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Section S1 contains omitted proofs of the theorems in Sections 2 and 3.1, whereas Section S2

provides practical guidelines for choosing finite sample approximations from those derived in

the near unit-root and the general near unit-root models.

S1 Proofs of the Theorems in Sections 2 and 3.1

Before proceeding with the proofs, we would like to first point out the

key difference between our asymptotic framework and those in Chan and

Wei (1987), Phillips (1987) and Phillips and Magdalinos (2007). Let ρn =

1 − b/nβ, with 0 < β ≤ 1 and 0 < b < ∞, and y∗t = yt − nβµ/b. Then,
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model (1.1) can be expressed as

y∗t = ρny
∗
t−1 + ηt, (S1.1)

which is an AR(1) model driven by a zero-mean white-noise process {ηt}.

While the asymptotic behavior of the LSE under (S1.1) has been exten-

sively studied by the aforementioned authors, their results rely heavily on

the initial condition y∗0 = Op(1), which is obviously violated by our initial

condition y0 = 0, leading to

y∗0 = −nβµ/b. (S1.2)

With the initial condition like (S1.2), most existing results established for

the LSE under model (S1.1) are no longer applicable. As shown for the rest

of this section, our asymptotic analysis is similar to that adopted by Ing

and Yang (2014). However, substantial efforts are needed to deal with the

critical behavior of the EV and LS predictors exhibited in the near unit-root

region.

Proof of Theorem 2.1. We first prove (2.6). By exp(−b)
∑t

j=1 εj ≤ yt =∑t−1
j=0 ρ

j
nεt−j ≤

∑t
j=1 εj and (19) of Ing and Yang (2014), which shows that

for any q > 0,

E

{
n1+1/α min

2≤t≤n

(
εt/

t−1∑
j=1

εj

)}q

<∞, (S1.1)



S1. PROOFS OF THE THEOREMS IN SECTIONS 2 AND 3.1

the desired conclusion (2.6) follows. The proof of (2.7) is similar to that of

(7) of Ing and Yang (2014). The details are omitted. Finally, (2.8) follows

directly from (2.6) and (2.7). �

Proof of Theorem 3.1. Equation (3.1) can be shown by an argument

similar to that used to prove (2.6). We thus skip the details. For (3.2), it

suffices to show that

n1/α+β min
νn≤i≤n

(εi/yi−1)− n1/α+β min
2≤i≤n

(εi/yi−1) = op(1) (S1.2)

and for any t > 0,

lim
n→∞

P{(c/α)1/α(µ/b)n1/α+β min
νn≤i≤n

(εi/yi−1) > t} = exp{−tα}, (S1.3)

where vn � nθ for some β < θ < 1.

To show (S1.2), note first that

n1/α+β min
vn≤i≤n

(εi/yi−1)− n1/α+β min
2≤i≤n

(εi/yi−1) ≤ n1/α+β( min
νn≤i≤n

εi/yi−1)IAn ,

where An = {minνn≤i≤n εi/yi−1 > min2≤i≤νn εi/yi−1}. Let qn = s
1/2
n nβ/νβn

in which sn satisfies snν
1/α
n /n1/α = o(1) and sn →∞. Then, by (3.1), (1.2),

the weak law of large number and Chebyshev’s inequality, one has for any
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ε > 0,

P (n1/α+β( min
νn≤i≤n

εi/yi−1)IAn > ε) ≤ P (An)

≤ P ( min
νn≤i≤n

εi/yi−1 > s−1/2n q−1n ν−β−(1/α)n ) + P ( max
2≤i≤νn

yi−1 ≥ qnν
β
n)

+ P ( min
2≤i≤νn

εi < s−1/2n ν−1/αn )

= O

(
s
1/2
n qnν

1/α+β
n

n1/α+β

)
+ o(1) + 1−

(
1− C

νns
α/2
n

)νn
= o(1),

where C is some positive constant independent of n. Thus, (S1.2) is proved.

