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Abstract: Prediction has long been a vibrant topic in modern probability and statis-

tics. In addition to finding optimal forecasts and for model selection, it is argued

in this paper that the prediction principle can also be used to analyze critical phe-

nomena, in particular, in stationary and unstable time series. Although the notion

of nearly unstable models has become one of the important concepts in time series

econometrics, its role from a prediction perspective is less developed. Based on mo-

ment bounds for the extreme-value (EV) and least squares (LS) estimates, asymp-

totic expressions for the mean squared prediction errors (MSPE) of the EV and

LS predictors are obtained for a nearly unstable first-order autoregressive (AR(1))

model with positive error. These asymptotic expressions are further extended to

a general class of nearly unstable models, thereby allowing one to understand to

what degree such general models can be used to establish a link between stationary

and unstable models from a prediction perspective. As applications, we illustrate

the usefulness of these results in conducting finite sample approximations of the

MSPE for near unit-root time series.
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squared prediction error, nearly unstable process, positive error, quantum leap.

1. Introduction

Prediction has long been a vibrant topic in probability and statistics. The

seminal monograph of Whittle (1963) illustrates the importance of linear predic-

tion. There are several objectives in prediction studies. The first one is comput-

ing an optimal forecast, based on either finite or infinite samples. The second is

to use prediction methods for model selection. The third, less well known but

of no less importance, is to use the prediction principle to understand critical

phenomena, in particular, in stationary and unstable processes, see for example

Wei (1992). This goal is the main focus of the present paper.

To achieve this goal, moment bounds are indispensable tools. For example,

based on maximal moment inequalities for martingales, Wei (1987, 1992) pro-
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vided an asymptotic expression for the accumulated prediction error (APE) of a

linear stochastic regression model, which in turn leads to the Fisher information

criterion (FIC) for model selection. Findley and Wei (2002) and Chan and Ing

(2011) established inverse moment bounds for the Fisher information matrices

of time series models. These bounds enable one to calculate the mean squared

prediction errors (MSPE) of least squares predictors, and to derive the Akaike

information criterion (AIC; Akaike (1974)) and the final prediction error criterion

(FPE; Akaike (1969)) in a rigorous manner.

Studies of moment bounds and MSPE have mostly been focused on least

squares procedures, while less attention has been given to the so-called extreme-

value estimates (EVE), mainly used for heavy-tailed dependent data. Due to the

emergence of big data, dependent heavy-tailed phenomena have been reported

in various disciplines, see Finkenstädt and Rootzén (2004) and the examples

therein. To appreciate the significance of such types of estimates, suppose that

the data are generated from the first-order autoregressive (AR(1)) model

yt = ρyt−1 + εt, t = 1, 2, . . . , n, (1.1)

where 0 ≤ ρ < 1 and εt’s are i.i.d. positive noise with regularly varying density

fε(x) at zero,

lim
x→0

fε(x)

cxα−1
= 1, for some unknown α > 0 and c > 0. (1.2)

A popular method for estimating ρ in (1.1) is the least squares estimator (LSE),

ρ̃n =

∑n
i=2(yi−1 − ȳ)(yi − ȳ)∑n

i=2(yi−1 − ȳ)2
, (1.3)

where ȳ = ȳn−1 = {1/(n− 1)}
∑n−1

i=1 yi. When the noise has a density like (1.2),

LSE may not be efficient and other estimation procedures are required. When

the parametric form of the distribution of εt is known, a natural alternative

to ρ̃n is the maximum likelihood estimator (MLE) yet, as argued in Davis and

McCormick (1989) and Ing and Yang (2014), the MLE is in general analytically

difficult to work with. A remedy for this difficulty is to use the EVE, ρ̂n, instead,

where
ρ̂n = min

1≤i≤n−1

yi+1

yi
. (1.4)

Here ρ̂n is the MLE when εt has an exponential distribution or is uniformly

distributed over [0, a] for some a > 0; see Bell and Smith (1986). Under an

assumption more general than (1.2), Bell and Smith (1986) showed that ρ̂n is

consistent. When (1.2) holds, it is shown in Corollaries 2.4 and 2.5 of Davis and

McCormick (1989) that the limit distributions of ρ̂n satisfies
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lim
n→∞

P

{(
cMα(ρ)

α

)1/α

n1/α(ρ̂n − ρ) > t

}
= exp(−tα), (1.5)

where Mα(ρ) = E(
∑∞

j=0 ρ
jε1−j)

α. Equation (1.5) reveals that when α < 2 (α >

2), the convergence rate of ρ̂n (ρ̃n) is faster than that of ρ̃n (ρ̂n); see Section 2 of

Ing and Yang (2014) for a more comprehensive comparison of ρ̂n and ρ̃n.

Model (1.1) with εt satisfying (1.2) has found broad applications in hydrol-

ogy, economics, finance, epidemiology, and quality control; see, among others,

Gaver and Lewis (1980), Bell and Smith (1986), Lawrance and Lewis (1985),

Davis and McCormick (1989), Smith (1994), Barndorff-Nielsen and Shephard

(2001), Nielsen and Shephard (2003), Sarlak (2008), and Ing and Yang (2014).

Bell and Smith (1986) analyzed two sets of pollution data from the Willamette

River, Oregon, using model (1.1) with εt following the uniform distribution or

exponential distribution; both are special cases of (1.2). Sarlak (2008) adopted

model (1.1) with a Weibull error to analyze the annual streamflow data from the

Kizilirmak River in Turkey. On the other hand, model (1.1), focusing exclusively

on the stationary case 0 ≤ ρ < 1, fails to accommodate data that may fluctuate

around an upward trend with variance increasing over time. Ing and Yang (2014)

therefore generalized (1.1) to ρ = 1, referred to as the unit-root model, and es-

tablished the limit distribution of (1.4) in this case. In addition, they derived

asymptotic expressions for the mean squared prediction errors (MSPE) of the

EV predictor (ŷn+1) and the LS predictor (ỹn+1), MSPEA = E(yn+1 − ŷn+1)
2

and MSPEB = E(yn+1 − ỹn+1)
2, as

lim
n→∞

nmin{1,2/α}(MSPEA − σ2) = RoA(α, ρ), lim
n→∞

n(MSPEB − σ2) = RoB(ρ).

(1.6)

Here 0 ≤ ρ ≤ 1, RoA(α, ρ) is a positive constant depending on α, ρ, and fε1(·),
and RoB(ρ) is a positive constant depending on ρ and σ2 = Var(ε1) > 0.

While (1.6) suggests that nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2)

can be approximated by RoA(α, ρ) and RoB(ρ), such an approximation may be

unsatisfactory when ρ is near one; see Tables 1–6 of Section 3.2. This phenomenon

is reminiscent of the nearly unstable autoregressive model discussed in Chan and

Wei (1987). By virtue of the order of the observed Fisher’s information number,

they argued that neither the stationary normal limit nor the unit-root limit

distributions would be a good approximation to the finite sample behavior of

the LSE for the situation where ρ is close to 1. Putting it differently, a main

difficulty in using (1.6) when ρ is close to 1 may be due to the critical behaviors of

the limit distributions associated with the EVE and LSE. Such critical behaviors
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perpetuate in the performance of the corresponding predictors.

