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Abstract: Parsimoniously modeling dependence in multivariate data is a challeng-

ing task, particularly if the dependence parameter is a correlation matrix due to

modeling assumptions or identifiability constraints. In this work, we connect the

techniques of graphical models and the hyper inverse Wishart distribution to in-

troduce hyper Markov priors for correlation matrices. The priors are formed by

taking a Markov combination of non-sparse correlation matrix distributions, where

these distributions come from marginalizing the diagonal elements out of an in-

verse Wishart or Wishart prior. These priors produce a sparse correlation matrix

with zero elements in its inverse when variables are conditionally independent. An

MCMC scheme for posterior inference is introduced, and the performance is con-

sidered in the context of the Gaussian copula model using a simulation study and

a financial data example.

Key words and phrases: Copula model, dependence modeling, Gaussian graphical

model, hyper inverse Wishart, reversible jump MCMC, sparsity.

1. Introduction

The goal of this paper is to develop theory and implementation schemes for

sparse Bayesian correlation estimation. To this end we borrow from the well-

studied framework of covariance estimation in graphical models. Methodology

for covariance matrices with an independence structure given by a graph has

grown tremendously in the last twenty years. However, the case in which one

desires a sparse correlation matrix, either due to an identifiability restriction or

a modeling assumption, has failed to receive much attention.

We first review some key results for graphical models; see Lauritzen (1996)

for full details. Let G = (V, E) denote an undirected graph with vertices V =

{1, . . . , p} and edge set E ⊂ V × V. The elements of V represent the response

variables measured for each observation, and variables j and k (j 6= k) are neigh-

bors if they are connected by an edge (j, k) ∈ E. As the graph is undirected,

(j, k) ∈ E implies (k, j) ∈ E. A graph or subgraph is fully connected or com-

plete if every pair of variables are neighbors. For S,A,B ⊂ V, a set S is said

https://doi.org/10.5705/ss.202016.0224


166 GASKINS

to separate A and B if every path from an element a ∈ A to an element b ∈ B
contains at least one element in S; (A,B) is a decomposition of G if V = A ∪B,

the set S = A ∩ B is complete, and S separates A and B. A random variable

X (or its distribution) is called Markov with respect to G if XA is conditionally

independent of XB given XA∩B for all decompositions (A,B) of G, where XA is

the subset of X corresponding to the set A ⊆ V.

Throughout we assume G is decomposable, every cycle of length greater than

or equal to four possess a chord (two non-consecutive vertices sharing an edge).

We denote the set of decomposable graphs on V by G. A decomposable graph

can be represented by a perfect ordering of cliques, where each clique C ∈ C
is a maximal complete subgraph of G. The history of the graph is defined to

be Hj =
⋃ j
k=1Cj (j = 1, . . . , |C|), and Sj = Cj ∩ Hj−1 (j = 2, . . . , |C|) is the

(potentially empty) separator of clique j from the history. S is the collection of

the |C|− 1 separators, which generally are neither distinct nor non-empty. A key

benefit of using decomposable graphs is that if the random variable X is Markov

with respect to decomposable G, its density factors according to its cliques and

separators:

p(X) =

∏
C∈C pC(XC)∏
S∈S pS(XS)

, (1.1)

where pA(·) is the marginal distribution of XA.

Dawid and Lauritzen (1993) develop the hyper inverse Wishart distribution

(HIW) for the covariance matrix Σ, which is the unique hyper Markov distribu-

tion with inverse Wishart as the clique marginals. They refer to Markov distribu-

tions for model parameters as hyper Markov distributions or laws. LetMp be the

space of p×p positive definite matrices. For a fixed (decomposable) graph G, the

space Q(G) = {Σ ∈ Mp : (Σ−1)(j,k) = 0 if (j, k) /∈ E} is the support for HIWG.

The (mean-zero) Gaussian distributions that are Markov with respect to G can

be represented by the Gaussian graphical model N (G) = {Np(0,Σ) : Σ ∈ Q(G)};
HIWG is the classical conjugate prior for Σ in N (G). Beyond the Markov prop-

erty and the corresponding conditional independence structure, improved esti-

mation efficiency from modeling Σ on lower-dimensional support Q(G) has been

a motivating factor in the adaptation of the HIW prior. While we refer to such

a covariance/correlation matrix as sparse, it is actually the inverse that has zero

elements. Similarly, the hyper Wishart (HW) distribution is the Markov law with

Wishart as the clique marginals and is the sampling distribution of a covariance

matrix from N (G) (Dawid and Lauritzen (1993)).

There are many applications where the required dependence parameter is a
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correlation matrix R, not a covariance matrix. Often, this is due to model iden-

tifiability such as in the multivariate probit model (Chib and Greenberg (1998)),

Gaussian copula regression (Pitt, Chan and Kohn (2006)), or in certain latent

variable models (e.g., Daniels and Normand (2006)). Other times this may be

a consequence of model specification. For instance, if data is made up of mul-

tiple groups, we might assume a common, potentially sparse correlation matrix

with group-specific variances (Manly and Rayner (1987); Barnard, McCulloch

and Meng (2000)).

Bayesian methodology for sparse correlation matrices is extremely limited.

Pitt, Chan and Kohn (2006) devise a prior with zero elements in R−1, correspond-

ing to a (not necessarily decomposable) graphical structure G. Their sampling

scheme essentially requires evaluating the volume of the space of p × p correla-

tion matrices with zero patterns consistent with G, which becomes impractical

for moderate to large p. To make the volume calculation tractable, a relatively

inflexible probability model is required for G.

