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Abstract: Prediction has long been a vibrant topic in modern probability and statis-
tics. In addition to finding optimal forecasts and for model selection, it is argued
in this paper that the prediction principle can also be used to analyze critical phe-
nomena, in particular, in stationary and unstable time series. Although the notion
of nearly unstable models has become one of the important concepts in time series
econometrics, its role from a prediction perspective is less developed. Based on mo-
ment bounds for the extreme-value (EV) and least squares (LS) estimates, asymp-
totic expressions for the mean squared prediction errors (MSPE) of the EV and
LS predictors are obtained for a nearly unstable first-order autoregressive (AR(1))
model with positive error. These asymptotic expressions are further extended to
a general class of nearly unstable models, thereby allowing one to understand to
what degree such general models can be used to establish a link between stationary
and unstable models from a prediction perspective. As applications, we illustrate
the usefulness of these results in conducting finite sample approximations of the
MSPE for near unit-root time series.

Key words and phrases: Extreme-value predictor, least squares predictor, mean
squared prediction error, nearly unstable process, positive error, quantum leap.

1. Introduction

Prediction has long been a vibrant topic in probability and statistics. The
seminal monograph of Whittle| (1963) illustrates the importance of linear predic-
tion. There are several objectives in prediction studies. The first one is comput-
ing an optimal forecast, based on either finite or infinite samples. The second is
to use prediction methods for model selection. The third, less well known but
of no less importance, is to use the prediction principle to understand critical
phenomena, in particular, in stationary and unstable processes, see for example
Wei (1992). This goal is the main focus of the present paper.

To achieve this goal, moment bounds are indispensable tools. For example,
based on maximal moment inequalities for martingales, |Wei (1987, 1992) pro-
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vided an asymptotic expression for the accumulated prediction error (APE) of a
linear stochastic regression model, which in turn leads to the Fisher information
criterion (FIC) for model selection. [Findley and Wei (2002) and |Chan and Ing
(2011)) established inverse moment bounds for the Fisher information matrices
of time series models. These bounds enable one to calculate the mean squared
prediction errors (MSPE) of least squares predictors, and to derive the Akaike
information criterion (AIC;|Akaike (1974)) and the final prediction error criterion
(FPE; Akaike| (1969)) in a rigorous manner.

Studies of moment bounds and MSPE have mostly been focused on least
squares procedures, while less attention has been given to the so-called extreme-
value estimates (EVE), mainly used for heavy-tailed dependent data. Due to the
emergence of big data, dependent heavy-tailed phenomena have been reported
in various disciplines, see Finkenstadt and Rootzén| (2004) and the examples
therein. To appreciate the significance of such types of estimates, suppose that
the data are generated from the first-order autoregressive (AR(1)) model

Yt = pY—1+e, t=1,2,....n, (11)

where 0 < p < 1 and &;’s are i.i.d. positive noise with regularly varying density
fe(z) at zero,
lim Je(@)
z—0 cx@—1
A popular method for estimating p in (1.1]) is the least squares estimator (LSE),

b = Z?:Q(nyi—l - ?)(yf — )
Zi:Q(y’i—l - y)2 ’

where § = yp—1 = {1/(n— 1)} Z?;l yi- When the noise has a density like ,
LSE may not be efficient and other estimation procedures are required. When

=1, for some unknown o > 0 and ¢ > 0. (1.2)

(1.3)

the parametric form of the distribution of ; is known, a natural alternative
to pp is the maximum likelihood estimator (MLE) yet, as argued in Davis and
McCormick (1989) and Ing and Yang (2014), the MLE is in general analytically
difficult to work with. A remedy for this difficulty is to use the EVE, p,,, instead,

where Vit
pn=_ min =T, (1.4)
1<i<n—1

Here p,, is the MLE when &; has an exponential distribution or is uniformly
distributed over [0,a] for some a > 0; see Bell and Smith | (1986]). Under an
assumption more general than (1.2)), Bell and Smith | (1986) showed that p,, is
consistent. When holds, it is shown in Corollaries 2.4 and 2.5 of [Davis and
McCormick! (1989) that the limit distributions of p,, satisfies
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lim P{ <0M‘“(p)> e~ ) > t} — exp(—t%), (1.5)

n—00 [e%

where My (p) = E(Q_7Z, pe1—;)®. Equation reveals that when o < 2 (a >
2), the convergence rate of p,, (py) is faster than that of p, (py); see Section 2 of
Ing and Yang (2014) for a more comprehensive comparison of p,, and py,.

Model with e; satisfying has found broad applications in hydrol-
ogy, economics, finance, epidemiology, and quality control; see, among others,
Gaver and Lewis (1980)), Bell and Smith | (1986)), Lawrance and Lewis (1985]),
Davis and McCormick (1989), Smith| (1994)), Barndorff-Nielsen and Shephard:
(2001)), Nielsen and Shephard (2003)), |Sarlak (2008), and Ing and Yang (2014).
Bell and Smith | (1986)) analyzed two sets of pollution data from the Willamette
River, Oregon, using model with g4 following the uniform distribution or
exponential distribution; both are special cases of . Sarlak| (2008]) adopted
model with a Weibull error to analyze the annual streamflow data from the
Kizilirmak River in Turkey. On the other hand, model , focusing exclusively
on the stationary case 0 < p < 1, fails to accommodate data that may fluctuate
around an upward trend with variance increasing over time. Ing and Yang| (2014))
therefore generalized to p = 1, referred to as the unit-root model, and es-
tablished the limit distribution of in this case. In addition, they derived
asymptotic expressions for the mean squared prediction errors (MSPE) of the
EV predictor (fn+1) and the LS predictor (§n+1), MSPE4 = E(yn11 — Gnt1)?
and MSPEg = E(yn41 — Uns1)?, as

lim n™h2/9(MSPE, — 02) = R (v, p), lim n(MSPEp — 0?) = R%(p).

n—o0 n—oo
(1.6)
Here 0 < p < 1, RY(«, p) is a positive constant depending on «, p, and f., (:),
and R%(p) is a positive constant depending on p and o2 = Var(ey) > 0.

