500 Corr 0.076(0.002) 0.075(0.002) 0.091(0.003) 0.133(0.004) 0.663(0.006) 29.957(−)

A 500 Graph 0.44(0.02) 0.38(0.02) 0.68(0.02) 1.16(0.03) 276(−) 24(−)

B 100 Location 0.272(0.011) 0.272(0.011) 0.276(0.011) 0.281(0.012) 0.296(0.013) 0.338(0.017)

B 100 Scale 0.284(0.009) 0.282(0.009) 0.320(0.010) 0.405(0.012) 0.526(0.015) 0.359(0.014)

B 100 Corr 1.069(0.027) 1.078(0.027) 1.387(0.035) 2.016(0.044) 5.168(0.046) 26.726(−)

B 100 Graph 10.73(0.22) 10.46(0.22) 13.17(0.26) 17.87(0.29) 268(−) 32(−)

B 500 Location 0.056(0.002) 0.056(0.002) 0.056(0.002) 0.056(0.003) 0.057(0.003) 0.069(0.004)

B 500 Scale 0.075(0.002) 0.075(0.002) 0.085(0.003) 0.111(0.003) 0.101(0.003) 0.089(0.003)

B 500 Corr 0.108(0.004) 0.106(0.004) 0.157(0.006) 0.279(0.009) 0.819(0.009) 26.726(−)

B 500 Graph 1.43(0.05) 1.17(0.04) 2.42(0.07) 4.71(0.11) 268(−) 32(−)

C 100 Location 0.232(0.012) 0.231(0.012) 0.236(0.012) 0.240(0.013) 0.256(0.015) 0.328(0.023)

C 100 Scale 0.259(0.008) 0.261(0.009) 0.402(0.015) 0.618(0.019) 0.400(0.013) 0.367(0.018)

C 100 Corr 1.951(0.040) 2.062(0.044) 2.972(0.063) 3.824(0.072) 5.548(0.052) 30.591(−)

C 100 Graph 40.4(0.5) 41.0(0.5) 42.1(0.5) 44.3(0.6) 210(−) 90(−)

C 500 Location 0.043(0.002) 0.043(0.002) 0.044(0.002) 0.044(0.002) 0.045(0.002) 0.069(0.006)

C 500 Scale 0.062(0.002) 0.063(0.002) 0.111(0.004) 0.182(0.006) 0.183(0.006) 0.091(0.003)

C 500 Corr 0.295(0.005) 0.303(0.006) 0.496(0.012) 0.718(0.015) 1.133(0.015) 30.591(−)

C 500 Graph 9.22(0.09) 9.21(0.09) 10.05(0.08) 11.63(0.11) 210(−) 90(−)
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Figure S.1: Box plot of losses for the 100 data sets under each prior choice from the

simulation study of Section 5 for N = 100. The rows gives plots for the location, scale,

correlation, and graph loss. Columns designate the different correlation/graph choices.
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Figure S.2: Box plot of the losses for the 100 data sets under each prior choice from the

simulation study of Section 5 for N = 500. The rows gives plots for the location, scale,

correlation, and graph loss. Columns designate the different correlation/graph choices.
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Table S.3: Estimated risk from simulation study with fixed true graph A (Monte Carlo

standard errors in parentheses). Loss functions are sum of squared errors for location

and scale parameters and L(R̂,R) = tr{R̂R−1}− log |R̂R−1|−p for correlation matrix.

Compare with Table 1 from the manuscript for values when graph is unknown.

N
Loss Prior Choice

Fcn HCIWG̃(2) HCIWG̃(1) HCWG̃(10) HCWG̃(25) HCIWG(2)π(G) Flat

100 Location 0.294(0.012) 0.293(0.012) 0.294(0.012) 0.295(0.012) 0.294(0.012) 0.307(0.013)
100 Scale 0.269(0.009) 0.270(0.009) 0.263(0.008) 0.293(0.009) 0.269(0.008) 0.385(0.012)
100 Corr 0.393(0.013) 0.389(0.012) 0.561(0.018) 0.982(0.026) 0.402(0.013) 4.114(0.035)

500 Location 0.055(0.002) 0.056(0.002) 0.056(0.002) 0.056(0.002) 0.055(0.002) 0.056(0.002)
500 Scale 0.063(0.002) 0.063(0.002) 0.065(0.002) 0.071(0.002) 0.063(0.002) 0.065(0.002)
500 Corr 0.075(0.002) 0.075(0.002) 0.090(0.003) 0.132(0.004) 0.076(0.002) 0.663(0.006)

relation RA, we repeat the simulation where the graph G is fixed to be the

true graph G̃A. Table S.3 contains the location, scale, and correlation losses

using the four hyper laws: HCIWG̃(2),HCIWG̃(1),HCWG̃(10),HCWG̃(25).

For comparison, we repost the results for HCIWG(2)π(G) (unknown graph)

and the flat prior (full correlation matrix) from Table 3.

Overall, the results are quite similar to the case when the graph is

unknown. We do find the losses to be slightly smaller when the graph is

known compared to that seen in Table 3 when the graph was estimated.

Slightly improved risk is to be expected when one knows the true graph.

The small magnitude of the difference can be explained by the graph being

so well estimated for scenario A. Using RB and RC , one would expect qual-

itatively similar results, although using the fixed true graph G̃ may be more

strongly favored relative to estimating the graph as in Table 3. Overall, this

further confirms the ability of the sampling algorithm to correctly estimate
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the correlation dependence parameter from the Gaussian copula model.