Gaskins, Daniels and Marcus (2014) consider a prior for R that imposes

sparsity through the partial auto-correlations (PACs; Daniels and Pourahmadi

(2009)). The PACs are depend on the ordering of V and are inappropriate if the

responses do not have an a priori ordering.

Talhouk, Doucet and Murphy (2012) apply graphical considerations for cor-

relation estimation in the multivariate probit model. This is similar to the ap-

proach we take, but our work differs from theirs in a number of key ways. First,

they utilize a parameter expansion sampler that is not applicable outside of the

probit model. We develop a more general hyper Markov laws for R, containing

their proposal as a special case. Further, we will see that their sampling scheme

corresponds to an incorrect stationary distribution due to a mistaken connection

to the HIW distribution. We provide details later.

The remainder of the article proceeds as follows. In the next section we pro-

pose two families of Markov laws based on the marginal distributions of R from

the Wishart and inverse Wishart distributions. Section 3 describes the sampling

algorithm for MCMC analysis under known and unknown graph structure. In

Section 4, we provide some details of the Gaussian graphical model to illuminate

the simulation study and data application in Sections 5 and 6. This is followed

by a few concluding comments.
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2. Hyper Markov Laws for Correlation Matrices

2.1. Distributions for correlation matrix on a complete graph

Our interest is the correlation matrix R, and we consider the implied distri-

butions of (non-sparse) R under Wishart and inverse Wishart. Let Rp ⊂ Mp

denote the space of p× p positive definite matrices with unit diagonal, the space

of correlation matrices. Using the separation strategy (Barnard, McCulloch and

Meng (2000)), we write Σ ∈ Mp as DRD where R ∈ Rp is the correlation

matrix corresponding to Σ and D is a diagonal matrix containing the standard

deviations.

Let IWp(δ,Ψ) denote the inverse Wishart distribution with δ > 0 and scale

Ψ ∈ Mp, and Wp(δ,V) is the Wishart distribution with δ > p − 1 and V ∈
Mp. We describe the marginal distributions of the correlation matrix from these

distributions (e.g., Barnard, McCulloch and Meng (2000); Zhang, Boscardin and

Belin (2006)). We denote these by CIW and CW, respectively. Let Γp(x) =

πp(p−1)/4
∏p
j=1 Γ(x + [1 − j]/2) be the multivariate gamma function, Ip denote

the p × p identity matrix, and Ej be the matrix formed by removing column

j from Ip. We use | · | to denote both the determinant of a matrix and the

cardinality of a set, but the relevant interpretation will be clear from context.

Lemma 1 (CIW distribution). For Σ = DRD ∼ IWp(δ, Ip) for δ > 0, the

correlation matrix R has distribution

pCIW(R) = ξCIW(δ, p) |R|(p+δ)(p−1)/2−p
p∏
j=1

|E′jREj |−(δ+p−1)/2, R ∈ Rp, (2.1)

where ξCIW(δ, p) = Γ{(δ+p−1)/2}p/Γp{(δ+p−1)/2} is the normalizing constant

and |E′jREj | is the (j, j) minor of R. With (2.1), we write R ∼ CIWp(δ).

(i). For Σ ∼ IWp(δ,Ψ) with diagonal Ψ ∈Mp, R ∼ CIWp(δ).

(ii). The CIW distribution has a marginalization property: if R ∼ CIWp(δ),

then RA ∼ CIW|A|(δ) for A ⊆ V.

(iii). For 1 ≤ j < k ≤ p, p(rjk) ∝ (1 − r2jk)δ/2−1. If δ = 2, then the marginal

correlation between any two responses is uniformly distributed on (−1, 1).

(iv). The conditional distribution of the variance d2j , given the correlation matrix

R, is InvGamma((1/2)[δ + p− 1], |E′jREj |/2|R|).

Lemma 2 (CW distribution). For S = DRD ∼ Wp(δ, Ip) for δ > p − 1, the
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correlation matrix R has distribution

pCW(R) = ξCW(δ, p) |R|(δ−p−1)/2, R ∈ Rp, (2.2)

where ξCW(δ, p) = Γ(δ/2)p/Γp(δ/2) is the normalizing constant. R with distri-

bution (2.2) is denoted by R ∼ CWp(δ).

(i). For S ∼Wp(δ,V) with diagonal V ∈Mp, R ∼ CWp(δ).

(ii). If R ∼ CWp(δ), then RA ∼ CW|A|(δ) for A ⊆ V.

(iii). For 1 ≤ j < k ≤ p, p(rjk) ∝ (1− r2jk)(δ+1)/2−1.

(iv). The variances d2j are independent of R, and d2j ∼ Gamma(δ/2, 2).

Partial proofs can be found in the Web Appendix. From (i) of both lemmas,

it is unnecessary to consider alternative diagonal scale parameters since CIW and

CW depends only on the shape δ. If Ψ (V) is non-diagonal, a closed-form repre-

sentation of the distribution of R does not exist. For the CIW distribution, the

marginal distribution of rjk in (iii) is a shifted version of the Beta(δ/2, δ/2) dis-

tribution (Daniels and Pourahmadi (2009); Gaskins, Daniels and Marcus (2014)),

which can guide the choice of the δ shape parameter. Values of δ < 2 produce a

U-shaped distribution with mass near the extremes −1 and 1, and δ > 2 gives a

unimodal distribution centered at 0. As δ increases, R is shrunk more strongly

toward the identity matrix. For the CW distribution, rjk marginally follows a

shifted Beta{(1/2)(δ + 1), (1/2)(δ + 1)} distribution. Since the Wishart distri-

bution is constrained by δ > p − 1, it is not possible to obtain a uniform or

U-shaped distribution for rjk. As the shape parameter δ increases, the marginal

distribution of rjk becomes tightly concentrated around 0.