While suggests that n™™{1L2/*}(MSPE, — ¢2) and n(MSPEp — ¢2)
can be approximated by R9(«,p) and R%(p), such an approximation may be
unsatisfactory when p is near one; see Tables 1-6 of Section 3.2. This phenomenon
is reminiscent of the nearly unstable autoregressive model discussed in |Chan and
Wei (1987). By virtue of the order of the observed Fisher’s information number,
they argued that neither the stationary normal limit nor the unit-root limit
distributions would be a good approximation to the finite sample behavior of
the LSE for the situation where p is close to 1. Putting it differently, a main
difficulty in using when p is close to 1 may be due to the critical behaviors of
the limit distributions associated with the EVE and LSE. Such critical behaviors



142 CHAN, ING AND ZHANG

perpetuate in the performance of the corresponding predictors.
Consider a family of nearly unstable models

Yt = PnYt—1 t &1, (1.7)
in which p, = 1 —b/n, b is a positive constant, and &; is defined as in .
The notion of nearly unstable models is one of the most important concepts in
time series econometrics since the papers of |Chan and Wei (1987)) and [Phillips
(1987). It has found widespread applications in the analysis of time series data;
for more background information, see the survey articles of |(Chan| (2006 and
Chan| (2009). Using the moment bounds of the EVE and LSE for this class of
models, asymptotic expressions for the MSPEs of 41 and gn41 under (1.7),

lim n™{12/9}(MSPE 4 —02) = Ra(a,b), lim n(MSPEg—0?) = Rg(b), (1.8)

n—oo
are established, where R4 (a,b) is a positive constant depending on «,b, and
o2, and Rp(b) is a positive constant depending on b and o2. When data are
generated from model with p fixed but close to 1, Ra(a,b) and Rp(b),
with b = n(1 — p), can be used in place of R%(c,p) and R%(p) to approxi-
mate n™"{1-2/2}(MSPE 4 — 02) and n(MSPEg — ¢2). Since R4(a,n(1 — p)) and
Rp(n(1—p)) vary with n, they are referred to as the finite sample approximations.
It is shown in Section 3.2 that R4(a,n(1 — p)) and Rp(n(1 — p)) substantially
outperform RY(«, p) and R%(p) in situation where n(1—p) is small to moderate.
An intriguing feature of R%(p) is that it exhibits a jump behavior at the
point p = 1. According to (47) and (48) of Ing and Yang| (2014),
Ry(p) = {202’ for0=p <t (1.9)
402, for p=1.
This phenomenon is analogous to the “quantum jump” behavior observed in
physics, where the state of a system remains unchanged until a critical amount
of energy is accumulated. With the MSPE jump in , it is interesting to
explore if a connection between the stationary and the unstable regimes can be
established via a smooth transition mechanism such as . Thus, would the
relationship

202, b— o0,
RB(b)—>{ 7o aseTee (1.10)

402, asb—0,

remain valid? The lower half of (1.10)) does remain valid for b — 0, the upper
half fails to hold and Rp(b) converges to o2 as b — oo; see (2.15) and (2.17) of
Section 2.
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This discrepancy in the upper half of suggests that 1 — (b/n) may be
converging to unity too rapidly and as a result, Rp(b) does not attain the limiting
value R%(p) of the stationary case. In Section 3.1, we derive the limiting value,
A1(B,b), of n(MSPEp — 0?) for the general near unit-root model, with
pn=1—b/n,0< B <1andb>0. No single 3 directly connects A1(3,b) from
202 to 402, but our result reveals that a connection can be established through
two critical values of 3, 5 = 1/2 and = 1, that connect A1 (3,b) for the station-
ary and intermediate states, and for the intermediate and unit-root states, re-
spectively: limy_,o A1(1/2,b) = 202, limp_0 A1(1/2,b) = 02, limp_,00 A1(1,b) =
limy 0o Rp(b) = 02, and limy,_,o A1(1,b) = limy_,q Rg(b) = 402. This provides an
alternative finite sample approximation, A1(1/2,n'/?(1—p)), for n(MSPEp —o?)
when n(1 — p) stays far away from 0.

Although the EV predictor also encounters the MSPE jump at p =1 in the
sense that

lim R4 (0, ) # R4 (00 1), (L.11)
p—1
it can be eliminated by R4(«,b) which satisfies, for any 0 < o < o0,
lim RY(a, p) = lim Ra(a,b), R%(c,1) =lim Ra(a,b). (1.12)
p—1 b—oo b—0

To deepen our understanding of the EV predictor in the near unit-root re-
gion, we obtain an asymptotic expression for MSPE 4 in the general near unit-
root model. This result leads to an alternative finite sample approximation of
nmin{l2/e}(MSPE 4 — 02), which notably improves upon R4(a,n(1 — p)) when
n(1l — p) is relatively large.

Thus we focus on the analysis of near unit-root processes from a prediction
perspective, on the analysis of general near unit-root processes, and we illustrate
the importance of finite sample approximations of the MSPE derived from near
unit-root and general near unit-root processes.

The rest of the paper is organized as follows. In Section 2, asymptotic
properties of the EVE and LSE for the near unit-root case with p, =1 — (b/n)
are developed, which include the limit distributions and the moment bounds, and
on asymptotic expressions for MSPE 4 and MSPEg. In Section 3.1, we extend
the results to the case of p, = 1—(b/n”),0 < 8 < 1. In Section 3.2, we offer finite
sample approximations of n™{1L.2/a}(MSPE, — 02) and n(MSPEp — ¢2) based
on the asymptotic expressions obtained in Sections 2 and 3.1. The resultant
performance is illustrated using AR(1) models with Beta(ca, 1) errors, in which
the AR coefficient lies between 0.86 and 0.99 and 1.5 < o < 4 (see also Section
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3.2). We conclude in Section 4. With the help of Section 3.2, we further provide a
simple rule for choosing a finite sample approximation from those derived in the
near unit-root and the general near unit-root models. This result, together with
the proofs of the theorems in Sections 2 and 3.1, is deferred to the supplementary
document.