Consider a family of nearly unstable models

yt = ρnyt−1 + εt, (1.7)

in which ρn = 1 − b/n, b is a positive constant, and εt is defined as in (1.2).

The notion of nearly unstable models is one of the most important concepts in

time series econometrics since the papers of Chan and Wei (1987) and Phillips

(1987). It has found widespread applications in the analysis of time series data;

for more background information, see the survey articles of Chan (2006) and

Chan (2009). Using the moment bounds of the EVE and LSE for this class of

models, asymptotic expressions for the MSPEs of ŷn+1 and ỹn+1 under (1.7),

lim
n→∞

nmin{1,2/α}(MSPEA−σ2) = RA(α, b), lim
n→∞

n(MSPEB−σ2) = RB(b), (1.8)

are established, where RA(α, b) is a positive constant depending on α, b, and

σ2, and RB(b) is a positive constant depending on b and σ2. When data are

generated from model (1.1) with ρ fixed but close to 1, RA(α, b) and RB(b),

with b = n(1 − ρ), can be used in place of RoA(α, ρ) and RoB(ρ) to approxi-

mate nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2). Since RA(α, n(1− ρ)) and

RB(n(1−ρ)) vary with n, they are referred to as the finite sample approximations.

It is shown in Section 3.2 that RA(α, n(1 − ρ)) and RB(n(1 − ρ)) substantially

outperform RoA(α, ρ) and RoB(ρ) in situation where n(1−ρ) is small to moderate.

An intriguing feature of RoB(ρ) is that it exhibits a jump behavior at the

point ρ = 1. According to (47) and (48) of Ing and Yang (2014),

RoB(ρ) =

{
2σ2, for 0 ≤ ρ < 1,

4σ2, for ρ = 1.
(1.9)

This phenomenon is analogous to the “quantum jump” behavior observed in

physics, where the state of a system remains unchanged until a critical amount

of energy is accumulated. With the MSPE jump in (1.9), it is interesting to

explore if a connection between the stationary and the unstable regimes can be

established via a smooth transition mechanism such as (1.7). Thus, would the

relationship

RB(b)→

{
2σ2, as b→∞ ,

4σ2, as b→ 0 ,
(1.10)

remain valid? The lower half of (1.10) does remain valid for b → 0, the upper

half fails to hold and RB(b) converges to σ2 as b → ∞; see (2.15) and (2.17) of

Section 2.
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This discrepancy in the upper half of (1.10) suggests that 1− (b/n) may be

converging to unity too rapidly and as a result, RB(b) does not attain the limiting

value RoB(ρ) of the stationary case. In Section 3.1, we derive the limiting value,

Λ1(β, b), of n(MSPEB − σ2) for the general near unit-root model, (1.7) with

ρn = 1− b/nβ, 0 < β ≤ 1 and b > 0. No single β directly connects Λ1(β, b) from

2σ2 to 4σ2, but our result reveals that a connection can be established through

two critical values of β, β = 1/2 and β = 1, that connect Λ1(β, b) for the station-

ary and intermediate states, and for the intermediate and unit-root states, re-

spectively: limb→∞ Λ1(1/2, b) = 2σ2, limb→0 Λ1(1/2, b) = σ2, limb→∞ Λ1(1, b) =

limb→∞RB(b) = σ2, and limb→0 Λ1(1, b) = limb→0RB(b) = 4σ2. This provides an

alternative finite sample approximation, Λ1(1/2, n
1/2(1−ρ)), for n(MSPEB−σ2)

when n(1− ρ) stays far away from 0.

Although the EV predictor also encounters the MSPE jump at ρ = 1 in the

sense that

lim
ρ→1

RoA(α, ρ) 6= RoA(α, 1), (1.11)

it can be eliminated by RA(α, b) which satisfies, for any 0 < α <∞,

lim
ρ→1

RoA(α, ρ) = lim
b→∞

RA(α, b), RoA(α, 1) = lim
b→0

RA(α, b). (1.12)

To deepen our understanding of the EV predictor in the near unit-root re-

gion, we obtain an asymptotic expression for MSPEA in the general near unit-

root model. This result leads to an alternative finite sample approximation of

nmin{1,2/α}(MSPEA − σ2), which notably improves upon RA(α, n(1 − ρ)) when

n(1− ρ) is relatively large.

Thus we focus on the analysis of near unit-root processes from a prediction

perspective, on the analysis of general near unit-root processes, and we illustrate

the importance of finite sample approximations of the MSPE derived from near

unit-root and general near unit-root processes.

The rest of the paper is organized as follows. In Section 2, asymptotic

properties of the EVE and LSE for the near unit-root case with ρn = 1− (b/n)

are developed, which include the limit distributions and the moment bounds, and

on asymptotic expressions for MSPEA and MSPEB. In Section 3.1, we extend

the results to the case of ρn = 1−(b/nβ), 0 < β < 1. In Section 3.2, we offer finite

sample approximations of nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2) based

on the asymptotic expressions obtained in Sections 2 and 3.1. The resultant

performance is illustrated using AR(1) models with Beta(α, 1) errors, in which

the AR coefficient lies between 0.86 and 0.99 and 1.5 ≤ α ≤ 4 (see also Section
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3.2). We conclude in Section 4. With the help of Section 3.2, we further provide a

simple rule for choosing a finite sample approximation from those derived in the

near unit-root and the general near unit-root models. This result, together with

the proofs of the theorems in Sections 2 and 3.1, is deferred to the supplementary

document.

2. Near Unit-Root Models

In this section, we provide asymptotic expressions for the MSPEs of ŷn+1

and ỹn+1 under (1.7), where

ŷn+1 = µ̂n + ρ̂nyn, (2.1)

with µ̂n = (1/(n− 1))
∑n−1

t=1 (yt+1 − ρ̂nyt), and

ỹn+1 = µ̃n + ρ̃nyn. (2.2)

Here with xj = (1, yj)
T ,

(µ̃n, ρ̃n) =

(
n−1∑
j=1

xjx
T
j

)−1 n−1∑
j=1

xjyj+1. (2.3)

Let zn = (yn − y1)/(n− 1). Then the MSPE of ŷn+1 can be expressed as

MSPEA = E(yn+1−ŷn+1)
2 = σ2+E

[
(ρ̂n − ρn)(yn − ȳ) + {(1− ρn)ȳ − µ+ zn}

]2
,

(2.4)

where µ = E(ε1). In addition, the MSPE of ỹn+1 satisfies

MSPEB = E(yn+1 − ỹn+1)
2 = σ2 + E

{
n−1

n∑
i=1

ηi + (yn − ȳ)(ρ̃n − ρn)

}2

, (2.5)

where ηi = εi − µ. To simplify the exposition, we assume that y0 = 0 for the

rest of this paper. We begin by deriving the limit distributions of ρ̂n and ρ̃n
and providing asymptotic expressions for their mean squared errors (MSEs); see

Theorems 1 and 2.

