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Abstract: Semiparametric single-index assumptions are widely used dimension re-

duction approaches that represent a convenient compromise between the parametric

and fully nonparametric models for regressions or conditional laws. In a mean re-

gression setup, the SIM assumption means that the conditional expectation of the

response given the vector of covariates is the same as the conditional expectation

of the response given a scalar projection of the covariate vector. In a conditional

distribution modeling, under the SIM assumption the conditional law of a response

given the covariate vector coincides with the conditional law given a linear combina-

tion of the covariates. In this paper, a novel kernel-based approach for testing SIM

assumptions is introduced. The covariate vector needs not have a density and only

the index estimated under the SIM assumption is used in kernel smoothing. Hence

the effect of high-dimensional covariates is mitigated, while asymptotic normality

of the test statistic is obtained. Irrespective of the fixed dimension of the covari-

ate vector, the new test detects local alternatives approaching the null hypothesis

slower than n−1/2h−1/4, where h is the bandwidth used to build the test statistic

and n is the sample size. A wild bootstrap procedure is proposed for finite sample

corrections of the asymptotic critical values. The small sample performance of our

test is illustrated through simulations.

Key words and phrases: Conditional law, kernel smoothing, lack-of-fit test, single-

index regression, U -statistics.

1. Introduction

Semiparametric single index models (SIM) are widely used tools for statis-

tical modeling. Such models are based on the assumption that the information

contained in a vector of conditioning random variables is equivalent, in some

sense, to the information contained in some index, usually a linear combination

of the vector components. This assumption underlies most of the parametric

models including covariates, but allows for more general semiparametric model-

ing. The most common semiparametric SIM are those for the mean regression.

See Ichimura (1993), Härdle, Hall and Ichimura (1993), and also Horowitz (2009)
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for a recent review. In such models, the index and the conditional mean given

the index are unknown. SIM for quantile regression were considered recently, see

Kong and Xia (2012). A more restrictive, but still of significant interest, class

of models is obtained by imposing the single-index paradigm to the conditional

distribution of response variable given a vector of covariates. In these cases the

index and the conditional law of the response given the index are unknown. The

famous Cox proportional hazard model, see Cox (1972), is a particular case of

SIM for conditional laws. See Delecroix, Härdle and Hristache (2003), Hall and

Yao (2005) and Chiang and Huang (2012) for more general situations.

The large amount of interest for SIM could be explained by the fact that

the single-index assumption is very often the first intermediate step from a para-

metric framework towards a fully nonparametric paradigm. Then an important

question is whether this dimension reduction compromise is good enough to cap-

ture the relevant information contained in the covariate vector. A possible way to

answer is to build a statistical test of the single-index assumption against general

alternatives. Several tests of the goodness-of-fit of single-index mean regression

models have been proposed in the literature. See Fan and Li (1996), Xia et al.

(2004), Stute and Zhu (2005), Chen and Van Keilegom (2009), Xia (2009), Es-

canciano and Song (2010), and the references therein. The problem of testing

SIM models for the conditional distribution in full generality seems open.

In this paper we propose a new, simple kernel smoothing-based approach

to testing single-index assumptions. We focus on mean regression and condi-

tional law models. The approach is inspired by the remark that, up to some

error in covariates, the single-index assumption check could be interpreted as a

test of significance in nonparametric regression. Next, the single-index assump-

tion could be conveniently reformulated as an equivalent unconditional moment

condition. Finally, a kernel-based test statistic could be used to test the uncon-

ditional moment condition. The smoothing based goodness-of-fit test approach

allows one to make the error in covariates negligible and thus to obtain a pivotal

asymptotic law under the null hypothesis. Only the index estimated under the

SIM assumption is used in kernel smoothing and this fact mitigates the effect

of high-dimensional covariates. The covariate vector needs not have a density

and discrete covariables are allowed, as long as the parameter defining the index

is estimated sufficiently accurate. For the SIM considered below, one could ex-

pect the OP(n−1/2) rate for estimators of the index parameter, even when some

covariates are discrete. See, for instance, Xia (2006) and Chiang and Huang

(2012). Meanwhile the asymptotical critical values are given by the quantiles of
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the normal law. Irrespective of the fixed dimension of the covariate vector, the

new test detects local alternatives approaching the null hypothesis slower than

n−1/2h−1/4, where h is the bandwidth used to build the test statistic.

The paper is organized as follows. In Section 2, we recall general consider-

ations on single-index models. In Section 3, we present a general approach to

testing nonparametric significance and in Section 4 we apply it to single-index

hypotheses for mean regression as well as for conditional law. In Section 5 we

introduce a wild bootstrap procedure to correct the asymptotic critical values

with small samples, and we illustrate the performance of our test by an empirical

study. The proofs are relegated to the appendix and some additional technical

results are provided in a Supplementary Material.

2. Single-Index Models

Let Y ∈ Rd, d ≥ 1, denote the random response vector and let X ∈ Rp, p ≥ 1,

be the random column vector of covariates. The data consists of independent

copies of (Y ′, X ′)′. For mean regression the single-index assumption means that

there exists a column parameter vector β0 ∈ Rp such that

E(Y |X) = E(Y |X ′β0). (2.1)

Only the direction given by β0 is identified, so that an additional identification

condition accompanies the model assumption. The usual conditions are ‖β0‖ = 1

and an arbitrary component is set positive, or an arbitrary component is set

equal to 1. The scalar product X ′β0 is the so-called index. The direction β0

and the nonparametric univariate regression E(Y |X ′β0) have to be estimated.

See Hristache, Juditsky and Spokoiny (2001), Delecroix, Hristache and Patilea

(2006), Horowitz (2009), Xia, Härdle and Zhu (2011), and the references therein

for a panorama of the existing estimation procedures.

When applying the single-index paradigm to conditional laws of Y given X,

one supposes

Y ⊥ X|X ′β0. (2.2)

In this case the direction defined by β0 and the conditional law of the response Y

given the index X ′β0 have to be estimated. See Delecroix, Härdle and Hristache

(2003), Hall and Yao (2005), and Chiang and Huang (2012) for the available

estimation approaches.

There are several model check approaches for SIM for mean regressions.