S.3. Additional computational details from data example

The financial data application in Section 6 considers a Gaussian copula

with p = 30. Due to the decreased mixing over G as p increases, it is

necessary to adjust the sampler by incorporating an adaptive Metropolis

proposal. To that end, we incorporate an adaptive sampler that proposes

edges relative to the uncertainty of its inclusion in G. Adaptive MCMC

has been found to be effective in a wide array of problems, particularly in

tuning the variance terms of random walk Metropolis-Hastings (Andrieu

and Thoms (2008); Roberts and Rosenthal (2009)) and variable selection

(Nott and Kohn (2005); Lamnisos et al. (2013)).

In our adaptive sampler which replace Step 1 in Table 2, we associate a

weight γjk to each edge ejk, and the probability of an attempt to swap that

edge in the graph step is proportional to this weight. During each batch of

1000 iterations, we retain how many times we propose changing ejk, how

many times the resulting graph G? is decomposable, and how many times

we accept the move to G?. After running a batch of 1000 iterations, we

increase γjk by t−1/2 if more than 20% of proposals where changing ejk

yielded a decomposable G? were accepted, or we decrease γjk by t−1/2 if

fewer than 20% of decomposable proposals were accepted (t denotes the
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iteration number). We also bound γjk ∈ [0.1, 1.0], so that all edges have

some chance of being proposed and that no edge dominates.

As the adaptive algorithm changes the proposal distribution, our gen-

eral theory about MH sampling no longer applies. Let γ = (γ11, . . . , γp−1,p)

and Pγ(R, ·) be the transition function with starting point R (and its corre-

sponding graph G) and proposal weights γ. Roberts and Rosenthal (2007)

provides sufficient conditions for the ergodicity of adaptive samplers. The

adaptive algorithm is ergodic if we have simultaneous uniform ergodicity

and diminishing adaptation (Roberts and Rosenthal (2007, Theorem 1)).

The diminishing adaptation is easy to establish since |γ(t+1)
jk − γ(t)jk | → 0 in

t, so supR ||Pγ(t+1)(R, ·) − Pγ(t)(R, ·)|| → 0. While simultaneous uniform

ergodicity is not easy to show, Roberts and Rosenthal (2007, Corollary 3

and Lemma 1) show ergodicity if the support of R and the support of γ

are compact with a continuity condition. Clearly γ ∈ [0.1, 1]J has compact

support, but R does not without an extension to semi-definite correlation

matrices. Alternatively, we could create a compact support by restrict-

ing R to contain only those correlation matrices whose smallest eigenvalue

or determinant is at or above some very small threshold; in essence, any

computer algorithm works in such a way.

Further work exploring ergodicity more formally with these adaptive
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samplers would be of great benefit. However, the mathematical analysis

is beyond the scope of the current article and is far from trivial. We seek

only to provide a flavor of the issues involved. We additionally note that

one can also stop adjusting γ after burn-in and apply standard theory, or

one could use the original sampler of Section 5 with all γjk equal. However,

preliminary analysis indicates the original sampler will require three to four

times the computational time to produce a similar effective sample size.

As a final note, we also make use of the adaptive sampler for graph

selection with the MVN-HIW model. Because the HIW sampler updates

G marginally over Σ, it is only necessary to update G and γ. Applying

Corollary 3 and Lemma 1 of Roberts and Rosenthal (2007) to the finite

space G and the compact support of γ immediately shows that this algo-

rithm is ergodic. A similar result for adaptive algorithms in the context of

covariate selection for the linear regression model was shown by Lamnisos

et al. (2013).

Table S.4 shows tuning parameters and MCMC specifications used in

the algorithms that fit the financial data. As in the simulation study, we

retain 2000 iterations after burn-in using a thinning value such that we have

an effective sample size of at least 400.

Finally, we discuss some of the conclusions about the marginal distri-
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Table S.4: Tuning parameter specification and average run time for the financial data

application of Section 6. See Table S.1 for definitions. Table entries denoted by “ ”

indicates that this value is not relevant to the sampler of the given model.

Copula with t-marginals Multivariate Normal

Complete Sparse Sparse Sparse Indep. Complete Sparse Indep.

HCIW(2) HCIW(1) HCW(10)

burn-in 15000 30,000 15,000 21,000 100 100 18,000 100

thinning 350 60 30 75 5 1 15 1

graph steps 35 75 75 250

ε 45,000 2400 2400 1200

σ 0.1 0.1 0.1

ζβ 0.08 0.08 0.08 0.8 0.08

ζσ 0.15 0.2 0.2 0.2 0.2

ζν 4 4 4 4 4

time 2.2 d 4.0 d 1.7 d 5.5 d 39 m 12 s 2.0 d 14 s

bution parameters under the best-predicting model (the Gaussian copula

with HCIWG(2) correlation prior). Figure S.3 displays the parameters of

the marginal density for each industry. From the values of β, we find

utilities (industry number 20) and communications (21) to be the least sen-

sitive industries to market fluctuations, while recreation (4) is the most

affected. From an economic perspective this is quite reasonable as utilities

and communications are believed to have relatively inelastic demand curves,

whereas recreation spending increases (decreases) during economic booms

(downturns). Figure S.3(c) clearly indicates the need of the copula model

as the degrees of freedom varies considerably across industries. Some in-

dustries, including electrical equipment (14), business equipment (23), and

retail (27), have wide credible intervals with larger values of νj. While these
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(A) Regression Parameter
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Figure S.3: Posterior means and 95% credible intervals for the marginal distribution

parameters as fit by the copula model with sparse correlation matrix.
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industries may be reasonably modeled with a normal distribution, other in-

dustries (food products (1), construction (11), coal (18), wholesale (26))

are highly concentrated around small values of νj due to their heavy tailed

behavior.
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