To show (S1.3), one can use E(εq11 ) <∞, for some q1 > 2/β, and Lemma

2 of Wei (1987) to obtain

max
νn≤i≤n

|yi−1 − Eyi−1| = Op(n
1/q1+β/2). (S1.4)

In addition, there exists c1 > 0 such that for all νn ≤ i ≤ n,

Eyi−1 = µnβ(1− ρi)/b ≥ c1n
β, (S1.5)

By (S1.4), (S1.5), (1.2) and 1/q1 + β/2 < β, it holds that

lim
n→∞

P{(c/α)1/α(µ/b)n1/α+β min
νn≤i≤n

(εi/yi−1) > t}

= lim
n→∞

P

{
(µ/b)(c/α)1/αn1/α+β min

νn≤i≤n

(
εi

µnβ(1− ρi)/b

)
> t

}
= exp{−tα},

which completes the proof of (S1.3). Finally, (3.3) is a immediate conse-

quence of (3.1) and (3.2). �
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Proofs of Theorems 2.2 and 3.2. Define

an,i =

(
1− ρin
1− ρn

− 1

(n− 1)

n−1∑
j=1

1− ρj−1n

1− ρn

)
µ,

and ξn,i =
∑i−1

j=0 ρ
jηi−j − (n− 1)−1

∑n−1
i=1

∑i−1
j=0 ρ

jηi−j. Then

ρ̃n − ρn =
n∑
i=2

(yi−1 − ȳ)ηi/
n∑
i=2

(yi−1 − ȳ)2

=
n∑
i=2

(an,i−1 + ξn,i−1)ηi/
n∑
i=2

(an,i−1 + ξn,i−1)
2.

(S1.6)

Straightforward calculations yield for 0 < β ≤ 1,

lim
n→∞

1

n3β

n∑
i=2

a2n,i−1 =
µ2

2b3
I(0 < β < 1) + µ2(I1(b)− I2(b))I(β = 1), (S1.7)

and

n∑
i=2

Eξ2n,i−1 = σ2(2b)−1n1+β(1− exp(−bn1−β))(1 + o(1)). (S1.8)

In addition, for 0 < β < 1, we have

1

n1+β

n∑
i=2

ξ2n,i−1 −
1

n1+β

n∑
i=2

(
i−1∑
j=0

ρjηi−j)
2 = op(1), (S1.9)

and

1

n1+β

n∑
i=2

(
i−1∑
j=0

ρjηi−j)
2 p−→ σ2

2b
. (S1.10)

Moreover, for β = 1/2,

1

n3/2

n∑
i=2

(an,i−1 + ξn,i−1)
2 =

1

n3/2

n∑
i=2

(a2n,i−1 + ξ2n,i−1) + op(1)

=
σ2

2b
+
µ2

2b3
+ op(1).

(S1.11)
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By (S1.6)–(S1.11) and the martingale central limit theorem (see, e.g., The-

orem 3.2 of Phillips and Magdalinos (2007)), (2.10) and (3.4) follow.

Set kn = n3 for β = 1. By (2.11), Eεs1 < ∞ for some s > 10, and

an argument similar to that used to prove Lemma 2 of Yu, Lin and Cheng

(2012), we have E|
√
kn(ρ̃n−ρn)|γ <∞ for some γ > 2, and hence {kn(ρ̃n−

ρn)2} is uniformly integrable. This together with (2.10) (resp. (3.4) ) yields

(2.12) (resp. (35) ). �

Proofs of Theorems 2.3 and 3.3. It follows from (2.4) and E[(1−ρn)ȳ−

µ+ zn]2 = E[(n− 1)−1
∑n

j=2 ηj]
2 = σ2/(n− 1) that

MSPEA − σ2 = σ2/(n− 1) + E{(ρ̂n − ρn)(yn − ȳ)}2

+ 2E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]}
(S1.12)

To deal with the second term on the right-hand side of (S1.12), we express

yn − ȳ as

yn − ȳ =

(
n−1∑
j=0

ρj − 1

n− 1

n−1∑
i=1

i−1∑
j=0

ρj

)
µ+

(
n−1∑
j=0

ρjηn−j −
1

n− 1

n−1∑
i=1

i−1∑
j=0

ρjηi−j

)

:= X1,n +X2,n.