Xia et al. (2004) use an empirical process-based statistic related to that of
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Stute, González-Manteiga and Quindimil (1998). Fan and Li (1996) use a kernel

smoothing-based quadratic form to a wide range of situations, including single-

index. Our test statistics are somehow close to that of Fan and Li (1996). An

empirical likelihood test is used in Chen and Van Keilegom (2009) for multi-

dimensional Y in a parametric or semiparametric modeling; the single-index

mean regression is presented as a particular case but without getting into the

details.

In this paper we propose an alternative model check approach that is able to

detect any departure from the single-index assumption, both for mean regressions

and conditional law models. It is inspired by a general approach to testing

nonparametric significance that is presented in the following section.

3. A General Approach for Testing Nonparametric Significance

Let (H, 〈·, ·〉H) be a Hilbert space. The examples we have in mind correspond

to H = Rd, for some d ≥ 1, or H = L2[0, 1]. Consider U ∈ H, Z ∈ Rq, and W

∈ Rr, and let (Ui, Zi,Wi), 1 ≤ i ≤ n denote an independent sample of U , Z and

W . Consider the problem of testing the equality

E(U |Z,W ) = 0 a.s. (3.1)

against the nonparametric alternative P(E(U |Z,W ) = 0) < 1. Several test-

ing procedures against nonparametric alternatives, including the single-index as-

sumptions check, lead to this type of problem. For instance, in the case of a mean

regression single-index model, U could be proportional to the error term, Z could

be the index X ′β0, while W should carry the remaining information contained

in the covariate vector X. At this stage, one could, of course, use X instead

of (Z,W ). However, this split of the covariate vector prepares a major feature

of our approach: kernel smoothing will only involve Z, for which a density is

required, while no smoothing on W is used, and no density for W is required.

We need some notation. For any real-valued, univariate or multivariate func-

tion l, let F [l] denote the Fourier Transform of l. Let K be a multivariate kernel

on Rq such that F [K] > 0 and let φ(s) = exp(−‖s‖2/2), ∀s ∈ Rr. The kernel

K might be a multiplicative kernel with univariate kernels with positive Fourier

Transform. Many univariate kernels have this property: gaussian, triangular,

Student, logistic, etc.

Let w(·) > 0 be some weight function, and for any h > 0 let

I(h) = E
{
〈U1, U2〉H w(Z1)w(Z2)h−qK

(
Z1 − Z2

h

)
φ(W1 −W2)

}
. (3.2)
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Our approach is based on the following key property: for any h > 0,

E(U |Z,W ) = 0 a.s. ⇔ I(h) = 0. (3.3)

A formal proof of this statement is provided in Lemma A.1 in the Appendix. To

check (3.1) the idea is to build a sample-based approximation of I(h), to suitably

normalize it and to let h to decrease to zero. See also Lavergne, Maistre and

Patilea (2015), Section 2.2, for a related approach. A convenient choice of w(·)
would avoid handling denominators close to zero.

In many situations the sample of Uw(Z) is not observed and has to be

estimated inside the model. Then, an estimate of I(h) is given by the U -statistic

In(h) =
1

n(n− 1)hq

∑
1≤i 6=j≤n

〈
̂Uiw(Zi), ̂Ujw(Zj)

〉
H
Kij(h)φij ,

where

Kij(h) = K

(
Zi − Zj

h

)
, φij = exp

(
−‖Wi −Wj‖2

2

)
.

The variance of In(h) can be estimated by n−2h−qv2
n(h) where

v2
n(h) =

2

n(n− 1)hq

∑
1≤i 6=j≤n

〈
̂Uiw(Zi), ̂Ujw(Zj)

〉2

H
K2
ij(h)φ2

ij .

Then the test statistic is

Tn = nhq/2
In(h)

vn(h)
.

Under mild technical conditions, and provided that h converges to zero at a

suitable rate, Tn converges in law to a standard normal distribution when (3.1)

holds true. Hence, a one-sided test with standard normal critical values can be

defined; see Lavergne, Maistre and Patilea (2015). One can also show Tn tends

to infinity in probability if P(E[U |Z,W ] = 0) < 1. Making h to decrease to

zero at a suitable rate allows one to render negligible the effect of the errors
̂Uiw(Zi) − Uiw(Zi). On the other hand, the test detects alternative hypotheses

like

H1n : E(U |Z,W ) = rnδ(Z,W ), n ≥ 1, (3.4)

as soon as r2
nnh

q/2 →∞.

4. Single-Index Assumptions Checks

In this section we extend this approach to test single-index assumptions like

(2.1) and (2.2). In the notation from Section 3, q = 1, r = p− 1, Z = Z(β) and

W = W (β) where, for β ∈ B ⊂ Rp,
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Z(β) = X ′β and W (β) = X ′A (β)

with A (β) a p × (p − 1) matrix with real entries such that the p × p matrix

(βA (β)) is orthogonal. Orthogonality is not necessary, invertibility suffices, but

orthogonality is expected to lead to better finite sample properties for the tests.

We assume that B is a set of vectors β that satisfy one of the two model identi-

fication conditions mentioned in Section 2.

An additional challenge comes from the fact that the sample of the covariates

Z and W depends on estimator of the single-index direction β0. Again, the kernel

smoothing and a suitable choice of h allows one to render this effect negligible

and to preserve a pivotal asymptotic law under the null hypothesis.

4.1. Testing SIM for mean regression

To simplify the presentation, we focus on the case of a univariate response

(d = 1). At the end, it will be clear how the case d > 1 could be handled. Let

H = R, Uw(Z) = U(β0)w(Z;β0) where

U(β)w(Z;β) = [Y − E{Y |Z(β)}]fβ(Z(β)).