Theorem 1. Assume (1.7) with 0 < b < ∞ holds and that Eεκ1 < ∞ for some

κ > 0. Then,
E{n1+1/α(ρ̂n − ρn)}q <∞, for any q > 0. (2.6)

Further, if E(ε1+τ1 ) <∞ for some τ > 0, then

lim
n→∞

P

{(
cMα,b

α

)1/α

n1+1/α(ρ̂n − ρn) > t

}
= exp(−tα), t > 0, (2.7)

lim
n→∞

E

{(
cMα,b

α

)1/α

n1+1/α(ρ̂n − ρn)

}2

= Γ

(
α+ 2

α

)
, (2.8)
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where

Mα,b = µα
∫ 1

0

{
(1− exp(−bx))

b

}α
dx. (2.9)

Theorem 2. Assume (1.7) with 0 < b <∞ holds, and that Eε2+τ1 <∞ for some

τ > 0. Then,

n3/2

σ1,b
(ρ̃n − ρn)

d−→ N(0, 1), (2.10)

where σ21,b = σ2/[µ2{I1(b) − I2(b)}], with I1(b) = 2−1b−3{2b + 4 exp(−b) −
exp(−2b)− 3} and I2(b) = b−4{b− 1 + exp(−b)}2. If Eεs1 <∞ for some s > 10

and there exist positive constants K, a, and δ such that for all |x− y| ≤ δ and all

large m,

|Fm(x)− Fm(y)| ≤ K|x− y|a, (2.11)

where Fm is the distribution function of m−1/2
∑m

t=1(εt − Eε1). Then

lim
n→∞

E{n3(ρ̃n − ρn)2} = σ21,b. (2.12)

Here limb→0 σ
2
1,b = 12σ2/µ2 is exactly the limiting variance of n3/2(ρ̃n−1) derived

in the unit-root model; see Chan (1989) and Ing and Yang (2014). Let L3(b) =

b−4{1− exp(−b)− b exp(−b)}2 and M ′α,b = Mα,b/µ
α.

Theorem 3. Assume (1.7) with 0 < b < ∞ holds, and that Eεκ1 < ∞ for some

κ > 2. Then

MSPEA − σ2 = n−2/αΓ

(
α+ 2

α

)(
α

cM ′α,b

)2/α

L3(b) +
σ2

n
+ o(max{n−1, n−2/α}),

(2.13)

yielding

lim
n→∞

nmin (1,2/α)(MSPEA − σ2) = RA(α, b), (2.14)

where

RA(α, b) = Γ

(
α+ 2

α

)(
α

cM ′α,b

)2/α

L3(b)I(α ≥ 2) + σ2I(α ≤ 2),

the dependence of RA(α, b) on c is being suppressed.

In view of the proof of Theorem 3, the cross-product term 2E[(ρ̂n − ρn)(yn −
ȳ){(1 − ρn)ȳ − µ + zn}], in the expectation on the right-hand side of (2.4), is

asymptotically negligible compared to the corresponding squared terms E{(ρ̂n−
ρn)(yn − ȳ)}2 and E{(1 − ρn)ȳ − µ + zn}2. Therefore, the asymptotic behav-

ior of MSPEA − σ2 is mainly determined by the last two expectations. Since
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(1 − ρn)ȳ − µ + zn = (n − 1)−1
∑n−1

j=1 ηj+1, we have E{(1 − ρn)ȳ − µ + zn}2 =

σ2/(n − 1). In addition, (yn − ȳ)2/n2 converges in probability to µ2L3(b); see

(S1.16) in the supplementary document. From this and (2.8), it is expected that

E{(ρ̂n − ρn)(yn − ȳ)}2 is of order n−2/α. The details are presented in the proof

of Theorem 3.

Equipped with (2.5) and Theorem 2, we have an asymptotic expression for

MSPEB.

Theorem 4. Assume (1.7) with 0 < b < ∞ holds, that ε1 satisfies (2.11), and

Eεs1 <∞ for some s > 12. Then

lim
n→∞

n(MSPEB − σ2) = RB(b) =

{
1 +

L3(b)

I1(b)− I2(b)

}
σ2. (2.15)

Remark 1. By (37) and (42) of Ing and Yang (2014), for 0 ≤ ρ < 1, (1.11)

follows from

Γ

(
α+ 2

α

)(
α

cMα(ρ)

)2/α σ2

1− ρ2
→ 0 as ρ→ 1.

As

Γ

(
α+ 2

α

)(
α

cM ′α,b

)2/α

L3(b)→


1

4
Γ

(
α+ 2

α

){
α(α+ 1)

c

}2/α

, as b→ 0 ,

0, as b→∞ ,

the discrepancy between RoA(α, 1) and RoA(α, ρ) in (1.11) can be connected by

RA(α, b) in the sense of (1.12).

Remark 2. While

lim
b→0

RB(b) = RoB(1) = 4σ2, (2.16)

limb→∞RB(b) is not equivalent to RoB(ρ) when ρ increases to 1. More specifically,

σ2 = lim
b→∞

RB(b) 6= lim
ρ→1

RoB(ρ) = 2σ2, (2.17)

recalling that RoB(ρ) = 2σ2 for all 0 ≤ ρ < 1.

Remark 3. Theorems 3 and 4 imply that when α < 2 (α > 2), the EV (LS)

predictor is better (worse) than the LS (EV) predictor in the sense that the

convergence rate of MSPEA − σ2 (MSPEB − σ2) is faster than MSPEB − σ2

(MSPEA−σ2). When α = 2, MSPEA−σ2 and MSPEB−σ2 share the same rate of

convergence, and EV (LS) predictor is more efficient than the LS (EV) predictor

if and only if RA(α, b) < RB(b) (RA(α, b) > RB(b)). In fact, RA(α, b) < RB(b)

or RA(α, b) > RB(b) depends on whether c is greater or smaller than the thresh-

old function hσ(b) = 2{I1(b) − I2(b)}[(σ2/b2)
∫ 1
0 {1 − exp(−bx)}2dx]−1. More-
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σ

σ

σ ∫

Figure 1. The graph of c = hσ(b).

over, limb→0 hσ(b) = 1/(2σ2) is exactly the threshold value in the case of ρ = 1

that partitions c into c > 1/(2σ2), in which the EV predictor dominates the

LS predictor; and 0 < c < 1/(2σ2), in which the latter predictor becomes

more appealing, see Section 3 of Ing and Yang (2014). Additionally, hσ(b) is

a decreasing function of b, suggesting that the advantage of the EV predictor

over the LS one is more evident as the underlying process becomes “less non-

stationary”. It is also interesting to point out that in the case 0 ≤ ρ < 1,

hµ,σ(ρ) = 2(1 − ρ){(1 + ρ)µ2 + (1 − ρ)σ2}−1 is the threshold function play-

ing the same role as hσ(b) in the near unit-root case (see Section 3 of Ing and

Yang (2014)), and hµ,σ(ρ) and hσ(b) coincide in the limit in the sense that

limρ→1 hµ,σ(ρ) = limb→∞ hσ(b) = 0. This discussion is illustrated in Figure

1. Finally, in view of Theorems 1 and 2, the rankings of ρ̂n and ρ̃n in terms of

MSE are exactly the same as those of ŷn+1 and ỹn+1 in terms of MSPE.