(S1.13)

Some algebraic manipulations give

lim
n→∞

X2
1,n

n4β−2 =
µ2

b4
I(0 < β < 1) + µ2L3(b)I(β = 1) (S1.14)
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and

EX2
2,n =

σ2

2b
nβ(1 + o(1))I(0 < β < 1) +O(n)I(β = 1). (S1.15)

Combining (S1.13)–(S1.15) yields for 2/3 < β ≤ 1,

(yn − ȳ)2

n4β−2
p−→ µ2

b4
I(2/3 < β < 1) + µ2L3(b)I(β = 1), (S1.16)

and for 0 < β ≤ 2/3,

lim
n→∞

n−βE(yn − ȳ)2 =
σ2

2b
I(0 < β < 2/3) +

µ2

b4
I(β = 2/3). (S1.17)

By the moment conditions on ε1 and a straightforward calculation, it follows

that for 0 < β ≤ 2/3 there exists 2/3 < ζ < 1 for which

n−β/2(yn − ȳ) = n−β/2(X1,n +
nζ−1∑
j=0

ρjηn−j) + r1,n,

where r1,n satisfies E|r1,n|q1 = o(1) for some q1 > 2, and

lim
n→∞

E[n−β(X1,n +
nζ−1∑
j=0

ρjηn−j)
2] = lim

n→∞
E[n−β(yn − ȳ)2].

In addition, by (3.1) and an argument similar to that used to prove (S1.2),

we obtain

nβ+1/α(ρ̂n − ρn) = nβ+1/α
(

min
2≤i≤n−nζ

εi
yi−1

)
+ r2,n,

where r2,n satisfies E|r2,n|q = o(1) for any q > 0, and

lim
n→∞

E
[
nβ+1/α

(
min

2≤i≤n−nζ

εi
yi−1

)]2
= lim

n→∞
E[nβ+1/α(ρ̂n − ρn)]2.
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These facts and the independence between n−β/2
∑nζ−1

j=0 ρjηn−j and nβ+1/α(min2≤i≤n−nζ εi/yi−1)

yield for 0 < β ≤ 2/3

lim
n→∞

E{n−β(yn − ȳ)2[nβ+1/α(ρ̂n − ρn)]2}

= lim
n→∞

E{n−β(yn − ȳ)2} lim
n→∞

E{[nβ+1/α(ρ̂n − ρn)]2}.
(S1.18)

Now, by (S1.16)–(S1.18), (2.6), (2.8), (3.1), (3.3) and the moment condi-

tions imposed on ε1, it holds that for 2/3 < β ≤ 1,

lim
n→∞

E[n−β+1/α+1(ρ̂n − ρn)(yn − ȳ)]2

= Γ
(α + 2

α

)(α
c

)2/α
b−2I(2/3 < β < 1)

+ Γ
(α + 2

α

)( α

cM
′
α,b

)2/α
L3(b)I(β = 1),

(S1.19)

and for 0 < β ≤ 2/3,

lim
n→∞

E[n1/α+β/2(ρ̂n − ρn)(yn − ȳ)]2

= Γ
(α + 2

α

)(α
c

)2/α{σ2b

2µ2
I(0 < β ≤ 2/3) +

1

b2
I(β = 2/3)

}
.

(S1.20)

To deal with the third term on the right-hand side of (S1.12), we obtain

from an argument similar to that used to prove (2.9) in the supplementary

document for Ing and Yang (2014) that for 2/3 < β ≤ 1,

E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]}

= o(max{n−1, n2β−2−2/α}),
(S1.21)
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and for 0 < β ≤ 2/3,

E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]}

= o(max{n−1, n−β−2/α}).
(S1.22)

Consequently, the desired conclusions (2.13) and (3.6)–(3.8) are ensured by

(S1.12), and (S1.19)–(S1.22). �

Proofs of Theorems 2.4 and 3.4. It follows from (2.5) that

E(yn+1 − ỹn+1)
2 − σ2 =

σ2

n− 1
+ E{(yn − ȳ)(ρ̃n − ρn)}2

+
2

n− 1
E{(

n∑
i=2

ηi)(yn − ȳ)(ρ̃n − ρn)}.
(S1.23)