2. Near Unit-Root Models

In this section, we provide asymptotic expressions for the MSPEs of ¢,
and ¥,41 under (|1.7), where

Qn—&-l = ;&n + ﬁnym (2'1>
with fi, = (1/(n — 1)) 7 (yer1 — pnyt), and
Unt+1 = fin + Pn¥Yn- (2'2)

Here with z; = (1,y;)7

)

n—1 —lp-1
(i, pn) = (Z -’BJGC]T) > @y (2.3)
j=1 j=1
Let z, = (yn —y1)/(n — 1). Then the MSPE of 9,11 can be expressed as
. N _ _ 2
MSPEA = E(yn+1_yn+1)2 = 0'2+E [(pn - pn)(yn - y) + {(1 - pn)y — B+ Zn}] ’
(2.4)
where = E(e1). In addition, the MSPE of ¢, satisfies

n 2
MSPEp = E(Ynt1 — Jn41)? = 0 + E{n1 > 0+ (Yo — ) (n — pn>} , (2.5)
i=1

where 7; = ¢; — p. To simplify the exposition, we assume that yog = 0 for the
rest of this paper. We begin by deriving the limit distributions of g, and p,
and providing asymptotic expressions for their mean squared errors (MSEs); see
Theorems 1 and 2.

Theorem 1. Assume (1.7) with 0 < b < oo holds and that Ec} < oo for some

Kk > 0. Then,
E{n'™/(p, — pn)}? < 00, for any q > 0. (2.6)

Further, if E(e1™7) < 0o for some T > 0, then

Mo\ Ve
lim P{ <> V(b — pp) > } = exp(—t*), t > 0, (2.7)
n—oo o

lim E{(C a’b> n1+1/a(/§n_pn)} :F<a+2>7 (28)

n—00 (6% (6%

o~
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where

b

Theorem 2. Assume (1.7) with 0 < b < oo holds, and that EE?J“T < oo for some
7> 0. Then,

My = p® /01 { (1 = exp(=br)) }a da. (2.9)

n3/2 J

O1,b
where Jib = o?/[u?{I1(b) — Ix(b)}], with Iy(b) = 27'b73{2b + 4exp(—b) —
exp(—2b) — 3} and Ir(b) = b=4{b — 1 + exp(—b)}2. If Ec; < oo for some s > 10
and there exist positive constants K, a, and ¢ such that for all |z —y| < and all

large m,

Fon(2) = Frn(9)] < Kz — % (2.11)
where Fy, is the distribution function of m='/23"" (e, — Eeq). Then

T B{n®(5 — pn)?) = o2, (2.12)

Here lim_yg a%b = 1202 /2 is exactly the limiting variance of n%/2(j,, —1) derived
in the unit-root model; see Chan (1989) and Ing and Yang (2014). Let L3(b) =
b=*{1 — exp(—b) — bexp(—b)}? and M! , = M, p/pu".

Theorem 3. Assume (1.7)) with 0 < b < co holds, and that Ecf < oo for some
Kk > 2. Then

/a0 +2 « 2/ o? 1 —9/a
MSPE, — ¢? =n~% F(a) (CMQM) Ls(b) + . + o(max{n~',n=%}),
(2.13)
yielding
lim nmin (L2 (VMSPE 4 — 0?) = Ra(a,b), (2.14)
where

Ra(a,b) — r<o‘ : 2) (C]\;&b)Q/aLg(b)I(a > 9) 4 02 (a < 2),

the dependence of Ra(a,b) on c is being suppressed.

In view of the proof of Theorem 3, the cross-product term 2E[(pn, — pn)(yn —
9){(1 — pn)y — p + zn}], in the expectation on the right-hand side of (2.4)), is
asymptotically negligible compared to the corresponding squared terms E{(p,, —
on)(yn — 9)}2 and E{(1 — p,)§ — p + 2,}2. Therefore, the asymptotic behav-
ior of MSPE4 — 02 is mainly determined by the last two expectations. Since
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(L= P — 4 20 = (0= 1) X0 gy, we have B{(L = po)j — i+ 20)? =
0%/(n —1). In addition, (y, — #)?/n? converges in probability to u?Ls(b); see
(S1.16) in the supplementary document. From this and , it is expected that
E{(pn — pn)(yn — 7)}? is of order n=2/®. The details are presented in the proof
of Theorem 3.

Equipped with and Theorem 2, we have an asymptotic expression for
MSPEg.

Theorem 4. Assume (1.7) with 0 < b < oo holds, that 1 satisfies (2.11)), and

Eef < 0o for some s > 12. Then
lim n(MSPEp — o?) = Rp(b) = {1 + L3(b)} o2 (2.15)
n—o0 11(b) = Ix(b)

Remark 1. By (37) and (42) of Ing and Yang (2014), for 0 < p < 1, (1.11)

follows from
a+2 «o 2/ o2
r 1.
( o ><6Ma(p)> 1—p2_>0a8p_>
As

(58 Y [

/
a cMmb

B

0, as b — oo,
the discrepancy between R%(a, 1) and R9(c,p) in (1.11) can be connected by
R4(a,b) in the sense of (|1.12)).
Remark 2. While
lim Rp(b) = R%(1) = 402, (2.16)
b—0
limp o0 Rp (D) is not equivalent to R%(p) when p increases to 1. More specifically,
o? = lim Rp(b) # lim R%(p) = 202, (2.17)
b—o0 p—1

recalling that R%(p) = 202 for all 0 < p < 1.