2.2. Markov priors for the correlation matrix

We seek sparse correlation matrices in the same way HIWG and HWG provide

distributions on the sparse Q(G). Let R(G) = Q(G) ∩ Rp denote the space of

correlation matrices with zero pattern consistent with the graph G, i.e., {R ∈
Rp : (R−1)(j,k) = 0 if (j, k) /∈ E}. We call this the correlation selection problem.

Clearly, if R ∈ R(G) and X ∼ Np(0,R), X is Markov with respect to G. It is

therefore natural to ask that the prior for R be hyper Markov to gain results

from Dawid and Lauritzen (1993) that imply the posterior π(R|X) is a Markov

law. Requiring the prior to be Markov is a stronger condition than merely having

a zero pattern consistent with G, as the zero pattern only implies independence

relationships in X. The Markov assumption additionally implies independence
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relationships in the elements of R, both in the prior and posterior. In particular,

for a fixed decomposable graph G, the prior of Pitt, Chan and Kohn (2006) is

not hyper Markov, even though R−1 has a zero pattern given by G.

We construct a Markov distribution through (1.1) by specifying distribu-

tions on the clique marginals that satisfy a consistency requirement (Dawid and

Lauritzen (1993, Thm. 2.6)). A pair of distributions pA(·) on XA and qB(·) on

XB are consistent if pA∩B(xA∩B) = qA∩B(xA∩B) for all x; clearly, the CIW and

CW distributions are consistent families from the marginalization property (ii)

of Lemmas 1 and 2. Thus, we can define a hyper Markov law on Q(G) through

the Markov combination

π(R|G) =

∏
C∈C pC(RC)∏
S∈S pS(RS)

, (2.3)

where pA(RA) is the density evaluated at the submatrix of R corresponding to

the clique/separator A. When pA(·) is CIW|A|(δ) for each A, we refer to distri-

bution (2.3) as the hyper-CIW distribution, denoted by HCIWG(δ). Similarly,

HCWG(δ) is the hyper law where pA(RA) is the density CW|A|(δ). To maintain

the consistency requirement in both HCIW and HCW, δ is a common parameter

across all clique/separator distributions and is referred to as the shape parameter

for the full distribution. For HCWG(δ) we require δ > maxC∈C{|C| − 1}, so each

marginal is well defined. By definition, pS(·) = 1 if the separator S is empty or

a singleton as there are are no correlation parameters. Finally, the normalizing

constant of π(R|G) is known in closed-form since the normalizing constants for

the clique-marginals are known (Lemmas 1 and 2).

As π(R|G) is a function of only rjk with (j, k) ∈ E, there is no contribution

from rj′k′ for (j′, k′) /∈ E. However, the independence relationships from G

require that (R−1)jk = 0 for (j, k) /∈ E. Because G is decomposable there is

a unique R̂ ∈ R(G) such that rjk = r̂jk if (j, k) ∈ E and {(R̂)−1}(j,k) = 0 for

(j, k) /∈ E (Letac and Massam (2007, Prop. 2.1)). Without confusion R from

(2.3) is taken to be this unique completion matrix R ∈ R(G). We summarize

these results in a theorem that follows from Theorem 3.9 of Dawid and Lauritzen

(1993).

Theorem 1 (Hyper Markov laws for correlation matrices). The HCIWG(δ) law,

in (2.3) with pA(·) the density CIW|A|(δ), is the unique hyper Markov law on

R(G) with respect to G that has CIW(δ) as the clique marginals. Likewise,

HCWG(δ), given by (2.3) with pA(·) the density CW|A|(δ), is the unique hyper

Markov law on R(G) with respect to G that has CW(δ) as the clique marginals.
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The use of the CIW and CW distributions in (2.3) is not arbitrary. Other

common distribution choices for p(R) cannot be used because they do not rep-

resent consistent families. The uniform prior p(R) ∝ 1 is not consistent as the

marginal distributions for rjk are not uniform, but highly concentrated near zero

(Barnard, McCulloch and Meng (2000)). The Jeffreys’ prior p(R) ∝ |R|−(p+1)/2

is improper, so the marginal distribution over a separating set is not a well-defined

concept.

It is natural to consider the connection between our Markov laws on R(G)

and the distribution of R from the standard Markov distributions on Q(G).

Of main interest is whether HCIW is the marginalization of the hyper inverse

Wishart distribution, and likewise for the HCW and hyper Wishart distributions.

Theorem 2 (Marginalization of hyper Markov laws on Q(G)).

(i) If S = DRD ∼ HWG(δ, Ip), the marginal distribution of R is HCWG(δ).

(ii) If Σ = DRD ∼ HIWG(δ, Ip), the marginal distribution of R, pHIW(R) =∫
pHIW(Σ) dD, is not the HCIW distribution. Furthermore, pHIW(R) is not

a hyper Markov law.

Proof of this theorem and the form of pHIW(R) are in the Web Appendix.