By (S1.7)–(S1.11), Theorems 2.2 and 3.2, (2.11), Eεs1 <∞ for some s > 12,

and an argument similar to that used to prove Lemma 2 of Yu, Lin and

Cheng (2012), we obtain, after some tedious algebraic manipulations,

E{(
n∑
i=2

ηi)(yn − ȳ)(ρ̃n − ρn)} = o(1), (S1.24)

and

lim
n→∞

n

σ2
E{(yn − ȳ)(ρ̃n − ρn)}2 =



1 0 < β < 1/2 ,

b2σ2

µ2+b2σ2 β = 1/2 ,

0 1/2 < β < 1 ,

L3(b)
I1(b)−I2(b) β = 1.

(S1.25)

Consequently, Theorems 2.4 and 3.4 are guaranteed by (S1.23)–(S1.25).
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S2 The implementation of finite sample approxima-

tions

S2.1 Rules of thumb developed from Tables 1–6

With the help of Tables 1–3 (Tables 4–6), we offer a simple rule for choosing

a better approximation of nmin{1,2/α}(MSPEA− σ2) (n(MSPEB − σ2)) from

R
(2)
A and R

(3)
A (R

(2)
B and R

(3)
B ) when 100 ≤ n ≤ 1000, 1 ≤ n(1−ρ) = b ≤ 140

and 1.5 ≤ α ≤ 4. According to Tables 1–3, we first introduce Rule I for

approximating nmin{1,2/α}(MSPEA − σ2):

Rule I.

1. Choose R
(3)
A if 1.5 ≤ α < 2.

2. Choose R
(2)
A if 2 ≤ α ≤ 4 and 1 ≤ b ≤ 5.

3. Choose R
(3)
A if 2 ≤ α ≤ 4 and 5 < b ≤ 140.

Although there are a few cases where Rule I leads to a P
(i)
A (defined in

Section 3.2) slightly smaller than max1≤i≤3 P
(i)
A , the rule has the advan-

tage of easy implementation, which is practically appealing. In the same

spirit, we propose using Rule II (according to Tables 4–6) for approximating

n(MSPEB − σ2):
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Rule II.

1. Choose R
(2)
B if 1.5 ≤ α ≤ 2 and 1 ≤ b ≤ 12.5.

2. Choose R
(3)
B if 1.5 ≤ α ≤ 2 and 12.5 < b ≤ 140.

3. Choose R
(2)
B if 2 < α ≤ 4 and 1 ≤ b ≤ 25.

4. choose R
(3)
B if 2 < α ≤ 4 and 25 < b ≤ 140.

Note that Rules I and II can be further refined by checking a more dense

grid of n, b and α, which is not pursued here. In Section B.2, we provide

reliable estimators, ρ̂∗n, b̂∗n, α̂∗n, ĉ∗n, µ̂∗n and σ̂2∗
n , of ρ, b, α, c, µ and σ2.

With these estimators, Rules I and II can be implemented in practice via

replacing b, α, R
(i)
A , i = 2, 3 and R

(i)
B , i = 2, 3 therein by b̂∗n, α̂∗n, R̂

(i)
A , i = 2, 3

and R̂
(i)
B , i = 2, 3, where

R̂
(2)
A =


Γ
(
α̂∗n+2
α̂∗n

)(
α̂∗n

ĉ∗nM̂
′
α̂∗n,b̂∗n

)2/α̂∗n

L3(b̂
∗
n) + σ̂∗

2

n I(α̂∗n = 2) α̂∗n ≥ 2 ,

σ̂∗
2

n α̂∗n < 2,

(S2.26)

in which M̂
′

α̂∗n,b̂
∗
n

is M
′

α,b with α and b replaced by α̂∗n and b̂∗n, respectively,

R̂
(3)
A =


R̂∗1 + R̂∗2 + σ̂∗

2
n

n1−2/α̂∗n
α̂∗n ≥ 2 ,

n1−2/α̂∗n(R̂∗1 + R̂∗2) + σ̂∗
2

n α̂∗n < 2,

(S2.27)
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with

R̂∗1 = Γ((α̂∗n + 2)/α̂∗n)(α̂∗n/ĉ
∗
n)2/α̂

∗
n [σ̂∗

2

n (1− ρ̂∗n)]/2µ̂∗
2

n ,

and

R̂∗2 = Γ((α̂∗n + 2)/α̂∗n)(α̂∗n/ĉ
∗
n)2/α̂

∗
n [n(1− ρ̂∗n)]−2,

R̂
(2)
B =

{
1 +

L3(b̂
∗
n)