Remark 3. Theorems 3 and 4 imply that when a < 2 (o > 2), the EV (LS)
predictor is better (worse) than the LS (EV) predictor in the sense that the
convergence rate of MSPE4 — 02 (MSPEp — 0?) is faster than MSPEg — o2
(MSPE—0?). When a = 2, MSPE 4 —0? and MSPE g —0? share the same rate of
convergence, and EV (LS) predictor is more efficient than the LS (EV) predictor
if and only if R4(a,b) < Rp(b) (Ra(a,b) > Rp(b)). In fact, Ra(a,b) < Rp(b)
or Ra(a,b) > Rp(b) depends on whether ¢ is greater or smaller than the thresh-
old function hy(b) = 2{I(b) — I2(b)}[(c?/b?) fol{l — exp(—bxz)}2dz]~1. More-



NEARLY UNSTABLE PROCESSES: A PREDICTION PERSPECTIVE 147

1xo?2 T T T T T T T T T
I Ryb) > R,2b)
C05x02 9 B
XU - LoD ]
b
- Ry(b) <R,(2,b)
0 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Figure 1. The graph of ¢ = hy(b).

over, limy_,o hy(b) = 1/(202) is exactly the threshold value in the case of p = 1
that partitions ¢ into ¢ > 1/(202), in which the EV predictor dominates the
LS predictor; and 0 < ¢ < 1/(20?), in which the latter predictor becomes
more appealing, see Section 3 of Ing and Yang (2014). Additionally, h,(b) is
a decreasing function of b, suggesting that the advantage of the EV predictor
over the LS one is more evident as the underlying process becomes “less non-
stationary”. It is also interesting to point out that in the case 0 < p < 1,
huo(p) = 2(1 — p){(1 + p)u® + (1 — p)o?}~! is the threshold function play-
ing the same role as h,(b) in the near unit-root case (see Section 3 of Ing and
Yang| (2014)), and h,,(p) and hy(b) coincide in the limit in the sense that
limp1 hyo(p) = limp oo ho(b) = 0. This discussion is illustrated in Figure
1. Finally, in view of Theorems 1 and 2, the rankings of p, and p, in terms of
MSE are exactly the same as those of §,+1 and ¢,41 in terms of MSPE.

3. General Near Unit-Root Models

In this section, we extend the results in Section 2 to the general near unit-
root case p, = 1 —b/n”, where 0 < 3 < 1 and 0 < b < co. This extension is to
alleviate the difficulty of Ra(a,n(1 — p)) (Re(n(1 — p))) and RY (o, p) (R%(p))
to approximate n™" {1:2/¢}(MSPE 4 — 02) {n(MSPEp — 02)} when 1 — p is small
but n(1 — p) is relatively large, see Tables 1-6 for details.

3.1. Asymptotic theories
We start by exploring the asymptotic distribution and the MSE of p,,.
Theorem 5. Assume (1.7) holds with p, = 1 —b/n®, where 0 < 8 < 1 and
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0 <b < 00, and that Ec} < oo for some k > 0. Then

E{nf (o, — pn)}? < o0, for any ¢ > 0. (3.1)
Further, if E(e{") < oo, for some q1 > 2/03, then
/o
lim P{(C) Hppijap } t>0, (32
n—o0 (0% b
1/a
. c Iz nBt1/a a+2
lim E|{ — — DPn =T 3.3
lim B[ (£) i, p>] ( (33

Theorem 6. Assume (1.7) holds with p, = 1 —b/n®, where 0 < B < 1 and
0 < b < oo, and that E(e3™7) < oo for some T > 0. Then,

~ d
Vkn(pn = pn) = N(0,03 ), (3.4)
where ky, =n'*P if 0 < < 1/2 and n®? if B > 1/2, and

{(2b302)_1u21(ﬂ = 1) + (2b)—1}1, ifo<p<1/2,

0%, = 2
Bb ™
2b3 2
’, if 1/2 < B < 1.
i
Moreover, if Ee; < oo for some s > 10 and (2.11)) holds, then

nlglgo E{kn(pn — pn)2} = U[%,b- (3.5)

It is shown in the proof of Theorem 6 that p, — pn = > i o(Yi—1 — §)ni/
Yoo Wic1—1)? = Yo (anic1+E&ni—1)ni/ g (ani—1+E&ni-1)?, where ay, ; and
&n.i, respectively, denote the deterministic and random components of y; —y. The

Order of magnitude of (5, — p,)? is determined by >roa 3”-71)_1 for1/2< 5 <

Lo 2§m )t for0< 8<1/2,and (301, T” 1+§nl )" Lfor B =1/2, with

the growth rates of >, aiﬂ_l and Y, fn,z—l being n35 and n'TP, respectively.

We have asymptotic expressions for MSPE 4 and MSPE g in the general near
unit-root model.

Theorem 7. Assume (1.7) holds with p, = 1 —b/n®, where 0 < B < 1 and
0 < b< oo, and that E(s{") < 0o, for some q1 > 2/B. Then

(a) For 0 < 8 <2/3,

2 2
_ g2 pB2fap (@ 2) (@\¥oTb 0T n—B=2/a
MSPE,4 — 0% =n I‘< " ><c) o2 + - + o(max{n~1,n .
(3.6)

(b) For2/3 < p <1,
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2

a+ 2) (a>2/al o

_ 2 _ 28-2-2/a o o -1 28-2-2/a
MSPE4 —0“ =n F( ” p bQ—i—ﬂ—i—o(max{n N b.
(3.7)
(c) For B =2/3,
2
o2 p2a2fap(@H2Y () fob L
MSPE4 — 0" =n F( a >(c> 2u2+62
2
+ 24 o(max{n~!, n=2/372/a, (3.8)
n

Theorem 8. Assume (1.7) holds with p, = 1 —b/n®, where 0 < 8 < 1 and
0 < b < o0, and that Ec] < oo for some s > 12. Then

1
202, 0<5<§7
_ 2 9 b2o? 1
Al(ﬁ,b):nh_{gon(MSPEBfJ): o 1+m , 625’ (3.9)

1

2
- 1.

o°, 2<6<

In view of (2.15)), (2.16]) and (2.17]), Theorem 8 can be succinctly summarized

to include the case g =1 as

( 1
202, O<ﬂ<§and0<b<oo,
b2o? 1

2(1+—2 ), B==and0<b< oo,

p? + b20? 2

A1(B,b) = 1 (3.10)

a2, §<B<1and0<b<oo,
Rp(b), B=1and 0 <b< 0,
402, B =1and b=0.