Here fβ(·) denotes the density of X ′β that is supposed to exist, at least for some

β. Let

̂Uiw(Zi)(β) =
1

n− 1

∑
k 6=i

(Yi − Yk)
1

g
Lik(β, g), (4.1)

where L is a univariate kernel, Lik(β, g) = L({Zi(β) − Zk(β)}/g), and g is a

bandwidth converging to zero at some suitable rate. Let β̂ be some estimator of

the index direction and consider

I{m}n (β̂) =
h−1

n (n− 1)

∑
i 6=j

̂Uiw(Zi)(β̂) ̂Ujw(Zj)(β̂)Kij(β̂, h)φ(Wi(β̂)−Wj(β̂)),

where Kij(β̂, h) = K({Zi(β̂) − Zj(β̂)}/h). The variance of I
{m}
n (β̂) can be esti-

mated by

ω̂{m}n (β̂)2 =
2h−1

n (n− 1)

∑
i 6=j

∣∣∣ ̂Uiw(Zi)(β̂) ̂Ujw(Zj)(β̂)
∣∣∣2K2

ij(β̂, h)φ2(Wi(β̂)−Wj(β̂)).

The test statistic is then

T {m}n (β̂) = nh1/2 I
{m}
n (β̂)

ω̂
{m}
n (β̂)

.

Only smoothing with the X ′iβ̂’s is required in order to build this statistic.

In Section 4.3 we show that whenever β̂ − β∗ = OP(n−1/2), for some β∗ that
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could depend on n,

I{m}n (β̂)− I{m}n (β∗) = oP(I{m}n (β∗)) and ω̂{m}n (β̂)− ω̂{m}n (β∗) = oP(ω̂{m}n (β∗)),

(4.2)

provided some mild technical conditions hold true. Under the null hypothesis

(2.1) one expects to have β∗ = β0. Then T
{m}
n (β̂) has an asymptotic standard

normal law under the single-index assumption as soon as T
{m}
n (β0) is asymptot-

ically standard normal. Conditions for guaranteeing the asymptotic normality

of T
{m}
n (β0), when (2.1) holds true, are given in Lavergne, Maistre and Patilea

(2015).

When (2.1) does not hold, even asymptotically, a semiparametric estimator

β̂ generally converges at the rate OP(n−1/2) to some pseudo-true value β∗ ∈ B
that depends on the estimation procedure; see Delecroix, Hristache and Patilea

(1999) for some general theoretical results. Then the asymptotic equivalence

(4.2) and the results of Lavergne, Maistre and Patilea (2015) imply that a test

based on T
{m}
n (β̂) rejects the null hypothesis with probability tending to 1, in just

the way the test based on T
{m}
n (β∗) would do. The case of Pitman alternatives

requires a longer investigation since the conclusion depends on the estimation

method and the properties of the deviation from the null hypothesis. Such a

detailed investigation is beyond our present scope. We do briefly comment on

the case where the index β0 is estimated through a semiparametric least-squares

procedure as introduced by Ichimura (1993). To estimate the mean regression

single-index model, one defines a family of univariate regression functions rβ(s) =

E{Y |Z(β) = s}, s ∈ R, β ∈ B. The single-index model is valid if E(Y |X) =

rβ0
(Z(β0)). Then β0 is the solution of the minimization problem

min
β∈B

E
[
{Y − rβ(Z(β))}2

]
.

In the semiparametric least-squares approach, one supposes that β0 is the unique

solution of this minimization problem, and defines β̂, the semiparametric esti-

mator, as a minimum of a sample counterpart of E
[
{Y − rβ(Z(β))}2

]
where the

regression rβ(·) is replaced by a nonparametric estimate, for instance obtained

by kernel smoothing. Now, consider the sequence of alternatives

Y = m(Z(β0)) + rnδ(Z(β0),W (β0)) + ε, n ≥ 1,

where E(ε|X) = 0 a.s., m(·) is some univariate function, δ(·) is some function of

the covariate vector, and rn, n ≥ 1, is some bounded sequence of real numbers.

For illustration, assume that δ(X) satisfies the orthogonality conditions

E{δ(Z(β0),W (β0))|Z(β0)} = 0



120 MAISTRE AND PATILEA

E[δ(Z(β0),W (β0))m′(Z(β0)){X − E[X|Z(β0)}] = 0, (4.3)

where m′(·) denotes the derivative of the univariate function m(·). Then,

∀n, β0 = arg min
β∈B

E
[
{Y − rβ(Z(β))}2

]
(4.4)

and, under suitable technical conditions and using the same type of arguments

as used to study the rate of convergence of β̂ when SIM is correct, it can be

proved that β̂ − β0 = OP(n−1/2). (See the Appendix for a justification of (4.4)

and a comment on (4.3).) Hence, by our results in the sequel, T
{m}
n (β̂) behaves

asymptotically as T
{m}
n (β0). More precisely, if r2

nnh
1/2 → C with 0 ≤ C < ∞,

nh1/2T
{m}
n (β̂)→ N (Cµ, 1) in law, where

µ = E
{∫

δ (s,W1) δ (s,W2) f2
β0

(s)π (s|W1)π (s|W2)φ (W1 −W2) ds

}
> 0.

Here W1,W2 are independent copies of W (β0), and π(·|W (β0) = w) denotes the

density of Z(β0) given W (β0) = w. If r2
nnh

1/2 → ∞, nh1/2T
{m}
n (β̂) → ∞ in

probability. See Theorem 1 in Lavergne, Maistre and Patilea (2015). Thus our

test detects such local alternatives as soon as r2
nnh

1/2 →∞.

4.2. Testing SIM for the conditional law

To test the single-index condition (2.2) for the conditional law of an univari-

ate Y given X, let H = L2[0, 1] and, for each t ∈ [0, 1] and β ∈ B, let

U(t;β)w(Z;β) = {1{Φ(Y ) ≤ t} − P(Φ(Y ) ≤ t|Z(β))} fβ(Z(β)),

where Φ is some distribution function on the real line. For instance φ could be

a normal distribution function or the marginal distribution function of Y . In

the latter case, the marginal distribution could be estimated by the empirical

distribution function. The case of multivariate Y could be also considered after

obvious modifications, and for the sake of simplicity, will not be investigated

herein.