Constructing the hyper law from Wishart marginals is equivalent to taking the

marginal from the hyper law of Wisharts. This correspondence is unsurprising

since R and D are independent for Wishart with diagonal V. This does not carry

over to the inverse Wishart case. Intuitively, parameters in different cliques are

independent given the covariance parameters in their separating set but, after

marginalizing out the standard deviations in the separator, independence is lost.

(See Web Appendix for a detailed example.) While pHIW(R) does have the

desired support (the zero pattern in R−1 corresponds to G), it does not admit

the Markov factorization (1.1), and the posterior distribution is not Markov.

The special case of HCIWG(δ) with δ = 2 was previously considered in

Talhouk, Doucet and Murphy (2012) in the context of a multivariate probit

model. However, the authors incorrectly claim πHCIW(R) as the marginal from

HIWG(2, Ip) in contradiction to Theorem 2. By sampling with parameter ex-

pansion to HIW, their MCMC algorithm has as its stationary distribution the

non-Markovian prior pHIW(R), not the desired πHCIW(R). In the next section

we introduce an MCMC algorithm corresponding to the correct πHCIW(R) dis-

tribution that can be used generally for any model with dependence defined by

a correlation matrix.
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Table 1. MCMC Algorithm to sample R from HCIW prior for fixed G.

For each clique k = 1, . . . , |C|:
1. For variable j ∈ Ck:

Sample d2j |RCk
∼ InvGamma{(1/2)[δ + |Ck| − 1], |E′jRCk

Ej |/2|RCk
|}.

2. Sample Σ?
Ck

= D?R?
Ck

D? ∼ IW|Ck|(ε, (ε− 2)DRCk
D)

where D = diag{d1, . . . , d|Ck|}.
3. For all other cliques l = 1, . . . , |C| (l 6= k):

Form the candidate R?
Cl

.
If edge (i1, i2) ∈ Cl ∩ Ck, let [R?

Cl
](i1,i2) = [R?

Ck
](i1,i2).

If edge (i1, i2) ∈ Cl and (i1, i2) /∈ Ck, let [R?
Cl

](i1,i2) = [RCl
](i1,i2).

Check if R?
Cl

is positive definite. If not, immediately reject move.
4. Form the candidate R? by combining R?

1, . . . ,R
?
|C| and obtaining the completion.

5. Accept the move from R to R? with probability given by equation (3.1).

3. MCMC Sampling

3.1. Sample R with fixed graph G

Most Bayesian methodology for correlation matrices, particularly those that

allow sparse R, is hindered by MCMC algorithms that require sampling each of

the relevant parameters one at a time: either the marginal correlations (Barnard,

McCulloch and Meng (2000)), the partial correlation (Pitt, Chan and Kohn

(2006)), or the partial auto-correlation (Daniels and Pourahmadi (2009); Gaskins,

Daniels and Marcus (2014)). When the correlation matrix is non-sparse, param-

eter expansion techniques provide a partial solution by introducing unidentifiable

variance parameters to expand the parameter space to correspond to conjugate or

well-known distributions (Liu (2001); Liu and Daniels (2006); Zhang, Boscardin

and Belin (2006)). The only block sampler for sparse correlation matrices to our

knowledge is the work of Talhouk, Doucet and Murphy (2012), but their param-

eter expansion algorithm for multivariate probit data has stationary distribution

proportional to pHIW(R) not HCIWG(2) as desired. Most parameter expansion

methods are specific to the multivariate probit model, but our goal is to propose

a general sampling scheme for R that can be applied across a variety of modeling

situations.

To sample R with a fixed graph G under the HCIWG prior, we follow the

algorithm summarized in Table 1. This block algorithm seeks to update the

correlation matrix RC associated with a clique C ∈ C. Such a block sampler

is generally more computationally efficient than one-at-a-time algorithms, as we

perform a step for each of the |C| cliques which is generally much smaller than

the |E| steps needed for sampling rjk individually.
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To update the correlation matrix corresponding to clique k, we first sample

variance parameters given the current RCk
(Step 1) such that ΣCk

= DRCk
D ∼

IW|Ck|(δ, I) in the prior (Lemma 1). Using an approach similar to that used in

Zhang, Boscardin and Belin (2006), we draw the candidate Σ?
Ck

from an inverse

Wishart with mean ΣCk
. In this way, our Step 2 mimics a random walk, where

ε is a tuning parameter with large values corresponding to small steps. The

corresponding correlation matrix is the proposal R?
Ck

for clique k.

We now need a p×p candidate correlation matrix R? based on the proposed

R?
Ck

, that is, candidate correlation matrices for all cliques Cl (l = 1, . . . , |C|, l 6= k)

that are consistent with the proposed R?
Ck

. If a correlation ri1,i2 corresponds to

an edge in both Cl and Ck, the candidate value is the one proposed in R?
Ck

.

If edge (i1, i2) is not in Ck, we keep the current value of the correlation from

RCl
. It is necessary to check that this updated R?

Cl
is positive definite but, in

our experience, this is almost always the case. If not, we reject the Metropolis-

Hastings (MH) step. The full candidate correlation R? is found by combining all

the RC ’s and obtaining the completion using the algorithm of Carvalho, Massam

and West (2007).

The move from R to R? is accepted according to the MH probability

min

{
1,
πCIW(R?) p(y|R?)

πCIW(R) p(y|R)

p(D?|R?
Ck

)

p(D|RCk
)

pIW(ΣCk
|Σ?