(
Here A1(B,b) = 20%,0 < B < 1/2 is designated as the “stationary state”,
A1(1,0) = 40? is designated as the “unit-root state”, and A1(3,b) with 1/2 <
B < 1is designated as the “intermediate state” because its value, o2, is different
from the values of the unit-root and the stationary states.

At the critical point § = 1 that separates the unit-root and intermediate
states, we have

(i) limy_,o A1(1,0) = 402,
(ii) limp oo A1(1,0) = o2

At the critical point f = 1/2 that separates the stationary and intermediate
states, we have
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402 o
32 b—0
e
* A(LD)
20 t——o
b — © b— o0
Ay(5,0) @
l b—0
62
/unit—root
0 1 1 B
. B e -
~ 2 ~"

stationary intermediate

Figure 2. Theorem 8: the vertical axis denotes the value of A1(3,b). The points as-
sociated with A;(1/2,b) and A;(1,b) are not necessarily in the middle. They are only
used to illustrate A1(1/2,b) (A1(1,b)) decreases (increases) to o2 (402) as b — 0, and
increases (decreases) to 202 (02) as b — co.

(i) limp_0A1(1/2,b) = 02,
(ii) limp oo A1(1/2,b) = 202

These critical phenomena are depicted in Figure 2.

We infer the above discussion that, due to the existence of the intermedi-
ate state, there exists no 0 < f < 1 such that A;(5,b) simultaneously satisfies
limy_,o A1(B8,b) = 402 and limy_,o A1(B,b) = 202, implying that the discon-
tinuity between the unit-root and stationary states of the MSPEp cannot be
connected by a general near unit-root model. In contrast, this discontinuity in
MSPEpg can be connected through “two” general near unit-root models whose
values correspond to the critical points 1 and 1/2, as illustrated in Figure 2.

3.2. Simulations

In this section, we propose finite sample approximations of p™int1.2/e} (MSPE 4
—0?) and n(MSPEp — 02) and report on their performance via data generated
from model (L.I), with p € {0.86, 0.9, 0.95, 0.975, 0.99}, n € {100, 200, 500,
1,000, 3,000, 6,000, 10,000}, and &; a Beta(«, 1) with a € {1.5,2,4}. The per-
formance of our finite sample corrections in the case of 0 < a < 1 is largely
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similar to that in the case of o = 1.5. The details are skipped here. For a given
triple (n, p, ), let ygj), . ,y,(f) denote the data generated in the j-th simulation,
1 <4 <5,000. We also generated y(J ) and computed the empirical estimate of

. n+1
nmin(12/0) (MSPE 4 — o),

5,000
. 1 7 ; (i

Ry = nmm{l,2/a} Z (y1(1j+)1 _ yr(L]J)rl)z _ g2 7 (3‘11)

5,000 &

and that of n(MSPEg — 02),
L 500 .
Rp, =n S - gl - (3.12)
5,000 £~

,(3_31 and gfjll, respectively, denote the EV and LS predictors calculated
in the j-th simulation based on yy), . ,yﬁf).

where g

In addition to R9 (e, p) and Ra(a,n(l — p)), we suggest an alternative ap-
proximation of n™®{1,2/a}(MSPE4 — 02) based on and (3.5)), derived from
the general near unit-root model. Ignoring smaller order terms, we have that
pmin{l2/e}(MSPE 4 — 02) is approximately equal to

a+2/a\Y( o2 1 o?
T — — 3.13
a (c) {2u2n5 * n2(b/nb)? } + nl-2/a (3.13)

re <a>/{ o+ O }] (3.14)

for 0 < a < 2. Replacing b/n? in (3.13) and (3.14) by 1 — p, one gets:
Ri(a,p) + Ry(ayn(l - p)) + o2/l a>2,

for a > 2, and

02 1+ pl-2/a

RY(a,n,1—p) =
o +n'"2Ri(a, p) + n' " Ri(a,n(1 — p)), 0<a <2,

(3.15)

where

Ri(a.p) = pa”(a)”“a?(l )

a \c 2u?

a+2/a\¥ 1
5 1-— =T — —_.
RQ(a7n( P)) o <C> n2(1 —P)2

Here (3.15) depends on the parameters, 5 and b, in the general near unit-root

model only through 1 — p, and hence can be implemented without facing the
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identifiability issue associated with 5 and b.
On the other hand, we consider an alternative

1 n(1 — p)2o?
A 5,021 —p)) =031 1
1<27n ( p) g +M2+n(1—/))202 (3 6)
to R%(a, p) and Rp(n(1—p)). Tt is expected that A;(1/2,n'/2(1—p)) will provide
a more satisfactory approximation of n(MSPEg — ¢?) when p is too small (large)
for Rp(n(1 —p)) (R%(c, p)) to do a good job.
For notational simplicity, let

RY = Ry(a.p), R} = Ra(a,n(1-p)), RS = Ri(a,n,1 - p),

1
R = Ry, R = Ran1- ). B = h (50 0))

The degree of closeness between RS) and R4, , and that between Rg,) and Rp,
is assessed by

min (RS) JRa, )
max (Rg) ,Ra, )

min (Rg), R3n>

P = and P = L i=1,2,3.

max (Rg), RBH)
Clearly, 0 < PX), Pg) < 1 and a larger value represents a better performance.
The values of R4, (Rp, ) and Pgi)(Pg )),i =1,2,3, are summarized in Tables 1-3
(Tables 4-6) for o = 1.5,2, and 4, respectively. In them, the value of n(1 — p),
denoted by b, is included.