3. General Near Unit-Root Models

In this section, we extend the results in Section 2 to the general near unit-

root case ρn = 1 − b/nβ, where 0 < β < 1 and 0 < b < ∞. This extension is to

alleviate the difficulty of RA(α, n(1 − ρ)) (RB(n(1 − ρ))) and RoA(α, ρ) (RoB(ρ))

to approximate nmin {1,2/α}(MSPEA−σ2) {n(MSPEB −σ2)} when 1− ρ is small

but n(1− ρ) is relatively large, see Tables 1–6 for details.

3.1. Asymptotic theories

We start by exploring the asymptotic distribution and the MSE of ρ̂n.

Theorem 5. Assume (1.7) holds with ρn = 1 − b/nβ, where 0 < β < 1 and
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0 < b <∞, and that Eεκ1 <∞ for some κ > 0. Then

E{nβ+1/α(ρ̂n − ρn)}q <∞, for any q > 0. (3.1)

Further, if E(εq11 ) <∞, for some q1 > 2/β, then

lim
n→∞

P

{(
c

α

)1/αµ

b
nβ+1/α(ρ̂n − ρn) > t

}
= exp(−tα), t > 0 , (3.2)

lim
n→∞

E

[(
c

α

)1/αµ

b
nβ+1/α(ρ̂n − ρn)

]2
= Γ

(
α+ 2

α

)
. (3.3)

Theorem 6. Assume (1.7) holds with ρn = 1 − b/nβ, where 0 < β < 1 and

0 < b <∞, and that E(ε2+τ1 ) <∞ for some τ > 0. Then,√
kn(ρ̃n − ρn)

d−→ N(0, σ2β,b), (3.4)

where kn = n1+β if 0 < β ≤ 1/2 and n3β if β > 1/2, and

σ2β,b =


{

(2b3σ2)−1µ2I

(
β =

1

2

)
+ (2b)−1

}−1
, if 0 < β ≤ 1/2 ,

2b3σ2

µ2
, if 1/2 < β < 1.

Moreover, if Eεs1 <∞ for some s > 10 and (2.11) holds, then

lim
n→∞

E{kn(ρ̃n − ρn)2} = σ2β,b. (3.5)

It is shown in the proof of Theorem 6 that ρ̃n − ρn =
∑n

i=2(yi−1 − ȳ)ηi/∑n
i=2(yi−1− ȳ)2 =

∑n
i=2(an,i−1+ξn,i−1)ηi/

∑n
i=2(an,i−1+ξn,i−1)

2, where an,i and

ξn,i, respectively, denote the deterministic and random components of yi− ȳ. The

order of magnitude of (ρ̃n−ρn)2 is determined by (
∑n

i=2 a
2
n,i−1)

−1 for 1/2 < β <

1, (
∑n

i=2 ξ
2
n,i−1)

−1 for 0 < β < 1/2, and (
∑n

i=2 a
2
n,i−1+ξ2n,i−1)

−1 for β = 1/2, with

the growth rates of
∑n

i=2 a
2
n,i−1 and

∑n
i=2 ξ

2
n,i−1 being n3β and n1+β, respectively.

We have asymptotic expressions for MSPEA and MSPEB in the general near

unit-root model.

Theorem 7. Assume (1.7) holds with ρn = 1 − b/nβ, where 0 < β < 1 and

0 < b <∞, and that E(εq11 ) <∞, for some q1 > 2/β. Then

(a) For 0 < β < 2/3,

MSPEA − σ2 = n−β−2/αΓ
(α+ 2

α

)(α
c

)2/α σ2b
2µ2

+
σ2

n
+ o(max{n−1, n−β−2/α}).

(3.6)

(b) For 2/3 < β < 1,
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MSPEA−σ2 = n2β−2−2/αΓ
(α+ 2

α

)(α
c

)2/α 1

b2
+
σ2

n
+ o(max{n−1, n2β−2−2/α}).

(3.7)

(c) For β = 2/3,

MSPEA − σ2 = n−2/3−2/αΓ
(α+ 2

α

)(α
c

)2/α{σ2b
2µ2

+
1

b2

}
+
σ2

n
+ o(max{n−1, n−2/3−2/α}). (3.8)

Theorem 8. Assume (1.7) holds with ρn = 1 − b/nβ, where 0 < β < 1 and

0 < b <∞, and that Eεs1 <∞ for some s > 12. Then

Λ1(β, b) ≡ lim
n→∞

n(MSPEB − σ2) =


2σ2 , 0 < β <

1

2
,

σ2
(

1 +
b2σ2

µ2 + b2σ2

)
, β =

1

2
,

σ2 ,
1

2
< β < 1 .

(3.9)

In view of (2.15), (2.16) and (2.17), Theorem 8 can be succinctly summarized

to include the case β = 1 as

Λ1(β, b) =



2σ2 , 0 < β <
1

2
and 0 < b <∞ ,

σ2
(

1 +
b2σ2

µ2 + b2σ2

)
, β =

1

2
and 0 < b <∞ ,

σ2 ,
1

2
< β < 1 and 0 < b <∞ ,

RB(b) , β = 1 and 0 < b <∞ ,

4σ2 , β = 1 and b = 0.

(3.10)

Here Λ1(β, b) = 2σ2, 0 < β < 1/2 is designated as the “stationary state”,

Λ1(1, 0) = 4σ2 is designated as the “unit-root state”, and Λ1(β, b) with 1/2 <

β < 1 is designated as the “intermediate state” because its value, σ2, is different

from the values of the unit-root and the stationary states.

At the critical point β = 1 that separates the unit-root and intermediate

states, we have

(i) limb→0 Λ1(1, b) = 4σ2,

(ii) limb→∞ Λ1(1, b) = σ2.

At the critical point β = 1/2 that separates the stationary and intermediate

states, we have



150 CHAN, ING AND ZHANG

Λ

σ

σ

σ

→ 

→ ∞

→ 

→ ∞

Λ

β

σ

Figure 2. Theorem 8: the vertical axis denotes the value of Λ1(β, b). The points as-
sociated with Λ1(1/2, b) and Λ1(1, b) are not necessarily in the middle. They are only
used to illustrate Λ1(1/2, b) (Λ1(1, b)) decreases (increases) to σ2 (4σ2) as b → 0, and
increases (decreases) to 2σ2 (σ2) as b→∞.