I1(b̂∗n)− I2(b̂∗n)

}
σ̂∗

2

n , (S2.28)

and

R̂
(3)
B =

{
1 +

b̂∗
2

n σ̂
∗2
n

nµ̂∗2n + b̂∗2n σ̂
∗2
n

}
σ̂∗

2

n . (S2.29)

Estimation of unknown parameters in Rules I and II

In this section, we address the problem of estimating the unknown param-

eters in Rules I and II. Suppose first that α > 2 or α ≤ 2 is known a priori.

Then, according to Theorems 1 and 2 and Remark 3, it is reasonable to

estimate ρ by

ρ̂∗n =


ρ̂n α ≤ 2 ,

ρ̃n α > 2.

(S2.30)

By virtue of (S2.30), it is natural to estimate µ and σ2 by µ̂∗n = n−1
∑n−1

t=1 (yt+1−

ρ̂∗nyt) and σ̂∗
2

n = n−1
∑n−1

t=1 (yt+1− µ̂∗n− ρ̂∗nyt)2. In addition, b = n(1− ρ) can

be consistently estimated by b̂∗n = n(1 − ρ̂∗n), in view of Theorems 2.1 and
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2.2. The performance of b̂∗n is demonstrated via the empirical estimate,

Ê

(
b̂∗n − b
b

)
=

1

5000

5000∑
i=1

b̂∗n(i)− b
b

,

of the relative bias E[(b̂∗n−b)/b], based on the data generated from 5000 sim-

ulation runs of model (1.1) with Beta(α,1) error, where ρ ∈ {0.86, 0.9, 0.95, 0.975, 0.99},

α ∈ {1, 1.5, 2, 2.5, 3.5, 4}, and b̂∗n(i) is b̂∗n obtained in the ith simulation.

Since our study is meant to be illustrative rather than exhaustive, we only

focus on the sample size n = 10000. The results are summarized in Table 7.

It is shown in Table 7 that all values of Ê[(b̂∗n − b)/b] are quite close to 0,

and |Ê[(b̂∗n − b)/b]| is clearly smaller in the case of α < 2 than in the case

of α ≥ 2. This latter feature coincides with the fact that the convergence

rate of ρ̂n in the case of α < 2 is faster than ρ̃n.

Estimating c and α is much more involved than estimating b. While it

seems feasible to perform kernel density estimation based on the AR residu-

als, ε̂i = yi− ρ̂∗nyi−1, to estimate c and α, the usual kernel estimators can be

seriously biased when 0 < α ≤ 1 because the corresponding density function

is nonzero or even has a pole at the origin; see Marron and Ruppert (1994).

Indeed, Marron and Ruppert (1994) suggested some sophisticated kernel

estimation algorithms to reduce the boundary bias. However, consistency

of the resulting estimators of c and α still seems difficult to establish when

only (1.2) is assumed. In this connection, we also mention that a similar
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Table 1: The values of Ê[(b̂∗n − b)/b], with n = 10000, under model (1.1) with Beta(α, 1)

errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002

1.5 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003

2 -0.014 -0.013 -0.013 -0.013 -0.013

2.5 0.001 0.004 0.003 0.004 0.004

3 0.003 0.004 0.004 0.003 0.003

4 0.001 0.002 0.005 0.004 0.002

Table 2: The values of Ê(α̂∗
n(m)−α), with n = 10000, under model (1.1) with Beta(α, 1)

errors.