For β ∈ B and t ∈ [0, 1], let

̂Uiw(Zi)(β)(t) =
1

n− 1

∑
k 6=i

(1{Φ(Yi) ≤ t} − 1{Φ(Yk) ≤ t})
1

g
Lik(β, g). (4.5)

Next, define

I{l}n (β)=
h−1

n (n−1)

∑
1≤i 6=j≤n

〈
̂Uiw(Zi)(β), ̂Ujw(Zj)(β)

〉
L2
Kij(β, h)φ(Wi(β)−Wj(β)),

where for any u(·) and v(·) squared integrable functions defined on [0, 1], 〈u, v〉L2

=
∫ 1

0 u(t)v(t)dt. The variance of I
{l}
n (β) can be estimated by n−2h−1ω̂

{l}
n (β)2,
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where

ω̂{l}n (β)2 =
2h−1

n (n−1)

∑
i 6=j

〈
̂Uiw(Zi)(β), ̂Ujw(Zj)(β)

〉2

L2
K2
ij(β, h)φ2(Wi(β)−Wj(β)).

(4.6)

Given β̃, some estimator of β0, the test statistic is

T {l}n (β̃) = nh1/2 I
{l}
n (β̃)

ω̂
{l}
n (β̃)

.

In Section 4.3 we show that, under suitable technical conditions, whenever

β̃ − β] = OP(n−1/2),

I{l}n (β̃)− I{l}n (β]) = oP(I{l}n (β])) and ω̂{l}n (β̃)− ω̂{l}n (β]) = oP(ω̂{l}n (β])). (4.7)

Under the null hypothesis (2.2) one expects to have β] = β0. Then the asymptotic

normality of T
{l}
n (β0), see Proposition 2, implies that the asymptotic one-sided

test based on T
{l}
n (β̃) has standard normal critical values.

If the single-index assumption fails and the alternative is fixed, as in the case

of mean regression, one expects β̃ − β] = OP(n−1/2) for some pseudo-true value

β] ∈ B that depends on the estimation procedure. Then T
{l}
n (β̃) detects the al-

ternative with probability tending to 1. Concerning the case of local alternatives,

let δ(X, t) and rn → 0 such that

P(Φ(Y ) ≤ t|X) = P(Φ(Y ) ≤ t|X ′β0) + rnδ(X, t), t ∈ [0, 1],

is a conditional distribution function. Suitable orthogonality conditions for the

function δ(X, t) yield β̃−β0 = OP(n−1/2), and hence T
{l}
n (β̃) allows one to detect

such local alternatives as soon as r2
nnh

1/2 →∞.

4.3. Asymptotic results

Here we formally state the results that guarantee the asymptotic equivalences

(4.2) and (4.7). Let ̂Uiw(Zi)(β) be defined as in (4.1) or (4.5). Let In(β) (resp.

ω̂n(β)2) denote any of I
{m}
n (β) or I

{l}
n (β) (resp. ω̂

{m}
n (β)2 or ω̂

{l}
n (β)2).

Proposition 1. Suppose the conditions in Assumption 1 in the Appendix are

met. If βn is an estimator such that βn − β̄ = OP(n−1/2), then

In(βn)− In(β̄) = oP(In(β̄)) and ω̂n(βn)− ω̂n(β̄) = oP(ω̂n(β̄)).

In particular, if nh1/2In(β̄)/ω̂n(β̄) has a standard normal law under the single-

index null hypothesis, the test defined by nh1/2In(βn)/ω̂n(βn) has asymptotic

standard normal critical values. The test given by nh1/2In(βn)/ω̂n(βn) detects

local alternatives approaching the null hypothesis slower than n−1/2h−1/4 as soon
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as the test given by nh1/2In(β̄)/ω̂n(β̄) does.

A usual question raised when using smoothing-based test statistics is the

choice of the bandwidth h. The statistical literature includes some contribu-

tions on data-driven rate-optimal choices of the bandwidth for parametric mean-

regression, see, for instance, Horowitz and Spokoiny (2001) and Guerre and

Lavergne (2005). Their extension to the present framework would require a

theoretical investigation beyond the scope of this paper. Nevertheless, in the

empirical section we provide some evidence on the effect of the bandwidth h.

The asymptotic behavior of nh1/2In(β̄)/ω̂n(β̄) in the case of mean regres-

sion was investigated by Lavergne, Maistre and Patilea (2015). The case where

Uiw(Zi)(β) is a stochastic process seems less explored and we consider that here.

Proposition 2. Suppose the conditions in Assumption 1 in the Appendix are met

and the null hypothesis (2.2) holds true. If βn is such that βn − β0 = OP(n−1/2),

then nh1/2I
{l}
n (βn) /ω̂

{l}
n (βn)→ N (0, 1) in law under H0, and{

ω̂{l}n (β0)
}2
→
{
ω{l} (β0)

}2
= 2

∫
K2 (u) du×

∫ ∫
Γ2 (s, t) ds dt

× E
[∫

f4
β0

(z)φ2 (W1 (β0)−W2 (β0))πβ0
(z|W1 (β0))πβ0

(z|W2 (β0)) dz

]
,

in probability, where πβ0
(·|w) is the conditional density of Z(β0) knowing that

W (β0) = w, and for t, s ∈ [0, 1],

Γ (s, t) = E {ε (s) ε (t)} , ε (t) = 1{Φ(Y ) ≤ t} − P(Φ(Y ) ≤ t|X ′β0).

5. Empirical Evidence

For the conditional mean, we simulated the data using the model

Yi = X ′iβ + 4 exp
(
−
(
X ′iβ

)2)
+ δ‖Xi‖+ σεi, 1 ≤ i ≤ n, (5.1)

where Xi = (Xi1, . . . , Xip)
′ is standard normal and the true value of the pa-

rameter is β0 = (1, 1, 0, . . . , 0)′, with σ = 0.3. For the εi, we considered two

cases: a standard univariate normal law independent of the Xi’s and a centered

log-normal heteroscedastic setup

εi =
{

logN (0, 1)−
√

e
}
×
√

1 +X2
i2

2
.

The model (5.1) was proposed by Xia et al. (2004) and investigated only in the

case of a homoscedastic noise.

To estimate the parameter β, we consider the approach of Delecroix, Hris-

tache and Patilea (2006), with
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β̃ = arg min
β:β1>0

n∑
i=1

(
Yi −

∑
k 6=i YkL̃ik (β)∑
k 6=i L̃ik (β)

)2

, (5.2)

where

L̃ik(β) = L
(

(X̃i − X̃k)
′β
)
, X̃i =

n1/2Xi√∑n
k=1(Xk −X)2

and X = n−1
n∑
k=1

Xk.