Ck
) |D||Ck|

pIW(Σ?
Ck
|ΣCk

) |D?||Ck|

}
. (3.1)

We repeat this step for each clique in C in random order. Sampling for the HCW

model is performed similarly by replacing inverse Gamma with Gamma(δ/2, 2)

in Step 1, replacing IW with Wishart in Step 2, and making the appropriate

corrections in the probability (3.1).

3.2. Sampling with unknown graph G

Thus far, we have assumed the graph structure to be fixed and known, which

is rarely the case in practice. Typically, we jointly model the graph G and the

correlation matrix R ∈ R(G) hierarchically through a prior π(G) on G, the space

of decomposable graphs, and a prior for R conditional on G. In our case the

prior π(R|G) is either HCIWG(δ) or HCWG(δ).

One common choice for π(G) is the uniform distribution over G. However,

this prior places most of its weight on graphs with an intermediate number of

edges. As a remedy the prior π(G|β) ∝ β|E|(1 − β)J−|E|I(G ∈ G) has been

proposed to encourage sparse graphs, where J = p(p−1)/2 is the number of edges

in the complete graph. The choice β = 2/(p− 1) was suggested by Dobra et al.
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Table 2. RJMCMC Algorithm to sample G.

1. Sample the pair (j, k) uniformly over all possible edges.
2. Create candidate graph G?: e?jk = 1− ejk, e?j′k′ = ej′k′ for all other (j′, k′).

3. Check that G? is decomposable. If not, immediately reject move.
4. Create candidate R?:

4a. If ejk = 0 and e?jk = 1:

Sample r?jk ∼ N(rjk, σ
2) and set u = r?jk.

Form the R? by taking r?j′k′ = rj′k′ for (j′, k′) ∈ E, obtain completion, and

check positive definiteness. If not positive definite, immediately reject move.
4b. If ejk = 1 and e?jk = 0:

Set u = rjk.
Form the R? by taking r?j′k′ = rj′k′ for (j′, k′) ∈ E?, obtain completion, and

check positive definiteness. If not positive definite, immediately reject move.
5. Accept the move from R to R? with probability given by equation (3.2).

(2004), so that graphs with p edges are a priori most likely. Carvalho and Scott

(2009) consider a hierarchical structure by letting β ∼ Beta(a, b). Marginally,

π(G) ∝ B(|E| + a, J − |E| + b)I(G ∈ G) with B(·, ·) the beta function. In our

empirical work, we use this prior with a = b = 1.

When the dependence parameter is a covariance matrix with HIWG(δ,Ψ)

prior, estimation of the graph is simplified by the fact that the covariance matrix

can be integrated out. The probability of graph G given data y (marginally over

the covariance matrix) can be written as a ratio of HIW normalizing constants,

and a Metropolis-Hastings step is used to traverse the G-space (Carvalho and

Scott (2009)). As we noted in Section 2, we are unable to marginalize D out of

HIW with a non-diagonal scale parameter, so a conjugate step of this sort is not

available to sample the posterior of the correlation selection problem.

When sampling requires traversing models with differing numbers of param-

eters and marginalization is unavailable, reversible jump MCMC (RJMCMC;

Green (1995)) often provides an accessible remedy. We propose a RJMCMC

algorithm to update the graph G in Table 2.

We propose the candidate graph G? by uniformly choosing (j, k) over all

possible edges (Step 1). For notational convenience we introduce the variables

ejk (j < k) where ejk = 1 if (j, k) ∈ E and ejk = 0 otherwise. If ejk = 0, then

we add the edge to form G?, and if the edge is in the current graph, we remove

it. G and G? differ only by a single edge, and it is necessary to check that the

proposed G? is decomposable (Steps 2 and 3).

To accept the new graph G?, we must simultaneously propose a new correla-
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tion matrix R? since the support R(G?) has changed. As G and G? differ only in

the edge ejk, R and R? differ by only one unconstrained parameter rjk. When we

propose to add the edge (j, k) (Step 4a), we draw the candidate r?jk ∼ N(rjk, σ
2)

depending on the current constrained value rjk and a tuning variance σ2. The

remaining r?j′k′ are set to their values in R. Using these r?j′k′s, we form the can-

didate R? from the completion. If we propose to remove the edge (Step 4b), r?jk
becomes a constrained parameter, and its value is determined when taking the

completion R?. RJMCMC requires a dimension-matching parameter to maintain

the detailed balance condition; the parameter u, the correlation between (j, k) in

the larger model, plays this role.

The move from (G,R) to (G?,R?) is accepted with probability

min

{
1,
π(G?)πHCIW(R?|G?) p(y|R?)

π(G)πHCIW(R|G) p(y|R)

p(u|r?jk)
1−e?jk

p(u|rjk)1−ejk

}
, (3.2)

where p(u|rjk) is the N(rjk, σ
2) density evaluated at u.

Our general sampling strategy is to alternate between updating the graph

G (Table 2), updating R through each clique C (Table 1), and updating all

other model parameters. The graph update step is often accepted infrequently

relative to the correlation step, so we typically perform multiple graph steps per

iteration. We treat the number of edge proposals per iteration as an MCMC

tuning parameter to be optimized along with ε and σ2. Under the HCW prior,

sampling is the same with the obvious adjustment to (3.2).

4. Gaussian Copula Model

Our focus is multivariate modeling when the appropriate dependence struc-

ture is constrained to be a correlation matrix. In some scenarios such as the

probit model, parameter expansion is possible, and simpler, specialized algo-

rithms may be available. However, our goal is methodology that can be used

across a variety of modeling schemes, particularly those that do not lead to com-

putational simplification. For illustration we consider the case of the Gaussian

copula model.