(i) limb→0 Λ1(1/2, b) = σ2,

(ii) limb→∞ Λ1(1/2, b) = 2σ2.

These critical phenomena are depicted in Figure 2.

We infer the above discussion that, due to the existence of the intermedi-

ate state, there exists no 0 < β ≤ 1 such that Λ1(β, b) simultaneously satisfies

limb→0 Λ1(β, b) = 4σ2 and limb→∞ Λ1(β, b) = 2σ2, implying that the discon-

tinuity between the unit-root and stationary states of the MSPEB cannot be

connected by a general near unit-root model. In contrast, this discontinuity in

MSPEB can be connected through “two” general near unit-root models whose β

values correspond to the critical points 1 and 1/2, as illustrated in Figure 2.

3.2. Simulations

In this section, we propose finite sample approximations of nmin{1,2/α}(MSPEA
−σ2) and n(MSPEB − σ2) and report on their performance via data generated

from model (1.1), with ρ ∈ {0.86, 0.9, 0.95, 0.975, 0.99}, n ∈ {100, 200, 500,

1,000, 3,000, 6,000, 10,000}, and εt a Beta(α, 1) with α ∈ {1.5, 2, 4}. The per-

formance of our finite sample corrections in the case of 0 < α < 1 is largely
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similar to that in the case of α = 1.5. The details are skipped here. For a given

triple (n, ρ, α), let y
(j)
1 , . . . , y

(j)
n denote the data generated in the j-th simulation,

1 ≤ j ≤ 5,000. We also generated y
(j)
n+1 and computed the empirical estimate of

nmin(1,2/α)(MSPEA − σ2),

RAn
= nmin{1,2/α}

 1

5, 000

5,000∑
j=1

(y
(j)
n+1 − ŷ

(j)
n+1)

2 − σ2
 , (3.11)

and that of n(MSPEB − σ2),

RBn
= n

 1

5, 000

5,000∑
j=1

(y
(j)
n+1 − ỹ

(j)
n+1)

2 − σ2
 , (3.12)

where ŷ
(j)
n+1 and ỹ

(j)
n+1, respectively, denote the EV and LS predictors calculated

in the j-th simulation based on y
(j)
1 , . . . , y

(j)
n .

In addition to RoA(α, ρ) and RA(α, n(1 − ρ)), we suggest an alternative ap-

proximation of nmin{1,2/α}(MSPEA − σ2) based on (3.3) and (3.5), derived from

the general near unit-root model. Ignoring smaller order terms, we have that

nmin{1,2/α}(MSPEA − σ2) is approximately equal to[
Γ
α+ 2

α

(
α

c

)2/α{ σ2b

2µ2nβ
+

1

n2(b/nβ)2

}]
+

σ2

n1−2/α
(3.13)

for α ≥ 2, and

σ2 + n1−2/α

[
Γ
α+ 2

α

(
α

c

)2/α{ σ2b

2µ2nβ
+

1

n2(b/nβ)2

}]
(3.14)

for 0 < α < 2. Replacing b/nβ in (3.13) and (3.14) by 1− ρ, one gets:

R∗A(α, n, 1− ρ) =

R
∗
1(α, ρ) +R∗2(α, n(1− ρ)) + σ2/n1−2/α , α ≥ 2 ,

σ2 + n1−2/αR∗1(α, ρ) + n1−2/αR∗2(α, n(1− ρ)) , 0 < α < 2,

(3.15)

where

R∗1(α, ρ) = Γ
α+ 2

α

(
α

c

)2/ασ2(1− ρ)

2µ2
,

R∗2(α, n(1− ρ)) = Γ
α+ 2

α

(
α

c

)2/α 1

n2(1− ρ)2
.

Here (3.15) depends on the parameters, β and b, in the general near unit-root

model only through 1 − ρ, and hence can be implemented without facing the
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identifiability issue associated with β and b.

On the other hand, we consider an alternative

Λ1

(
1

2
, n1/2(1− ρ)

)
= σ2

{
1 +

n(1− ρ)2σ2

µ2 + n(1− ρ)2σ2

}
(3.16)

to RoB(α, ρ) and RB(n(1−ρ)). It is expected that Λ1(1/2, n
1/2(1−ρ)) will provide

a more satisfactory approximation of n(MSPEB−σ2) when ρ is too small (large)

for RB(n(1− ρ)) (RoB(α, ρ)) to do a good job.

For notational simplicity, let

R
(1)
A = RoA(α, ρ), R

(2)
A = RA(α, n(1− ρ)), R

(3)
A = R∗A(α, n, 1− ρ),

R
(1)
B = RoB(ρ), R

(2)
B = RB(n(1− ρ)), R

(3)
B = Λ1

(
1

2
, n1/2(1− ρ)

)
.

The degree of closeness between R
(i)
A and RAn

, and that between R
(i)
B and RBn

is assessed by

P
(i)
A =

min
(
R

(i)
A , RAn

)
max

(
R

(i)
A , RAn

) and P
(i)
B =

min
(
R

(i)
B , RBn

)
max

(
R

(i)
B , RBn

) , i = 1, 2, 3.

Clearly, 0 ≤ P
(i)
A , P

(i)
B ≤ 1 and a larger value represents a better performance.

The values of RAn
(RBn

) and P
(i)
A (P

(i)
B ), i = 1, 2, 3, are summarized in Tables 1–3

(Tables 4–6) for α = 1.5, 2, and 4, respectively. In them, the value of n(1 − ρ),

denoted by b, is included.

Table 1 has P
(3)
A notably larger than P

(1)
A = P

(2)
A for n = 100 or 1 ≤ n(1−ρ) ≤

5 although P
(i)
A , i = 1, 2, 3, have similar values otherwise. For any fixed ρ, all

P
(i)
A , i = 1, . . . , 3, gradually approach 1 as n increases, which is in line with the

first relation of (1.6). Table 2 shows that when α = 2 and 1 ≤ n(1 − ρ) ≤ 5,

P
(2)
A usually has the highest value among P

(i)
A , i = 1, . . . , 3, except for the case

of (n, ρ) = (200, 0.99). For 5 < n(1 − ρ) ≤ 28, P
(3)
A appears to dominate its

competitors with the exception of (n, ρ) = (1,000, 0.99), in which P
(2)
A is slightly

larger than P
(3)
A . For 28 < n(1−ρ) ≤ 1,400, P

(1)
A and P

(3)
A behave quite similarly

and are usually significantly larger than P
(2)
A , except for ρ ≥ 0.975. For any fixed

ρ, P
(1)
A has an obvious tendency to increase to 1 as n grows from 100 to 10,000,

which is in agreement with the first relation of (1.6). Like Table 2, Table 3 (α = 4)

also shows that P
(2)
A usually dominates P

(i)
A , i = 1 and 3, when 1 ≤ n(1− ρ) ≤ 5.