The estimator is β̂ = β̃/‖β̃‖ and the bandwidth g is ‖β̃‖−1.

To improve the asymptotic critical values with small samples, we propose a

bootstrap procedure.

(i) Take

m̂i =

∑
k 6=i YkL̃ik(β̃)∑
k 6=i L̃ik(β̃)

.

(ii) For b ∈ {1, . . . , B}

(a) let Y ∗,bi = m̂i + ηi (Yi − m̂i), where the ηis are independent variables

with the two-point distribution

P
(
ηi =

1−
√

5

2

)
=

5 +
√

5

10
, P
(
ηi =

1 +
√

5

2

)
=

5−
√

5

10
.

(b) Take

β̃∗,b = arg min
β:β1>0

n∑
i=1

{
Y ∗,bi −

∑
k 6=i Y

∗,b
k L̃ik (β)∑

k 6=i L̃ik (β)

}2

and β̂∗,b =
β̃∗,b

‖β̃∗,b‖
and g∗,b = ‖β̃∗,b‖−1.

(iii) Take T
{m}∗,b
n as T

{m}
n where the Yis are replaced by the Y ∗,bi s, β̂ by β̂∗,b,

and the bandwidth g by g∗,b. The bandwidth h does not change. Repeat

Step (iii) B times. Compute the empirical quantiles of T
{m}∗,b
n using the B

bootstrap values.

The justification of this bootstrap procedure has been made in Theorem 2 of

Lavergne, Maistre and Patilea (2015) in the case of significance testing. The

same type of arguments, combined with the
√
n-convergence of β̃∗,b− β̃ given the

original sample, can be used to justify this bootstrap procedure. Presenting the

detailed arguments is beyond our present scope.

In our experiments the bootstrap correction was used with B = 499 boot-

strap samples. The level was fixed as α = 10%. We considered L (·) = K (·) to be
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Figure 1. Empirical rejections under H0 as a function of the bandwidth. ε heterosc.
means ε ∼ {logN (0, 1)− e} ×

√
(1 +X2

2 )/2.

the standard gaussian density. With this choice no numerical problem occurred

due to denominators too close to zero, and therefore we did not consider any

trimming in (5.2) and its bootstrap version.

First, we investigated the influence of the bandwidth h on the level. Several

bandwidths were considered: h = c× n−2/9 with c ∈ {2k/2 : k = ±2,±1, 0}. The

results on empirical rejection rates for the model defined at (5.1) with δ = 0, and

n = 100 are presented in Figure 1. The results are based on 500 replications, with

homoscedastic noise and p = 2, p = 4, and with heteroscedastic log-normal noise

and p = 4. The normal critical values are quite inaccurate, while the bootstrap

correction seems to overreject slightly, particularly for a large bandwidth h. For

the third case with heteroscedastic noise, the test rejects too often. For larger

sample sizes, this drawback is mitigated, as can be seen from the fourth plot in

Figure 1 where we considered the heteroscedastic noise with p = 4 and n = 200.

Next, we studied the behavior of our statistic under the null hypothesis (500

replications) and several alternatives (250 replications) defined by some positive

value of δ. We only considered the statistics with bandwidth factor c = 1, and

compared them to the statistics introduced by Fan and Li (1996) with gaussian

kernels, gFL the estimated bandwidth, and hFL = n−2/9, and to Xia et al. (2004)

based on CV TD and CV T ∗D. A referee brought our attention to Xia (2009). The

idea there is related, but quite different from ours. In Xia’s approach, Xia’s SCV,

one searches for the worst direction to reveal the possible misspecification of the

model, in some sense, while our procedure averages over all projective directions.

Hence, depending on the alternative, one would expect that in some cases Xia’s

procedure could outperform our test, while in others ours could perform better.
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Figure 2. Power curves for model (5.1), n = 100.

We also investigated the approach proposed in Xia (2009) using the code available

at http://www.stat.nus.edu.sg/~staxyc/SCV.m with the same residuals as

those we used in the other methods. The results are presented in Figure 2.

Xia et al. (2004)’s test performs better for p = 2, while our test shows better

performance for p = 4. It appears that the greater p is, the more advantageous

it is to use our test statistic. The alternative we considered, radial function, has

the performance of the test proposed by Xia (2009) to be poor.

For the conditional law, we simulated the data using the mixture model

Yi = (1− δ)X ′iβ + δ ‖Xi‖+ εi, 1 ≤ i ≤ n, (5.3)

where Xi = (Xi1, Xi2)′ has a standard normal bivariate law, εi ∼ N (0, 0.25)

and β0 = (1, 1)′ /
√

2. We applied the test statistic I
{l}
n based on the quantities

̂Uiw(Zi)(β)(t) introduced in (4.5). Here the events {Φ(Yi) ≤ t} are defined with

Φ(·) equal to the empirical distribution function of the Yi’s. In this case an

event {Φ(Yi) ≤ t} is determined by the rank of Yi in the sample of the response

variable. To estimate the index parameter β we use the approach of Chiang and

Huang (2012): set

β̌ = arg min
β:β1>0

n∑
i=1

m∑
j=1

{
1
(
Yi ≤ Y(j)

)
− Ĝi,β

(
Y(j)

)}2
,

where Y(1) ≤ · · · ≤ Y(m) are the m distinct ordered observations of Y ,

Ĝi,β (y) =

∑
k 6=i 1 (Yk ≤ y) L̃ik (β)∑

k 6=i L̃ik (β)
,

with Ĝi,β set to 0 whenever its denominator is null.

For the bootstrap procedure of this test statistic, consider the following.

http://www.stat.nus.edu.sg/~staxyc/SCV.m
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(i) Take

G̃i,β (y) =

∑n
k=1 1 (Yk ≤ y) L̃ik (β)∑n

k=1 L̃ik (β)
.

(ii) For b ∈ {1, . . . , B}

(a) let Y ∗,bi = G̃−1
i,β (νi) where the νi’s are independent variables U ([0, 1])

and G̃−1
i,β (u) = inf

{
y : G̃i,β (y) ≥ u

}
.