Briefly, the Gaussian copula model (e.g., Song (2000)) provides a joint distri-

bution for Y allowing separate specification of the marginal distributions. The

model can be defined by the following construction. First, correlated normal

scores ε are drawn from Np(0,R), where for identifiability R is constrained to

be a correlation matrix. The jth component Yj is a function of εj given by

Yj = F−1j (Φ(εj)), where Φ(·) is the cumulative distribution for a standard nor-
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mal and F−1j (·) is the inverse of the distribution of the jth margin. The marginal

distribution of Yj is Fj(·) depending on parameters θj , and the Yjs are correlated

because they are functions of the correlated normal scores ε. The joint density

of Y (assuming each margin is absolutely continuous) is given by

f(y|R,θ) = |R|−1/2 exp

{
1

2
ε(y,θ)′(I−R−1)ε(y,θ)

} p∏
j=1

fj(yj |θj), (4.1)

where fj(·|θj) = F ′j(·) is the jth marginal density and εj(y) = Φ−1 {Fj(yj)}.
In the next two sections we apply this copula model to data analysis using the

MCMC scheme proposed in Section 3. Unlike the multivariate probit case, there

are no general parameter expansion algorithms to sample (sparse or non-sparse)

R in this model. There are a two exceptions in the literature: when R is the only

parameter of interest and the marginal distributions are a nuisance parameter

(Hoff (2007)) or when all Yjs are discrete (Dobra and Lenkoski (2011)). In both

cases, the key is that the relationship between the normal scores ε and the data

Y is many-to-one, but this approach is not available when the marginal distribu-

tions are of interest and/or continuous. However, we can apply the algorithms

introduced in Tables 1 and 2 using the density (4.1) for p(y|R).

5. Simulation Study

To evaluate the empirical performance of our correlation hyper laws, we

performed a simulation study using the Gaussian copula model with dimension

p = 25. Due to space constraints, we briefly comment on the results. Full details

are available in the Web Appendix.

The distribution for Yij , the jth component of Yi (i = 1, . . . , N), is a t-

distribution with location µj = j, scale σj = 1, and degrees of freedom νj = 5

(j = 1, . . . , p). Figure 1 shows the three choices of the true graph structure G̃.

The graphs have decreasing sparsity (increasing complexity) with |E| = 24, 32, 90

edges out of a possible J = p(p − 1)/2 = 300. For RA, the correlation matrix

corresponding to graph G̃A, connected variables have marginal correlation 0.7,

producing an autoregressive structure. For RB the correlations corresponding

to the six edges connected to the central node have value 0.8, and all others are

set to 0.5. In RC the correlations corresponding to all edges are set to 0.7. The

remaining elements of each R are determined by the completions.

For each R we generated 100 data sets containing N = 100 observations

and 100 data sets with N = 500. We chose relatively uninformative priors

for µj , σj , νj . For the prior of the correlation matrix conditional on the ran-
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Figure 1. The true graph structure for each of our three choices G̃A, G̃B , and G̃C .

dom graph, we used HCIWG(2), HCIWG(1), HCWG(25), and HCWG(10). For

HCIW, δ = 2 produces a uniform distribution for rjk with (j, k) ∈ E, and δ = 1

favors values toward −1 and 1. The HCW prior requires the shape parameter

to be larger than one less the maximum clique size, and δ = p = 25 provides

a default choice when the graph is unknown; we included δ = 10 to yield less

shrinkage toward Ip. For the HCWG(10) choice, we modified the prior on π(G)

to place no probability on graphs containing cliques with |C| > 10. As a compar-

ison we also considered an analysis with dense correlation matrix by using the

flat prior π(R) ∝ I(R ∈ R), as well as assuming independence by fixing R = Ip.

Details regarding the choice of tuning parameters, MCMC specifications, and

computational time can be found in the appendix.

To compare methods we estimated the risk (average loss) for four quantities

of interest: the location parameters, scale parameters, correlation matrix, and

graph structure. We used sum of squared error for the locations µ and the

scales σ. For the correlation matrix, we employed the log-likelihood loss function

L(R̂,R) = tr{R̂R−1} − log |R̂R−1| − p. To evaluate the accuracy of graph

recovery, we considered the total number of errors, the sum of false positives

(edges included in G not in the true graph G̃) and false negatives (edges excluded

from G that are in G̃), averaged across iterations in the posterior sample.

Full details are available in the Web Appendix (see Table S.1 and Figures

S.1 and S.2), but we provide a few general comments here. There is very little

difference in the estimation of the location parameters across the six different

choices for R; for the larger sample size the R = I choice is slightly worse. For

the scale parameters, HCIW(2) and HCIW(1) produce lower risk, and the flat

prior and HCW(25) are the worst performers. When estimating R, failing to

allow sparsity is a significant disadvantage. The flat prior leads to the highest

risk, followed by HCW(25) and then HCW(10).

Looking to graph estimation, the HCIW priors are able recover the graph

well, and the HCWG(δ) performs somewhat less favorably. This is especially true
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for HCW(25), which tends to have many more false positives than its competitors.