However, an exception happens in the case of (n, ρ) = (100, 0.975), where P
(3)
A

is ranked first. The advantage of R
(3)
A is more evident in Table 3 since P

(3)
A is

noticeably larger than P
(1)
A and P

(2)
A for almost all 10 ≤ n(1− ρ) ≤ 1,400. When
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70 ≤ n(1− ρ) ≤ 1,400, P
(2)
A in Table 3 is less than 0.05 and distinctively smaller

than P
(2)
A in Table 2. For any fixed ρ, Table 3 shows that P

(1)
A still possesses a

clear upward trend. Because the convergence rate of MSPEA−σ2 is much slower

in α = 4 than in α ≤ 2, P
(1)
A may not be very close to 1 even when n = 10,000.

It is shown in Table 4 that P
(2)
B = max1≤i≤3 P

(i)
B for 1 ≤ n(1−ρ) ≤ 12.5, and

P
(3)
B = max1≤i≤3 P

(i)
B for 12.5 < n(1−ρ) ≤ 300, with the exception of n(1−ρ) =

30. For 300 < n(1− ρ) ≤ 1,400, P
(1)
B and P

(3)
B have similar values and are much

larger than P
(2)
B . Tables 5 and 6 share similar features as Table 4. Moreover, as

α grows, the areas of n(1 − ρ) for which R
(2)
B works best and R

(3)
B outperforms

R
(1)
B tend to expand. In Figure 3, we give the plots of time series realizations

generated from model (1.1), with ρ = 0.95 and εt obeying Beta(1.5, 1), Beta(2, 1),

and Beta(4, 1) distributions. This figure shows that the nonstationary feature of

these series becomes more evident as α increases, which may partly explain why

R
(2)
B and R

(3)
B play increasingly essential roles in approximating RBn

when α

becomes larger.

As a final remark, Tables 1–3 (Tables 4–6) together portray situations where

R
(i)
A , i = 2, 3 (R

(i)
B , i = 2, 3) can approximate RAn

(RBn
) better than R

(1)
A (R

(1)
B ).

This information, in conjunction with suitable estimators of b, c, and α, enables

one to construct a data-driven procedure for estimating nmin{1,2/α}(MSPEA−σ2)
and n(MSPEB−σ2) in the near unit-root region. The details are deferred to the

supplementary document.

4. Concluding Remarks

By deriving asymptotic expressions for the MSPEs of the EV and LS predic-

tors under near unit-root and general near unit-root models, this paper provides

a look at the performance of the LS and EV predictors in the near unit-root

region. Our analysis reveals that the expressions derived for the LS predictor for

the critical points, β = 1 and β = 1/2, not only jointly connect the discontinu-

ities in limn→∞ n(MSPEB − σ2), but also combine their strengths to yield finite

sample approximations of n(MSPEB−σ2) that perform satisfactorily in the near

unit-root region. The expressions derived for the EV predictor for β = 1 and

0 < β < 1 also lead to finite sample approximations of n(MSPEA − σ2) that can

achieve a similar goal. The results established here and in Ing and Yang (2014)

can be unified as follows:
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Table 1. The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(1.5, 1) noise. P

(1)
A (P

(2)
A ,

P
(3)
A ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RAn 0.0770 0.0786 0.0917 0.1349 0.2150

n = 100 P
(1)
A 0.8909 0.8715 0.7470 0.5078 0.3186

P
(2)
A 0.8909 0.8715 0.7470 0.5078 0.3186

P
(3)
A 0.9519 0.9361 0.8729 0.8170 0.6608

b 28 20 10 5.0 2.0
RAn 0.0707 0.0741 0.0743 0.0866 0.1299

n = 200 P
(1)
A 0.9703 0.9244 0.9219 0.7910 0.5273

P
(2)
A 0.9703 0.9244 0.9219 0.7910 0.5273

P
(3)
A 0.9881 0.9584 0.9633 0.8914 0.9212

b 70 50 25 12.5 5.0
RAn 0.0718 0.0713 0.0682 0.0719 0.0792

n = 500 P
(1)
A 0.9555 0.9607 0.9956 0.9527 0.8649

P
(2)
A 0.9555 0.9607 0.9956 0.9527 0.8649

P
(3)
A 0.9833 0.9826 0.9809 0.9720 0.9433

b 140 100 50 25 10
RAn 0.0690 0.0707 0.0699 0.0709 0.0729

n = 1,000 P
(1)
A 0.9938 0.9689 0.9799 0.9661 0.9396

P
(2)
A 0.9938 0.9689 0.9799 0.9661 0.9396

P
(3)
A 0.9833 0.9861 0.9897 0.9738 0.9585

b 420 300 150 75 30
RAn 0.0700 0.0691 0.0670 0.0693 0.0676

n = 3,000 P
(1)
A 0.9785 0.9913 0.9781 0.9884 0.9868

P
(2)
A 0.9785 0.9913 0.9781 0.9884 0.9868

P
(3)
A 0.9942 0.9971 0.9724 0.9913 0.9839

b 840 600 300 150 60
RAn 0.0688 0.0661 0.0702 0.0694 0.06853

n = 6,000 P
(1)
A 0.9956 0.9649 0.9757 0.9870 0.9994

P
(2)
A 0.9956 0.9649 0.9757 0.9870 0.9994

P
(3)
A 0.9913 0.9565 0.9800 0.9903 0.9989

b 1,400 1,000 500 250 100
RAn 0.0681 0.0693 0.0702 0.0702 0.0671

n = 10,000 P
(1)
A 0.9927 0.9885 0.9757 0.9757 0.9795

P
(2)
A 0.9927 0.9885 0.9757 0.9757 0.9795

P
(3)
A 0.9825 0.9970 0.9805 0.9786 0.9777
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Table 2. The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(2, 1) noise. P