(b)

β̌∗,b = arg min
β:β1>0

n∑
i=1

m∑
j=1

{
1
(
Y ∗,bi ≤ Y ∗,b(j)

)
− Ĝi,β

(
Y ∗,b(j)

)}2
.

(iii) Take T
{l}∗,b
n as T

{l}
n , where the Yi’s are replaced by the Y ∗,bi ’s and β̌ by β̌∗,b.

Repeat Step (iii) B times. Compute the empirical quantiles of T
{l}∗,b
n using

the B bootstrap values.

Here G̃i (·;β) is nothing but an estimation of the conditional c.d.f. of Y knowing

X ′β = X ′iβ. Therefore, Y ∗,bi is drawn by inverse transform sampling. This is

equivalent to drawing the Y ∗,bi from the law

P ∗n,i =

n∑
k=1

wikδYk
, wik =

L̃ik (β)∑n
k=1 L̃ik (β)

,

where δYk
denotes the Dirac mass at Yk.

For different sample size n = 50, 100, or 200, we studied the influence of

bandwidth h on empirical rejection under H0 on Figure 3, where h = c × n−2/9

with c ∈ {2k/2 : k = ±2,±1, 0}, with 1,000 replications and 199 bootstrap

steps. The normal critical values produce empirical rejections close to zero (not

reported), but the bootstrap correction is quite effective and results in a good

level.

We also investigated the empirical rejection rate for different values of the

proportion δ in the model (5.3). The results are presented on Figure 4. We used

1,000 replications for δ = 0, 500 replications otherwise, and 199 bootstrap steps.

5.1. Data application

The proposed approach for testing the single-index hypothesis for condi-

tional law is applied to check the goodness-of-fit of the model on air quality

data proposed by Chiang and Huang (2012). We try to explain the average

ozone concentration from average wind speed (wind), maximum daily temper-

ature (temp), and solar radiation level (solar) on 111 daily observations from
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Figure 3. Empirical rejections under H0, with bootstrap critical values and bandwidth
h = c× n−2/9 with varying c.

δ δ δ

Figure 4. Power curves for model (5.3).

May to September 1973 in the New York metropolitan area. Based on a lasso

procedure with variables wind, temp, solar, wind2, temp2, solar2, wind×temp,

wind×solar, and temp×solar, Chiang and Huang (2012) removed variables solar,

temp2 and wind×solar. Each of the 6 variables was standardized and the index

estimation done; it is given in Table 1. We used the test statistic with quartic

kernel L(u) = K(u) = (15/16)(1 − u2)21(|u| ≤ 1) and h = n−2/9. It yielded a

p-value of 0.74 based on 199 bootstrap samples. Thus, on the basis of our test

of the single-index assumption on the conditional law, the model proposed by

Chiang and Huang (2012) is not rejected by the data.

6. Conclusions and Furthers Extensions

We have constructed a smoothing-based test procedures for SIM hypotheses

for mean regression and for the conditional law. Smoothing is only used on the
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Table 1. Index estimate for the conditional law of ozone concentration.

Estimate
wind 0.434
temp −0.639
wind2 −0.320
solar2 0.240
wind×temp −0.473
temp×solar −0.141

estimated index, and the corresponding test statistics are asymptotically stan-

dard normal. A quite effective wild bootstrap procedure allows one to correct

the critical values with small samples. Our approach also applies to the case

of multivariate responses. See Chen and Van Keilegom (2009) for more gen-

eral situations with multivariate responses where our test methodology applies.

Moreover, our statistics directly generalize to test multiple index against fully

nonparametric alternatives. It suffices to consider the general methodology pre-

sented in Section 3 with q equal to the number of indices. Some other possible

extensions that would require additional, though quite straightforward, investi-

gation are the goodness-of-fit checks of index quantile regressions, see Kong and

Xia (2012), and the functional index models, see Chen, Hall and Müller (2011).

As suggested by a referee, as in the papers of Fan and Li (1996) and Xia (2009),

the approach we introduce herein could be extended to a larger class of semi-

parametric models, as for instance, partially linear mean regression and varying

coefficient models. Such extensions are left for future work.

Supplementary Materials

The Supplementary Material contains the proofs of Lemma A.1 and Propo-

sition 2 some details on equation (4.4) and on the proof of Proposition 1 and

Lemmas 1–4.

Acknowledgment

V. Patilea gratefully acknowledges support from the research program New

Challenges for New Data of Genes, LCL and Fondation du Risque.

Appendix: Assumptions and Proofs

A.1. Proof of the identity (3.3)

Let I(h) be defined at (3.2) with φ(s) = exp(−‖s‖2/2), ∀s ∈ Rr. We justify
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the identity (3.3). The proof is given in the Supplementary Material. See also

Lavergne, Maistre and Patilea (2015) for a related result.

Lemma A.1. Let (U1, Z1,W1) and (U2, Z2,W2) be independent draws of (U,Z,

W ). Let K(·) be a bounded, even, integrable function with positive, integrable

Fourier transform. Assume E(‖Uw(Z)‖2H) <∞, Then for any h > 0,

E (U |Z,W ) = 0 a.s.⇔ I(h) = 0.

Moreover, if P (E [U |Z,W ] = 0) < 1, then infh∈(0,1] I(h) > 0.

A.2. Assumptions and proofs of Propositions 1 and 2

For this, let H be the real line or L2[0, 1], the Hilbert space of squared

integrable functions defined on [0, 1]. The parameter set is to satisfy: B ⊂ {1}
× Rd−1 or B ⊂ {‖γ‖−1γ : γ ∈ Rd, γ1 > 0}. For an observation (Yi, X

′
i)
′, Yi ∈ R

and Xi ∈ Rp, let Yi(t) ≡ Yi or Yi(t) = 1{Yi ≤ Φ−1(t)}, and for any β in the

parameter set B ⊂ Rp, let ri(t;β) = E{Yi(t)|Zi(β)}, t ∈ [0, 1]. Thus, Yi(·) ∈ H.