This appears to be related to the large amount of shrinkage of rjk associated

with large δ, as (correctly) excluding an edge may look similar to (incorrectly)

including it with rjk near zero. Using δ = 10 partly corrects this over-shrinkage

but requires restricting the support of G to graphs with maximal clique size less

than 10. We find estimating the more complex G̃C to be the most challenging

of the three graphs, especially for the smaller sample size. When N = 100,

we consistently underestimate the graph (around 6 false positives to 35 false

negatives) across all methods, and the average number of edges in the estimated

graph is 61 compared to 90 in the true graph. But in cases such as graph C where

we have a dense graph relative to a small sample, we prefer to err on the side

of overly sparse model (and the prior on G also encourages this); with N = 500

observations, the graph is well estimated. Overall, we determine that HCIWG(δ)

is the ideal hyper law to use in situations requiring sparse correlation estimation

with δ = 1 and δ = 2 performing similarly. In the copula context, using a sparse

correlation matrix also leads to more efficient estimation the parameters of the

marginal distributions.

6. Capital Asset Pricing Model Application

6.1. Data and model specification

The Capital Asset Pricing Model (CAPM) is widely used in finance to model

the expected excess return for a particular asset from the excess return of the

full market. For an introduction to the CAPM, see Fama and French (2004).

Gibbons (1982) provided a multivariate extension allowing multiple assets to be

jointly modeled. An additional consideration is that the normality assumption

underlying much of the CAPM theory is known to perform poorly in practice

due to the heavy tails exhibited in many financial data. Pitt, Chan and Kohn

(2006) consider a Gaussian copula with unique t-distributions as the marginal

distributions to jointly model the returns of a number of financial sectors. We

employ a similar model to demonstrate the use of our HCIW priors.

We applied the CAPM in a copula framework to data obtained from Kenneth

French’s data library website. The data we used considers monthly percentage

excess returns from January 1950 through December 1999 across 30 industry

profiles. The response yij (i = 1, . . . , 600; j = 1, . . . , 30) is the excess return for

industry j at time i, the difference between the return and the risk-free market

return (U.S. Treasury bills are used as a proxy for risk-free return). Marginally,
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yij is assumed to follow a t-distribution with νj degrees of freedom, location/mean

parameter of βjzi, and scale parameter σj . zi is the excess market return at

time i, the difference between the market return and the risk-free return, and the

parameter βj represents how sensitive the returns for industry j are to variability

in the market. As in the simulation study, we applied a Gaussian copula to

introduce dependence across the marginal t-distributions.

This model has a couple of important advantages relative to competitors.

By using a copula with t marginals, we accommodate the heavy-tailed nature

of the data without sacrificing the ability to jointly model the industries. Also,

by using a copula versus a multivariate t-distribution, we have separate degrees

of freedom for each industry, allowing some industries to be more likely than

others to exhibit extreme departures from the mean. By incorporating a sparse

structure for R−1, ejk = 0 implies condition independence of εij and εik, and

consequently, the transformations Yij and Yik.

We compared a number of models for the data, considering combinations of

two choices for the joint distribution and three for the dependence model. We fit

the data using the copula model, as well as a multivariate normal model (MVN)

with E(Yij) = ziβj and Var(Yi) = Σ. For each, we used an assumption of in-

dependence (R is diagonal unit matrix for the copula model; Σ is diagonal for

MVN), an assumption of a complete graph (π(R) ∝ I(R ∈ R) for the copula;

Σ ∼ IWp(2, Ip) for MVN), and an assumption of a sparse dependence param-

eter. For the sparse-MVN model, we used Σ ∼ π(G)HIWG(2, Ip), and for the

sparse-copula model, we considered three prior choices for R: π(G)HCIWG(2),

π(G)HCIWG(1), and π?(G)HCWG(10), where π?(G) is the restriction of the

prior to decomposable graphs with a maximum clique size of 10. We used

βj ∼ N(0, 102), σ2j ∼ InvGamma(0.1, 0.1), and νj ∼ Unif(2,30) as (relatively

uninformative) prior distributions.

With the increase in p from 25 to 30, the number of potential edges in the

graph increases from 300 to J = 435. This exacerbates the difficulty in graph

selection, and the algorithm from Section 3.2 that uniformly selects candidate

edges struggles to mix well. To that end, we replace Step 1 in Table 2 with an

adaptive sampler that proposes edges relative to the uncertainty of its inclusion

in G. We provide details about this adaptive algorithm in the Web Appendix.

This adaptive strategy is used for both the copula and MVN sparse models.

6.2. Modeling results

To compare the model choices we used the deviance information criteria
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Table 3. Model comparison statistics for finance data, ordered by increasing prediction
error. Prediction accuracy is the sum of log-scores (log predictive density) over the
Ntest = 72 prediction months.

Model Specification Prediction Accuracy Model Fit Statistics
Joint Dist. Dependence Log-Score Dev pD dic

Copula Sparse - HCIWG(2) −6,738 88,300 354 89,008
Copula Sparse - HCIWG(1) −6,744 88,305 350 89,005
Copula Complete Graph −6,767 87,973 523 89,019
Copula Sparse - HCWG(10) −6,794 88,526 322 89,169
Copula Independence −6,968 92,753 78 92,910
MVN Complete Graph −7,153 88,829 480 89,790
MVN Sparse −7,248 89,952 183 90,317
MVN Independence −7,369 93,637 60 93,758

(dic; Spiegelhalter et al. (2002)) applied to the fitted data and a measure of

out of sample predictive accuracy using data from the next five years (January

2000 to December 2005; Ntest = 72). At each i in the test set, we measured the

log-score of ỹi by the log predictive density log f(ỹi) averaged over the posterior

sample (Gneiting and Raftery (2007); Zhou et al. (2015)). We let the predictive

accuracy be the sum over the log-scores for the 72 months in the test data, with

larger (less negative) values indicating better prediction. The dic is the sum of

the model deviance Dev at the posterior means of the parameters and twice pD
which measures model complexity; smaller dic are favored. Table 3 contains dic

statistics and the predictive accuracy for each model.