Table 1 has P£‘3) notably larger than Pjgl) = Pf) forn =1000r1 < n(l—p) <
5 although P(i),i = 1,2, 3, have similar values otherwise. For any fixed p, all
Pff),i =1,...,3, gradually approach 1 as n increases, which is in line with the
first relation of (1.6). Table 2 shows that when o = 2 and 1 < n(1 — p) < 5,
Pf) usually has the highest value among P(i),i =1,...,3, except for the case
of (n,p) = (200,0.99). For 5 < n(1 — p) < 28, P¥) appears to dominate its
competitors with the exception of (n, p) = (1,000, 0.99), in which Pf) is slightly
larger than Pj&g). For 28 < n(1—p) < 1,400, PS) and PIEXS) behave quite similarly
and are usually significantly larger than Pf), except for p > 0.975. For any fixed

0, Pjgl) has an obvious tendency to increase to 1 as n grows from 100 to 10,000,

which is in agreement with the first relation of (L.6). Like Table 2, Table 3 (a = 4)
also shows that Pf) usually dominates PX),i =1and 3, when 1 < n(l—p) <5.
However, an exception happens in the case of (n,p) = (100,0.975), where Pf)
is ranked first. The advantage of Rf) is more evident in Table 3 since Pf’) is

noticeably larger than Plgl) and Pf) for almost all 10 < n(1 —p) < 1,400. When
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70 < n(1—p) < 1,400, Pf) in Table 3 is less than 0.05 and distinctively smaller
than Pf) in Table 2. For any fixed p, Table 3 shows that PIE‘I) still possesses a

2 is much slower

clear upward trend. Because the convergence rate of MSPE 4 — o
in =4 than in a < 2, PIE‘U may not be very close to 1 even when n = 10,000.

It is shown in Table 4 that P](;) = maxj<;<3 P](;) for 1 <n(l—p) <12.5, and
P](33) = maxj<i<3 P](;) for 12.5 < n(1—p) < 300, with the exception of n(1—p) =
30. For 300 < n(1 — p) < 1,400, Pg) and Pg’) have similar values and are much
larger than Pg). Tables 5 and 6 share similar features as Table 4. Moreover, as
a grows, the areas of n(1 — p) for which Rg) works best and Rg) outperforms
Rg) tend to expand. In Figure 3, we give the plots of time series realizations
generated from model (1.1), with p = 0.95 and ¢; obeying Beta(1.5, 1), Beta(2, 1),
and Beta(4, 1) distributions. This figure shows that the nonstationary feature of
these series becomes more evident as « increases, which may partly explain why
R(B2) and RS) play increasingly essential roles in approximating Rp, when o
becomes larger.

As a final remark, Tables 1-3 (Tables 4-6) together portray situations where
RS),i =2,3 (Rg),i = 2,3) can approximate Ry, (Rp,) better than RS) (Rg)).
This information, in conjunction with suitable estimators of b, ¢, and «, enables
one to construct a data-driven procedure for estimating n™{1.2/¢}(MSPE 4 — 0'2)
and n(MSPEp — 0?) in the near unit-root region. The details are deferred to the

supplementary document.

4. Concluding Remarks

By deriving asymptotic expressions for the MSPEs of the EV and LS predic-
tors under near unit-root and general near unit-root models, this paper provides
a look at the performance of the LS and EV predictors in the near unit-root
region. Our analysis reveals that the expressions derived for the LS predictor for
the critical points, f§ = 1 and 8 = 1/2, not only jointly connect the discontinu-
ities in lim, oo n(MSPEpg — ¢2), but also combine their strengths to yield finite
sample approximations of n(MSPEg — ¢?) that perform satisfactorily in the near
unit-root region. The expressions derived for the EV predictor for § = 1 and
0 < 8 < 1 also lead to finite sample approximations of n(MSPE 4 — ¢?) that can
achieve a similar goal. The results established here and in (Ing and Yang (2014])
can be unified as follows:
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Table 1. The values of R4, and PX),Z' = 1,2, 3, under the Beta(1.5, 1) noise. ngl) (Pﬁf)7
PIEXS)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 PX).

P 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Ra,  0.0770 0.0786 0.0917 0.1349  0.2150
n=100 P 08909 0.8715 0.7470 05078  0.3186
PY  0.8909 0.8715 0.7470 0.5078  0.3186
P 09519  0.9361  0.8729  0.8170  0.6608
b 23 20 10 5.0 2.0
Ra,  0.0707 0.0741 0.0743 0.0866  0.1299
n=200 PV 09703 0.9244 0.9219 0.7910  0.5273
PY 09703 0.9244 0.9219 0.7910  0.5273
P 09881  0.9584  0.9633  0.891  0.9212
b 70 50 25 125 5.0
Ra, 00718 0.0713 0.0682 0.0719  0.0792
n=50 P 09555 0.9607  0.9956 0.9527  0.8649
P® 09555 0.9607  0.9956 0.9527  0.8649
P 0.9833  0.9826 0.9809 0.9720  0.9433
b 140 100 50 25 10
Ra,  0.0690 0.0707 0.0699 0.0709  0.0729
n=1000 P 09938  0.9689 0.9799 0.9661  0.9396
rP®  0.9938 0.9689 0.9799 0.9661  0.9396
P 09833  0.9861  0.9897  0.9738  0.9585
b 120 300 150 75 30
Ra,  0.0700 0.0691 0.0670 0.0693  0.0676
n=3000 P 09785 09913  0.9781 09884  0.9868
PY 09785 0.9913 0.9781 0.9884  0.9868
P 09942 09971 09724 0.9913  0.9839
b 840 600 300 150 60
Ra,  0.0688 0.0661 0.0702 0.0604  0.06853
n=6000 P 09956  0.9649  0.9757 0.9870  0.9994
P 09956  0.9649 0.9757 0.9870  0.9994
P 0.9913 0.9565  0.9800  0.9903  0.9989
b 1,400 1,000 500 250 100
Ra,  0.0631 0.0693 0.0702 0.0702  0.0671
n=10000 PV  0.9927 0.9885 0.9757 0.9757  0.9795
P 0.9927 0.9885 0.9757 0.9757  0.9795
P® 09825 0.9970  0.9805  0.9786  0.9777
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Table 2. The values of R4, and Pg),i = 1,2,3, under the Beta(2,1)
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noise. PE) (Pf) ,

Pf)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 PX).