Let (εi(·), X ′i)′, 1 ≤ i ≤ n, be random variables such that εi(·) ∈ H and

Xi ∈ Rp. Let β̄ be some element in the parameter set B. Consider ri(t; β̄),

depending only on Zi(β̄) = X ′iβ̄ and δ(Xi, t), be such that E[δ(Xi, t)|Zi(β̄)] = 0,

t ∈ [0, 1]. Take

Yni(t) = ri(t; β̄) + rnδ(Xi, t) + εi(t), t ∈ [0, 1], 1 ≤ i ≤ n,

where rn, n ≥ 1, is some bounded sequence of real numbers. In particular this

means E{Yni(·)|Zi(β̄} = ri(·; β̄). A null sequence (rn) corresponds to the null

hypothesis, while a sequence tending to zero corresponds to local alternatives.

Assumption 1. a) The random variables (εi(·), X ′i)′, 1 ≤ i ≤ n, are independent

copies of ε(·) ∈ H and X ∈ Rp. Moreover, X ′β̄ admits a bounded density fβ̄.

b) E{exp(ρ‖Xi‖)} < ∞ for some ρ > 0 and E{supt |ri(t; β̄) + εi(t)|a} < ∞
for some a > 8. Moreover, E(‖εi(·)‖2H|Xi) is bounded.

c) For any t ∈ [0, 1], the map v 7→ E{Yni(t)|Zi(β̄) = v} is twice differentiable.

The second derivative r′′i (·; β̄) is Lipschitz with constant independent of t and

uniformly bounded, while the first derivative satisfies E{‖r′i(·; β̄)‖4H} <∞.

d) The function fβ̄(·) is Lipschitz.

e) The function δ(·, ·) is bounded.

f) The kernels K and L are symmetric integrable functions, differentiable

except at most a finite set of points and L′ is Lipschitz continuous. Moreover,∫
R |L(t)|dt =

∫
|K(t)|dt = 1 and

∫
R(|L′(t)| + |K ′(t)|)dt < ∞. The map v 7→

|L′(v)|/v is bounded in a neighborhood of the origin, v2K(v)→ 0 if v →∞, and
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v2{|L(v)|+ |K(v)|}dv <∞. Moreover, the Fourier Transform F [K] is positive

on the real line and integrable.

g) The bandwidths satisfy g, h→ 0, h/g2 → 0, nh1/2g4 → 0, r2
nnh

1/2 →∞.

Moreover, g = n−γ with γ ∈ (1/5, 1/4) and thus nh2/ log3 n→ ∞.

Our conditions are related to those used by Lavergne, Maistre and Patilea

(2015) to derive the asymptotic results and justify the validity of their bootstrap.

As in Xia et al. (2004), we only require a density for the index X ′β̄, while Fan and

Li (1996) and Xia (2009) impose a density for the covariate vector. Higher order

kernels with positive Fourier transform could be also used, if more regularity

on the regression function is imposed. This would result in reducing the bias

of the nonparametric estimation of Uw(Z), and hence relaxing the condition

nh1/2g4 → 0.

Proof of Proposition 1. For any an →∞,

P
(

max
1≤i≤n

‖Xi‖ > an log n

)
→ 0 and P

(
‖βn − β̄‖ > ann

−1/2
)
→ 0. (A.1)

Moreover, at least for β in a fixed but small enough neighborhood of β̄, the

matrix A (β) can be built such that the norm of each of the p − 1 columns of

A (β)−A
(
β̄
)

is bounded by c‖β−β̄‖ with c a constant independent of β. Indeed,

one could consider and (p−1)-dimension orthogonal basis in the space of vectors

orthogonal on β̄. With a small enough neighborhood of β̄, this orthogonal basis

could be completed by any β close to β̄ to form a basis in Rp. Next one can

use the Gram-Schmidt procedure to orthonormalize the basis, starting from β.

Finally, the last p− 1 orthogonal vectors in the basis can be used to build A (β).

By construction, the norm of any column of A (β)−A
(
β̄
)

is bounded by c‖β−β̄‖
for some c, depending only on β̄ and its neighborhood and the initial (p − 1)-

dimension orthogonal basis orthogonal on β̄. The details are provided in the

Supplementary Material. All these facts show that we can reduce the parameter

set to Bn, n ≥ 1, a sequence of balls centered at β̄ of radius converging to zero.

Consider the set of elementary events

En =

{
max

1≤i≤n
sup
β∈Bn

(‖Zi(β)− Zi(β̄)‖+ ‖Wi(β)−Wi(β̄)‖) ≤ bn

}
, (A.2)

where bn is a sequence such that bn ↓ 0. The equation (A.1) indicates that

the sequences Bn and bn could be taken such that the radius of Bn converges

to zero slower than n−1/2 and faster than bn, and bnn
1/2/ log n → ∞. Then

P(βn ∈ Bn) → 1 and P(Ecn) decreases to zero faster than any negative power
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of n. Hence, in the following it will suffices to prove the statements on the set

{βn ∈ Bn} ∩ En.

We focus on In(βn) since the arguments for ω̂(βn) are similar and much

simpler. Hereafter, we write Yi(t) instead of Yni(t) even when rn 6= 0. To prove

that In(βn)−In(β̄) = oP(In(β̄)) we will show that In(βn)−In(β̄) = oP(n−1h−1/2+

r2
n). This shows that In(βn) is negligible compared to In(β̄) both on the null and

alternative hypotheses. Indeed, under the null hypothesis, rn ≡ 0, β̄ = β0 and

nh1/2In(β0) is asymptotically centered normal, while on the alternative the In(β̄)

is driven by a term of order r2
n.

In the following C, C ′, . . . denote constants that may have different values

from line to line. We write V̂i(β) = ̂Uiw(Zi)(β) and

Lij(β) = Lij(β, g), Kij(β) = Kij(β, h), φij(β) = φ(Wi(β)−Wj(β)). (A.3)

Then,

In(β)− In(β̄) =
h−1

n(n− 1)

∑
i 6=j

{〈
V̂i(β), V̂j(β)

〉
H
−
〈
V̂i(β̄), V̂j(β̄)

〉
H

}
Kij(β̄)φij(β̄)

+
h−1

n(n− 1)

∑
i 6=j

〈
V̂i(β̄), V̂j(β̄)

〉
H

{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
+

h−1

n(n− 1)

∑
i 6=j

{〈
V̂i(β), V̂j(β)

〉
H
−
〈
V̂i(β̄), V̂j(β̄)

〉
H

}
×
{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
= Dn1(β) +Dn2(β) +Dn3(β).