ρ(b)

α m 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 250 0.022 0.023 0.018 0.022 0.023

1.5 250 -0.013 -0.009 -0.006 -0.007 -0.009

2 500 -0.040 -0.040 -0.040 -0.040 -0.043

2.5 250 0.068 0.107 0.095 0.109 0.099

3 250 0.098 0.101 0.088 0.097 0.095

4 250 0.097 0.101 0.148 0.128 0.114
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difficulty arises in constructing a confidence interval for ρ based on (1.5),

in which α and c appear in the normalizing constant and α also appears in

the limit. To bypass this difficulty, Datta and McCormick (1995) proposed

an asymptotically pivotal quantity based on ρ̂n and adopted a bootstrap

procedure to consistently estimate the limit distribution of the proposed

pivotal quantity.

Here, we take a somewhat nonstandard approach to estimate α and c.

Note that (1.2) yields

lim
n→∞

P (n1/αε(1) > x) = exp(−(c/α)xα),

where ε(j) is the jth order statistic of {ε1, . . . , εn}, and hence n1/αε(1) has

the limiting Weibull density,

f(1)(x) =
α

λα
xα−1exp(−(x/λ)α), (S2.31)

with shape parameter α and scale parameter λ = (α/c)1/α. This motivates

the following procedure for estimating α and c:

1. Produce the AR residuals: ε̂i+1 = yi+1 − ρ̂∗nyi, i = 1, . . . , n− 1.

2. Divide {1, . . . , n} intom subgroups, {1, . . . , n1}, . . . , {nm−1+1, . . . , nm},

where ni = b(n−1)/mc or b(n−1)/mc+1 with bac denoting the largest

integer ≤ a.
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3. Let ε̂(1)(j) denote the smallest positive value among {ε̂nj−1+1, . . . , ε̂nj}, j =

1, . . . ,m.

4. Use the Weibull density (S2.31) and n
1/α
1 ε̂(1)(1), . . . , n

1/α
m ε̂(1)(m) to con-

struct the maximum likelihood estimate (α̂∗n(m), λ̂∗n(m)) of (α, λ).

5. Estimate c by ĉ∗n(m) = α̂∗n(m)/(λ̂∗n(m))α̂
∗
n(m).

Under the stationary model (1.1), Hsiao, Huang, and Ing (2017) established

the consistency of (α̂n(m), ĉn(m)) regardless of whether α ≤ 2 or α >

2, where (α̂n(m), ĉn(m)) is (α̂∗n(m), ĉ∗n(m)) with ε̂i+1 replaced by the EV

residual yi+1 − ρ̂nyi, m → ∞ and n/m → ∞. This result enables them

to asymptotically correctly identify the better estimator between ρ̂n and

ρ̃n in a data-driven fashion. The consistency of (α̂∗n(m), ĉ∗n(m)) under the

near unit-root model (1.7) can also be established by an argument similar

to that used in Hsiao, Huang and Ing (2017). The details, however, are not

pursued here. In Table 8, the empirical estimate,

Ê(α̂∗n(m)− α) =
1

5000

5000∑
i=1

(α̂∗n,i(m)− α),

of the bias of α̂∗n(m), E(α̂∗n(m)− α), is presented under the same scenarios

as those in Table 7, where α̂∗n,i(m) is α̂∗n(m) obtained in the ith simulation.

The tuning parameter m is set to 250 and 500 in our study. However, only

the smaller one between Ê(α̂∗n(250)− α) and Ê(α̂∗n(500)− α) is reported in
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Table 8. It remains for future research to choose m such that the resultant

α̂∗n(m) has a better finite sample performance. With the same m as in

Table 8, we present the empirical estimate, Ê(ĉ∗n(m) − c), of E(ĉ∗n(m) − c)

in Table 9. Table 8 reveals that α̂∗n(m) appears to be a reliable estimate

of α because all values of |Ê(α̂∗n(m) − α)| are small. On the other hand,

we notice that |Ê(α̂∗n(m) − α)| is larger in α > 1.5 than α = 1.5, which

may be attributed to a slower convergence rate of ρ̂∗n in the former case.

In addition, perhaps due to a positive value of the density function at the

origin, the performance of α̂∗n(m) in the case of α = 1 also looks inferior

to that in the case of α = 1.5, although ρ̂∗n in the former case has a faster

convergence rate.

Table 9 shows that the performance of ĉ∗n(m) is in general unsatisfactory.