Of the models considered the copula model performs best in terms of both

fit to the modeled data and out-of-sample prediction. Applying the copula model

with HCIWG(2) has the best predictive performance, although HCIWG(1) has

a slightly lower dic. Ultimately, there is little practical difference between using

δ = 1 or δ = 2. Assuming the independence across industries is clearly invalid,

whereas using a full correlation matrix is somewhat competitive. None of the

multivariate normal models perform well.

It is initially surprising that the sparse MVN model is outperformed by the

MVN with complete graph. Here, the MVN model tends to favor highly sparse

covariances matrices; the posterior mean of |E| is 55.0 with a 95% credible interval

of (52, 58) out of a potential J = 435. Conversely, the HCIWG(2) copula model

favors graphs with an average of 167 edges (150, 187). While it is perhaps

counter-intuitive that the posterior graphs would differ so greatly, the copula

model looks for correlations in εij = Φ−1(Fij(Yij)) which do not necessarily
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Figure 2. From the copula-HCIW(2) model, heat maps of (a) the posterior edge inclusion
probability P{(j, k) ∈ E |y}, (b) the absolute value of the posterior marginal correlation
rjk, and (c) the absolute value of the posterior partial correlations, R−1 rescaled to unit
diagonal.

match the correlation in the untransformed Yijs.

We now explore the estimated dependence and correlation matrix under the

best-predicting model: the Gaussian copula with HCIWG(2) correlation prior.

See the Web Appendix for conclusions regarding the marginal distribution pa-

rameters. Figure 2 contains heat maps of the posterior edge inclusion proba-

bilities, the marginal correlations, and the partial correlations. It is clear from

Figure 2(a) that there are a number of industries that exhibit large connectivity

to other industries. For example, textiles (10), steel (12), fabricated products

(13), oil (19), business equipment (23), and wholesale (26) each average more

than 20 edges. Sectors with fewer than 5 edges on average (tobacco products (3),

electrical equipment (14), aircraft, ships, and railroad equipment (16), coal (18))

are less dependent on other industries. Figure 2(c) contains the partial correla-

tions which respect the zero pattern from the graph G showing that we are able

to use relatively few parameters to describe the dependence across industries.

7. Discussion

As one reviewer noted, a sparse prior for Σ such as HIW will automatically

induce a sparse distribution on the correlation matrix, so we wish to further

clarify why our approach of directly specifying a distribution for R is preferable.

First, using an induced distribution may obscure the properties of R, whereas we

can easily interpret both the clique-marginal distributions and the marginals for

the non-zero rij . As we show in Theorem 2, properties of the induced marginal

distributions do not necessarily follow from the covariance prior.
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Most importantly, we seek to develop an “off the shelf” method that can be

applied across many situations constrained by R. Specialized parameter expan-

sion algorithms with specific choices for π(R) have been considered by Talhouk,

Doucet and Murphy (2012) for probit regression, and by Hoff (2007) and Dobra

and Lenkoski (2011) for copula models with only discrete outcomes, but these

approaches cannot be applied in other contexts. Developing a parameter expan-

sion procedure specific for each new problem is not generally easy, and the usual

intuition is not always a trusty guide (as shown by the discrepancy in the sampler

of Talhouk, Doucet and Murphy (2012)). While we demonstrate our methodol-

ogy in the Gaussian copula model, our approach and algorithms are general and

do not require a particular choice for the data likelihood p(y|R); see equations

(3.1) and (3.2).

One of the most important difficulties that remains is computational. Due

to the inability to marginalize over R, the MCMC algorithm we implement is

of the reversible jump type. A number of authors have questioned the abil-

ity of RJ-MCMC to deal with problems of moderate dimension (e.g., Scott and

Carvalho (2008)). While diagnostic checks indicate adequate computational per-

formance in our examples, our methodology may struggle in terms of compu-

tational time and mixing as p continues to grow. Further work improving the

proposed algorithm and/or developing new prior distributions that yield faster

algorithms is needed. The introduction of an adaptive step for proposing graph

edges was effective in improving mixing in the data example, and there may be

potential for additional improvements using other techniques such as tempering,

parallel chains, and/or junction trees in the edge proposal distribution (Green

and Thomas (2013)). Despite these challenges our HCIW priors are shown to

have good performance in the situation of small-to-moderate p whereas previous

Bayesian attempts have tended to consider cases with smaller dimension (p ≤ 12;

Barnard, McCulloch and Meng (2000); Pitt, Chan and Kohn (2006); Talhouk,

Doucet and Murphy (2012); Gaskins, Daniels and Marcus (2014)).

By using the graphical model framework, our HCIW priors are only defined

for decomposable models. However, as most quantities of interest involve averag-

ing over G in addition to R, our methodology is a form of Bayesian model aver-

aging. Giudici and Green (1999) showed the average over decomposable graphs

can reliably estimate a covariance matrix whose true graph is non-decomposable,

and Fitch, Jones and Massam (2014) demonstrated that the top decomposable

models are comparable, and sometimes superior, to the top non-decomposable

models. Hence, our restriction to decomposable G is not a significant drawback.
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Supplementary Materials

An online Web Appendix contains proofs for the results from Section 2 and

additional computational details from the simulation study and data application.
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