P 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Ra,  0.0756 0.0812  0.1307  0.2644  0.5096
n=100  P{" 08580 0.7635 04491 02160  0.1101
P 08103 08288  0.8256  0.8718  0.9241
P®  0.9180  0.8843  0.7550  0.8211  0.4824
b 28 20 10 5.0 2.0
Ra,  0.0685 0.0690  0.0745  0.1198  0.3141
n=200 P 09465 0.8986  0.7879 04766  0.1786
PY 08302 0.8435 09034  0.9007  0.9144
P 09573  0.9319  0.9218 08106  0.9747
b 70 50 25 12.5 5.0
Ra,  0.0658 0.0623  0.0600  0.0673  0.1158
n=50  P{"  0.9864 0.9952 0.9783  0.8484  0.4845
PP 0.8479 0.8973  0.9533 09331  0.9318
p 0.9803 0.9984  0.9953  0.9438  0.8305
b 140 100 50 25 10
Ra,  0.0641 0.0619  0.0595  0.0588  0.0696
n=100 P 0980 0.9984  0.986 09711  0.8060
PY 08675 0.8982  0.9395 09728  0.9669
P 0.9960  0.9999  0.9929 0.9986  0.9508
b 420 300 150 75 30
Ra,  0.0657 0.0602  0.0605  0.0593  0.0566
n=3000 P  0.9861 09710  0.9708 09621  0.9914
PY 08445 0.9216 09188 0938  0.9989
PP 09775 0.9753 09704  0.9648  0.9890
b 840 600 300 150 60
Ra,  0.0677 0.0610  0.0594  0.0576  0.0587
n=6000 P  0.9575 0.9837  0.9880  0.9905  0.9566
PP 08199 0.9095  0.9344 09639  0.9508
PP 09491 0.9882 09870  0.9910  0.9613
b 1,400 1,000 500 250 100
Ra,  0.0652 0.0633  0.0588  0.0562  0.0584
n=10000 P  0.9938 0.9794  0.9982  0.9842  0.9606
PY 08512 0.8767 09438  0.9875  0.9503
P® 09862 09764  0.9980  0.9836  0.9637
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noise. PE) (Pf) ,

Pf)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 PX).

P 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Ra,  0.0109 0.0158 0.0493 0.1444 03148
n=100  P{" 02522 0.1203 0.0183 0.0035  0.0006
PY 04488 0.6266  0.8621 0.9252  0.9371
P 0.8966  0.8465 07918  0.9963  0.3540
b 28 20 10 5.0 2.0
Ra,  0.0062 0.0067 0.0134 0.0474  0.1808
n=200  P{" 04440 0.2836 0.0672 0.0105  0.0011
PY 01894 0.3433 0.7388  0.8966  0.9591
P 09033  0.8876  0.8709  0.7973  0.8084
b 70 50 25 12.5 5.0
Ra,  0.0041 0.0035 0.0037  0.0081  0.0454
n=500  P{" 06729 0.5429 0.2432 0.0617  0.0044
P?  0.0486 0.1143 0.4054 0.7654  1.0000
P 0.9654 0.9695 0.9550  0.9044 08111
b 140 100 50 25 10
Ra,  0.0035 0.0029 0.0022 0.0020  0.0112
n=1000 P 07818 0.6551 0.4091 0.1724  0.0179
PY 00129 0.0345 0.1364 0.5172  0.8839
PP 0.9923  0.9580  0.9640 0.9389  0.8330
b 420 300 150 75 30
Ra,  0.0032 0.0024 0.0015 0.0011 _ 0.0017
n=3000 P 08550 0.7910 0.5997 04194  0.1079
PY  0.0015 0.0040 0.0252 0.1436  0.5942
P 09553  0.9598  0.9209  0.9940  0.9641
b 840 600 300 150 60
Ra,  0.0031 0.0023 0.0013 0.0008  0.0008
n=6000 P 08979 0.8313 0.7151 0.5316  0.2298
P®  0.0004 0.0010 0.0074 0.0451  0.3105
PY 0.9555  0.9442  0.9677  0.9628  0.9605
b 1,400 1,000 500 250 100
Ra,  0.0030 0.0022 0.0011 0.0007 _ 0.0005
n=10,000 P 0.9000 0.8636 0.8545 0.6571  0.3600
P?  0.0002 0.0040 0.0031 0.0202  0.1800
P 0.9506 0.9608  0.9217  0.9428  0.9260
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Table 4. The values of Rp,, and Pg),i = 1,2, 3, under the Beta(1.5, 1) noise. P,(;) (P](;)7
PS)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 Pg).

P 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Rpn  0.1086 0.1028  0.1167  0.1584  0.2170
n=100 P 0.7920 0.7498  0.8512  0.8655  0.6318
Py 0.7366 0.8327  0.9443  0.9836  0.9894
P®  0.8030 07737 06142 04379  0.3165
b 28 20 10 5.0 2.0
Rpn,  0.1084 0.1007  0.0919  0.1130 _ 0.1688
n = 200 Py 07901 07345  0.6703  0.8242 0.8122
Py 06815 0.7557  0.9314  0.9752  0.9819
PY  0.9029 0.8687 08110  0.6209  0.4077
b 70 50 25 12.5 5.0
Rpn  0.1102 0.1096  0.0860  0.0868  0.1112
n = 500 Py 08692 07994  0.6273  0.6331 0.8111
Py 05921 0.6515  0.8663  0.9401  0.9910
P 0.9498  0.9308 0.9506 08343  0.6224
b 140 100 50 25 10
Rpn  0.1201 0.1209  0.0976  0.0835  0.0899
n=1000 PV 09411 0.8818 07119  0.6090  0.6562
Py 05390 05782 0.7316  0.8922  0.9522
PY 0.9500  0.9390 0.9292  0.9085  0.7770
b 420 300 150 75 30
Rpn  0.1323 0.1257  0.1133 _ 0.0900  0.0761
n=3000 Py 09647 09166  0.8264  0.6564  0.5550
PY 05201 0.5488  0.6125  0.7822  0.9645
PY 0.9939  0.9904 0.9612  0.9624  0.9497
b 840 600 300 150 60
Rpn  0.1329 0.1306  0.1214  0.0977 _ 0.0766
n=6000 Py 09691 09523  0.8854  0.7126  0.5587
Py 05172 05267  0.5683  0.7103  0.9255
PY 0.9903  0.9932  0.9832  0.9942  0.9870
b 1,400 1,000 500 250 100
Rpn  0.1340 0.1392  0.1356  0.1096 __ 0.0804
n=10000 Py 09771 0.9849  0.9890  0.7873  0.5864
Py 05126 04935 05073  0.6304  0.8694
PY  0.9899 0.9606 09236  0.9656  0.9893
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Table 5. The values of Rpg,, and Pg),i = 1,2, 3, under the Beta(2, 1) noise. Pg) (P](;)7
PS)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 Pg).