(1)
A (P

(2)
A ,

P
(3)
A ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RAn 0.0756 0.0812 0.1307 0.2644 0.5096

n = 100 P
(1)
A 0.8580 0.7635 0.4491 0.2160 0.1101

P
(2)
A 0.8103 0.8288 0.8256 0.8718 0.9241

P
(3)
A 0.9180 0.8843 0.7550 0.8211 0.4824

b 28 20 10 5.0 2.0
RAn 0.0685 0.0690 0.0745 0.1198 0.3141

n = 200 P
(1)
A 0.9465 0.8986 0.7879 0.4766 0.1786

P
(2)
A 0.8302 0.8435 0.9034 0.9007 0.9144

P
(3)
A 0.9573 0.9319 0.9218 0.8106 0.9747

b 70 50 25 12.5 5.0
RAn 0.0658 0.0623 0.0600 0.0673 0.1158

n = 500 P
(1)
A 0.9864 0.9952 0.9783 0.8484 0.4845

P
(2)
A 0.8479 0.8973 0.9533 0.9331 0.9318

P
(3)
A 0.9803 0.9984 0.9953 0.9438 0.8305

b 140 100 50 25 10
RAn 0.0641 0.0619 0.0595 0.0588 0.0696

n = 1,000 P
(1)
A 0.9880 0.9984 0.9866 0.9711 0.8060

P
(2)
A 0.8675 0.8982 0.9395 0.9728 0.9669

P
(3)
A 0.9960 0.9999 0.9929 0.9986 0.9508

b 420 300 150 75 30
RAn 0.0657 0.0602 0.0605 0.0593 0.0566

n = 3,000 P
(1)
A 0.9861 0.9710 0.9708 0.9621 0.9914

P
(2)
A 0.8445 0.9216 0.9188 0.9386 0.9989

P
(3)
A 0.9775 0.9753 0.9704 0.9648 0.9890

b 840 600 300 150 60
RAn 0.0677 0.0610 0.0594 0.0576 0.0587

n = 6,000 P
(1)
A 0.9575 0.9837 0.9880 0.9905 0.9566

P
(2)
A 0.8199 0.9095 0.9344 0.9639 0.9508

P
(3)
A 0.9491 0.9882 0.9870 0.9910 0.9613

b 1,400 1,000 500 250 100
RAn 0.0652 0.0633 0.0588 0.0562 0.0584

n = 10,000 P
(1)
A 0.9938 0.9794 0.9982 0.9842 0.9606

P
(2)
A 0.8512 0.8767 0.9438 0.9875 0.9503

P
(3)
A 0.9862 0.9764 0.9980 0.9836 0.9637
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Table 3. The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(4, 1) noise. P

(1)
A (P

(2)
A ,

P
(3)
A ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RAn 0.0109 0.0158 0.0493 0.1444 0.3148

n = 100 P
(1)
A 0.2522 0.1203 0.0183 0.0035 0.0006

P
(2)
A 0.4488 0.6266 0.8621 0.9252 0.9371

P
(3)
A 0.8966 0.8465 0.7918 0.9963 0.3540

b 28 20 10 5.0 2.0
RAn 0.0062 0.0067 0.0134 0.0474 0.1808

n = 200 P
(1)
A 0.4440 0.2836 0.0672 0.0105 0.0011

P
(2)
A 0.1894 0.3433 0.7388 0.8966 0.9591

P
(3)
A 0.9033 0.8876 0.8709 0.7973 0.8084

b 70 50 25 12.5 5.0
RAn 0.0041 0.0035 0.0037 0.0081 0.0454

n = 500 P
(1)
A 0.6729 0.5429 0.2432 0.0617 0.0044

P
(2)
A 0.0486 0.1143 0.4054 0.7654 1.0000

P
(3)
A 0.9654 0.9695 0.9550 0.9044 0.8111

b 140 100 50 25 10
RAn 0.0035 0.0029 0.0022 0.0029 0.0112

n = 1,000 P
(1)
A 0.7818 0.6551 0.4091 0.1724 0.0179

P
(2)
A 0.0129 0.0345 0.1364 0.5172 0.8839

P
(3)
A 0.9923 0.9580 0.9640 0.9389 0.8830

b 420 300 150 75 30
RAn 0.0032 0.0024 0.0015 0.0011 0.0017

n = 3,000 P
(1)
A 0.8550 0.7910 0.5997 0.4194 0.1079

P
(2)
A 0.0015 0.0040 0.0252 0.1436 0.5942

P
(3)
A 0.9553 0.9598 0.9209 0.9940 0.9641

b 840 600 300 150 60
RAn 0.0031 0.0023 0.0013 0.0008 0.0008

n = 6,000 P
(1)
A 0.8979 0.8313 0.7151 0.5316 0.2298

P
(2)
A 0.0004 0.0010 0.0074 0.0451 0.3105

P
(3)
A 0.9555 0.9442 0.9677 0.9628 0.9605

b 1,400 1,000 500 250 100
RAn 0.0030 0.0022 0.0011 0.0007 0.0005

n = 10,000 P
(1)
A 0.9000 0.8636 0.8545 0.6571 0.3600

P
(2)
A 0.0002 0.0040 0.0031 0.0202 0.1800

P
(3)
A 0.9506 0.9608 0.9217 0.9428 0.9260
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Table 4. The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(1.5, 1) noise. P

(1)
B (P

(2)
B ,

P
(3)
B ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RBn 0.1086 0.1028 0.1167 0.1584 0.2170

n = 100 P
(1)
B 0.7920 0.7498 0.8512 0.8655 0.6318

P
(2)
B 0.7366 0.8327 0.9443 0.9836 0.9894

P
(3)
B 0.8030 0.7737 0.6142 0.4379 0.3165

b 28 20 10 5.0 2.0
RBn 0.1084 0.1007 0.0919 0.1130 0.1688

n = 200 P
(1)
B 0.7901 0.7345 0.6703 0.8242 0.8122

P
(2)
B 0.6815 0.7557 0.9314 0.9752 0.9819

P
(3)
B 0.9029 0.8687 0.8110 0.6209 0.4077

b 70 50 25 12.5 5.0
RBn 0.1192 0.1096 0.0860 0.0868 0.1112

n = 500 P
(1)
B 0.8692 0.7994 0.6273 0.6331 0.8111

P
(2)
B 0.5921 0.6515 0.8663 0.9401 0.9910

P
(3)
B 0.9498 0.9308 0.9506 0.8343 0.6224

b 140 100 50 25 10
RBn 0.1291 0.1209 0.0976 0.0835 0.0899

n = 1,000 P
(1)
B 0.9411 0.8818 0.7119 0.6090 0.6562

P
(2)
B 0.5390 0.5782 0.7316 0.8922 0.9522

P
(3)
B 0.9500 0.9390 0.9292 0.9085 0.7770

b 420 300 150 75 30
RBn 0.1323 0.1257 0.1133 0.0900 0.0761

n = 3,000 P
(1)
B 0.9647 0.9166 0.8264 0.6564 0.5550

P
(2)
B 0.5201 0.5488 0.6125 0.7822 0.9645

P
(3)
B 0.9939 0.9904 0.9612 0.9624 0.9497

b 840 600 300 150 60
RBn 0.1329 0.1306 0.1214 0.0977 0.0766

n = 6,000 P
(1)
B 0.9691 0.9523 0.8854 0.7126 0.5587

P
(2)
B 0.5172 0.5267 0.5683 0.7103 0.9255

P
(3)
B 0.9903 0.9932 0.9832 0.9942 0.9870

b 1,400 1,000 500 250 100
RBn 0.1340 0.1392 0.1356 0.1096 0.0804

n = 10,000 P
(1)
B 0.9771 0.9849 0.9890 0.7873 0.5864

P
(2)
B 0.5126 0.4935 0.5073 0.6304 0.8694

P
(3)
B 0.9899 0.9606 0.9236 0.9656 0.9893
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Table 5. The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(2, 1) noise. P