In particular, all values of Ê(ĉ∗n(m) − c) are positive and are considerably

larger than 0 for α > 2. Taking a closer look at

ĉ∗n(m) =
α̂∗n(m)

m−1
∑m

i=1 ni[ε̂(1)(i)]
α̂∗n(m)

, (S2.32)

we found that a non-negligible portion of {ni[ε̂(1)(i)]α̂
∗
n(m)} concentrates

near 0. As a result, the denominator on the right-hand side of (S2.32)

tends to underestimate λα = α/c, and hence ĉ∗n(m) tends to overestimate c,

as observed in Table 9. To remedy this difficulty, we suggest an alternative,

ĉ∗n(m, r), which is ĉ∗n(m) with the denominator replaced by the sample mean
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Table 3: The values of Ê(ĉ∗n(m)− c), with n = 10000 and the same m as those in Table

8, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 0.152 0.152 0.151 0.160 0.146

1.5 0.033 0.059 0.049 0.071 0.055

2 0.097 0.109 0.111 0.105 0.077

2.5 0.484 0.596 0.698 0.703 0.539

3 0.517 0.451 0.388 0.473 0.455

4 0.591 0.578 0.565 0.560 0.551

from the highest (1− r)% of the elements of {ni[ε̂(1)(i)]α̂
∗
n(m), i = 1, . . .m}.

Under the same simulation setting as Table 9, we compute the empirical

estimate, Ê(ĉ∗n(m, r) − c), of E(ĉ∗n(m, r) − c), and report the smallest one

among Ê(ĉ∗n(m, r)−c), r = 5, 10, 15, 20, 25, 30; see Table 10. Table 10 shows

that all values of |E(ĉ∗n(m, r)−c)| are not distant from 0, and clearly smaller

than |Ê(ĉ∗n(m)− c)|.

We now return to the more practical situation where α > 2 or α ≤ 2 is

unknown. In this case, we suggest the following rule:

Rule III.

1. Judge α > 2 if α̂n(m)− ξ > 2,
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Table 4: The values of Ê(ĉ∗n(m, r)−c), with n = 10000 and the same m as those in Table

8, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α r 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 25 0.014 0.011 -0.006 0.006 0.014

1.5 5 -0.005 -0.013 -0.031 0.015 0.013

2 5 0.023 0.018 0.021 0.015 0.005

2.5 20 -0.023 0.082 0.093 0.133 0.062

3 15 0.077 0.069 0.021 0.066 0.060

4 15 -0.046 -0.023 0.117 0.050 0.088

Table 5: The values of F , with n = 10000, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000

2 0.978 0.984 0.980 0.982 0.986

2.5 0.922 0.930 0.938 0.926 0.908

3 1.000 0.996 0.998 1.000 1.000

4 1.000 1.000 1.000 1.000 1.000
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2. Judge α ≤ 2 if α̂n(m)− ξ ≤ 2,

where α̂n(m) is defined previously and ξ is a prescribed small positive num-

ber. In Table 11, with the same scenarios as those in Table 7, we report

the percentage, F , of Rule III (with m = 500 and ξ = 0.14) making correct

judgements, where

F = ]({i : 1 ≤ i ≤ 5000, I(α̂n,i(500)− 0.14 > 2) = I(α > 2)})/5000,

n = 10000 and α̂n,i(500) denotes α̂n(500) obtained in the ith simulation.

Note that ξ = 0.14 is an approximation of 2σMLE/
√

500, where σ2
MLE is the

limiting variance of the MLE of α of the Weibull density (A.6) calculated

at α = 2 and λ = 1. As shown in Table 11, all values of F are near 1,

in particular when α < 2 or α > 2.5. This result implies that Rule III

provides a reliable decision about whether or not α > 2, thereby allowing

one to carry out the aforementioned estimates of α and c in practice.

Finally, we want to reiterate that this section is exploratory in nature,

and there remain a number of unsettled issues (e.g., the choices of m and

r in α̂∗n(m) and ĉ∗n(m, r)) worthy of further investigation. On the other

hand, our simulation study suggests that the notoriously difficult problem

of estimating α and c in the distribution of εt can be somewhat alleviated

through the proposed estimates, α̂∗n(m) and ĉ∗n(m, r), provided m and r are

properly given.