o 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Rpn 00824  0.0793  0.0956  0.1285 0.1736
n =100 PY) 07414 07138 0.8605 0.8646 0.6399
Py 07868  0.8752  0.9341  0.9821  0.9983
P 0.8068  0.7784  0.5987  0.4356 0.3204
b 28 20 10 5.0 2.0
Rp, 0088 00757  0.0728  0.0891 0.1370
n = 200 PY) 07454 06814 06553  0.8020 0.8109
Py 07223 08151 09533  0.9978  0.9835
PY  0.8916  0.8806  0.8080  0.6331 0.4065
b 70 50 25 125 5.0
Rp,  0.0920  0.0824  0.0666  0.0694 0.0830
n = 500 Py 08282 07417  0.5995 0.6247 0.7921
Py 06215 07015 09054  0.9524  0.9854
PY  0.9363 0.9335 0.9468  0.8306 0.6352
b 140 100 50 25 10
Rp,  0.0942  0.0900  0.0719  0.0651 0.0716
n=1,000 Py 08478 08101  0.6472  0.5860 0.6445
Py 05983 06289 08039  0.9263  0.9693
PY  0.9914 0.9602 0.9566  0.9166 0.7854
b 420 300 150 75 30
Rp,  0.1061  0.1027  0.0888  0.0699 0.0600
n=3000 Py 09550 09249 07994  0.6291 0.5406
P 0520  0.5441 0.6338  0.8165 0.9908
PY 0.9843  0.9673  0.9280  0.9456 0.9582
b 840 600 300 150 60
Rpn, 01164 0104 0.0924  0.0739 0.0620
n=6,000 P  0.9538 09375 08318  0.6656 0.5588
Py 04780 05350  0.6050  0.7612 0.9256
PP 09234 0.9961  0.9930  0.9908  0.9571
b 1,400 1,000 500 250 100
Rpn  0.1063  0.1059  0.0994  0.0805 0.0653
n=10,000 PY 09567 09531  0.8946  0.7245 0.5877
PY 05180 05250 05603  0.6956 0.8667
P 0.9758  0.9897  0.9823  0.9928  0.9453
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Table 6. The values of Rp, and Pg)ﬂ; =1,2,3, under the Beta(4, 1) noise. P](;) (P](;)7
PS)) is marked in bold (bold sans-serif, bold italics) when it is equal to max;<;<3 Pg).

P 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Rp, 00348 00343  0.0444  0.0625  0.0854
n=100 Py 06526 06435 08330 08528  0.6241
PY  0.8939  0.9708  0.9640  0.9696  0.9778
P 08241 08085  0.6067 04277  0.3123
b 28 20 10 5.0 2.0
Rp, 00340 00335 00336 00431  0.0666
n=200 Py 06371 06285 06304 08086  0.8003
Py 08452  0.8836  0.9911  0.9930  0.9970
PY  0.8944 08572 0.8098 0.6219 0.4007
b 70 50 25 12.5 5.0
Rp, 00370 00336 0.0309 00322  0.0425
n =500 Py 06920 06304 05797  0.6041 0.7974
Py 07429 08244  0.9353  0.9844  1.0000
PY  0.9296  0.9304 0.9057 0.8388 0.6287
b 140 100 50 25 10
Rp, 00407  0.0376  0.0303  0.0303  0.0344
n=1000 Py 07638 07054 05685  0.5685  0.6454
Py 06641  0.7234 09142  0.9538  0.9680
P¥  0.9497 0.9178  0.9631 09024  0.7784
b 420 300 150 75 30
Rp, 00462 00439  0.0341 00295  0.0286
n=3000 Py 08674 08239 06394 05549 05374
P 05791 06109 07924 09256  0.9967
P 0.9857 0.9439  0.9680  0.9662  0.9417
b 840 600 300 150 60
Rp, 00483 00480  0.0383 00313  0.0283
n=6,000 Py 09074 09003 07197 05876  0.5318
P 05523 05572 0.6993  0.8622  0.9725
PY 0.9914 0.9520 0.9618  0.9657  0.9630
b 1,400 1,000 500 250 100
Rp, 00513 00495  0.0410 00323  0.0281
n=10000 P 09624 09287 07692  0.6060  0.5272
Py 05205 05397 06529  0.8321  0.9679
PY  0.9829 0.9731  0.9822  0.9961  0.9869
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MSPE,4 — o2 =
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Figure 3. Plots of time series realizations generated from model (1.1), where p = 0.95
and ¢; has a Beta(a, 1) distribution, with o = 4 (dotted line), 2 (dashed line) and 1.5
(solid line).

MSPEg — o2

=n"Y{A1(B,b) {0 p<1,0cb<o0} + 207 L {50 .0<b<1} + 407 [g_1 =0y } +o(n™1).
(4.2)

Equations (4.1]) and (4.2) provide a more comprehensive perspective on the per-
formance of the EV and LS predictors and may facilitate broader applications.

Supplementary Materials

Section S1 contains omitted proofs of the theorems in Sections 2 and 3.1,
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whereas Section S2 provides practical guidelines for choosing finite sample ap-
proximations from those derived in the near unit-root and the general near unit-
root models.
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