(1)
B (P

(2)
B ,

P
(3)
B ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RBn 0.0824 0.0793 0.0956 0.1285 0.1736

n = 100 P
(1)
B 0.7414 0.7138 0.8605 0.8646 0.6399

P
(2)
B 0.7868 0.8752 0.9341 0.9821 0.9983

P
(3)
B 0.8068 0.7784 0.5987 0.4356 0.3204

b 28 20 10 5.0 2.0
RBn 0.0828 0.0757 0.0728 0.0891 0.1370

n = 200 P
(1)
B 0.7454 0.6814 0.6553 0.8020 0.8109

P
(2)
B 0.7223 0.8151 0.9533 0.9978 0.9835

P
(3)
B 0.8916 0.8806 0.8080 0.6331 0.4065

b 70 50 25 12.5 5.0
RBn 0.0920 0.0824 0.0666 0.0694 0.0880

n = 500 P
(1)
B 0.8282 0.7417 0.5995 0.6247 0.7921

P
(2)
B 0.6215 0.7015 0.9054 0.9524 0.9854

P
(3)
B 0.9363 0.9335 0.9468 0.8306 0.6352

b 140 100 50 25 10
RBn 0.0942 0.0900 0.0719 0.0651 0.0716

n = 1,000 P
(1)
B 0.8478 0.8101 0.6472 0.5860 0.6445

P
(2)
B 0.5983 0.6289 0.8039 0.9263 0.9693

P
(3)
B 0.9914 0.9602 0.9566 0.9166 0.7854

b 420 300 150 75 30
RBn 0.1061 0.1027 0.0888 0.0699 0.0600

n = 3,000 P
(1)
B 0.9550 0.9249 0.7994 0.6291 0.5406

P
(2)
B 0.5260 0.5441 0.6338 0.8165 0.9908

P
(3)
B 0.9843 0.9673 0.9280 0.9456 0.9582

b 840 600 300 150 60
RBn 0.1164 0.1041 0.0924 0.0739 0.0620

n = 6,000 P
(1)
B 0.9538 0.9375 0.8318 0.6656 0.5588

P
(2)
B 0.4780 0.5350 0.6050 0.7612 0.9256

P
(3)
B 0.9234 0.9961 0.9930 0.9908 0.9571

b 1,400 1,000 500 250 100
RBn 0.1063 0.1059 0.0994 0.0805 0.0653

n = 10,000 P
(1)
B 0.9567 0.9531 0.8946 0.7245 0.5877

P
(2)
B 0.5189 0.5250 0.5603 0.6956 0.8667

P
(3)
B 0.9758 0.9897 0.9823 0.9928 0.9453
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Table 6. The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(4, 1) noise. P

(1)
B (P

(2)
B ,

P
(3)
B ) is marked in bold (bold sans-serif, bold italics) when it is equal to max1≤i≤3 P

(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0

RBn 0.0348 0.0343 0.0444 0.0625 0.0854

n = 100 P
(1)
B 0.6526 0.6435 0.8330 0.8528 0.6241

P
(2)
B 0.8939 0.9708 0.9640 0.9696 0.9778

P
(3)
B 0.8241 0.8085 0.6067 0.4277 0.3123

b 28 20 10 5.0 2.0
RBn 0.0340 0.0335 0.0336 0.0431 0.0666

n = 200 P
(1)
B 0.6371 0.6285 0.6304 0.8086 0.8003

P
(2)
B 0.8452 0.8836 0.9911 0.9930 0.9970

P
(3)
B 0.8944 0.8572 0.8098 0.6219 0.4007

b 70 50 25 12.5 5.0
RBn 0.0370 0.0336 0.0309 0.0322 0.0425

n = 500 P
(1)
B 0.6929 0.6304 0.5797 0.6041 0.7974

P
(2)
B 0.7429 0.8244 0.9353 0.9844 1.0000

P
(3)
B 0.9296 0.9304 0.9057 0.8388 0.6287

b 140 100 50 25 10
RBn 0.0407 0.0376 0.0303 0.0303 0.0344

n = 1,000 P
(1)
B 0.7638 0.7054 0.5685 0.5685 0.6454

P
(2)
B 0.6641 0.7234 0.9142 0.9538 0.9680

P
(3)
B 0.9497 0.9178 0.9631 0.9024 0.7784

b 420 300 150 75 30
RBn 0.0462 0.0439 0.0341 0.0295 0.0286

n = 3,000 P
(1)
B 0.8674 0.8239 0.6394 0.5549 0.5374

P
(2)
B 0.5791 0.6109 0.7924 0.9256 0.9967

P
(3)
B 0.9857 0.9439 0.9680 0.9662 0.9417

b 840 600 300 150 60
RBn 0.0483 0.0480 0.0383 0.0313 0.0283

n = 6,000 P
(1)
B 0.9074 0.9003 0.7197 0.5876 0.5318

P
(2)
B 0.5523 0.5572 0.6993 0.8622 0.9725

P
(3)
B 0.9914 0.9520 0.9618 0.9657 0.9630

b 1,400 1,000 500 250 100
RBn 0.0513 0.0495 0.0410 0.0323 0.0281

n = 10,000 P
(1)
B 0.9624 0.9287 0.7692 0.6060 0.5272

P
(2)
B 0.5205 0.5397 0.6529 0.8321 0.9679

P
(3)
B 0.9829 0.9731 0.9822 0.9961 0.9869
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MSPEA − σ2 =

n−2/αΓ
α+ 2

α

(
α

c

)2/α[{ σ2b

2µ2nβ
+

1

n2(b/nβ)2

}
I{0<β<1,0<b<∞}

+

(
1

M ′α,b

)2/α

L3(b)I{β=1,0<b<∞} +

{
1

Mα(1− b)

}2/α σ2

b(2− b)
I{β=0,0<b≤1}

+
(α+ 1)2/α

4
I{β=1,b=0}

]
+
σ2

n
+ o(max{n−1, n−β−2/α, n2β−2−2/α}), (4.1)

Figure 3. Plots of time series realizations generated from model (1.1), where ρ = 0.95
and εt has a Beta(α, 1) distribution, with α = 4 (dotted line), 2 (dashed line) and 1.5
(solid line).

MSPEB − σ2

= n−1{Λ1(β, b)I{0<β≤1,0<b<∞} + 2σ2I{β=0,0<b≤1} + 4σ2I{β=1,b=0}}+ o(n−1).

(4.2)

Equations (4.1) and (4.2) provide a more comprehensive perspective on the per-

formance of the EV and LS predictors and may facilitate broader applications.

Supplementary Materials

Section S1 contains omitted proofs of the theorems in Sections 2 and 3.1,
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whereas Section S2 provides practical guidelines for choosing finite sample ap-

proximations from those derived in the near unit-root and the general near unit-

root models.
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