We only investigate the rates of Dn1 and Dn2 since Dn3 is uniformly smaller. Let

Dn1(β) =
2

n(n− 1)h

∑
i 6=j

〈
V̂i(β)− V̂i(β̄), V̂j(β̄)

〉
H
Kij(β̄)φij(β̄)

+
1

n(n− 1)h

∑
i 6=j

〈
V̂i(β)− V̂i(β̄), V̂j(β)− V̂j(β̄)

〉
H
Kij(β̄)φij(β̄)

= 2Dn11(β) +Dn12(β).

We have

V̂i(β̄)(t) =
1

n− 1

∑
k 6=i
{Yi(t)− Yk(t)}

1

g
Lik(β̄)

= {Yi(t)− ri(t; β̄)}fβ̄(X ′iβ̄) + {Yi(t)− ri(t; β̄)}

 1

n− 1

∑
k 6=i

1

g
Lik(β̄)− fβ̄(X ′iβ̄)
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+
1

n− 1

∑
k 6=i
{ri(t; β̄)− rk(t; β̄)}1

g
Lik(β̄)− 1

n− 1

∑
k 6=i
{Yk(t)− rk(t; β̄)}1

g
Lik(β̄)

= {Yi(t)− ri(t; β̄)}fβ̄(X ′iβ̄) + {Yi(t)− ri(t; β̄)}R1,ni +R2,ni(t)−R3,ni(t)

and, by Lemma 2, supi |R1,ni| = OP(g + n−1/2g−1/2 log1/2 n), while Lemma 1

yields

sup
1≤i≤n

sup
t∈[0,1]

|R3,ni(t)| = OP(n−1/2g−1/2 log1/2 n).

A representation of R2,ni(t) is provided in Lemma 3. On the other hand,

V̂i(β)(t)− V̂i(β̄)(t) =
1

n− 1

∑
k 6=i
{Yi(t)− Yk(t)}

{
g−1Lik(β)− g−1Lik(β̄)

}
.

Uniform bounds for Dn1.

The rate of Dn11. Since Yi(t) = ri(t; β̄) + rnδ(Xi, t) + εi(t), with E[εi(t)|Xi]

= 0, we have Dn11(β) = Dn111(β) +Rn11(β), with

Dn111(β) =
1

n(n− 1)2h

∑
i 6=j 6=k

〈
Yi(·)− Yk(·), Yj(·)− rj(·; β̄)

〉
H fβ̄(X ′j β̄)

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

=
1

n(n− 1)2h

∑
i 6=j 6=k

〈Yi(·)− Yk(·), εj(·)〉H fβ̄(X ′j β̄)

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄),

and Rn11(β) = Dn11(β)−Dn111(β). We write

Dn111(β) =
1

n(n− 1)2h

∑
i 6=j 6=k

〈εi(·)− εk(·), εj(·)〉H fβ̄(X ′j β̄)

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

+
1

n(n− 1)2h

∑
i 6=j 6=k

〈
ri(·; β̄)− rk(·; β̄), εj(·)

〉
H fβ̄(X ′j β̄)

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

+
rn

n(n− 1)2h

∑
i 6=j 6=k

〈δ(Xi, t)− δ(Xk, t), εj(·)〉H fβ̄(X ′j β̄)

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

= Dn1111(β) +Dn1112(β) + rnDn1113(β).

The quantity ghDn1111(β) can be decomposed into a sum of degenerate U -

processes of order 3 and another one of order 2 indexed by β. To bound them we
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use the maximal inequality of Sherman (1994). Since nh2, ng4 →∞, we deduce

that the degenerate U -process of order 3 is of uniform rate

n−3/2OP{hα/2(b2ng
−1)α/2} = gh× oP(n−1h−1/2),

over any sequence of balls centered at β̄ with radius decreasing to zero faster than

bn, where bn is a sequence such that bnn
1/2/ log n→∞, and α can be a number

in the interval (0, 1) arbitrarily close to 1. The details on how the maximal

inequality of Sherman (1994) applies are provided below for deriving the uniform

rate of Dn21. To bound the right-hand term in that maximal inequality we use the

fact that E(‖ε‖2H|X) and fβ̄(X ′β̄) are bounded and the uniform bounds (S2.9),

(S2.7) and (S2.8) from Lemma 4. Using similar arguments, the degenerate U -

process of order 2 in the decomposition of ghDn1111(β) can be shown to be of

uniform rate

n−1OP{hα/2(b2ng
−1)α/2} = gh× oP(n−1h−1/2),

provided that nh2, ng4 →∞ and α is sufficiently close to 1. Next, for ngDn1112(β),

centered, use the Hoeffding decomposition and the regularity of the function

v 7→ E[Y (t)|Z(β̄) = v]. For the degenerate U -processes of order 3 and 2 in the

Hoeffding decomposition of Dn1112(β) we apply the maximal inequality of Sher-

man (1994) as before. We deduce the respective uniform rates over Bn,

g2n−3/2OP{hα/2(b2ng
−1)α/2} = gh× oP(n−1h−1/2),

g2n−1OP{hα/2(b2ng
−1)α/2} = gh× oP(n−1h−1/2).

What remains is the U -process of order 1. Using the bounds from Lemma 4, we

deduce the uniform rate over Bn,

g2n−1/2OP{hα(b2ng
−1)α/2} = gh× oP(n−1h−1/2).

Then Dn1112(βn) = oP(n−1h−1/2). For ghDn1113(β) the arguments are similar,

but without the g2 factor, and yield the uniform rate

n−1/2OP{hα(b2ng
−1)α/2} = gh× oP(n−1h−1/2) = oP(n−1/2h−1/4),

if nh2, ng4 →∞ and α is close to 1. Then Dn111(βn) = oP(n−1h−1/2 + r2
n).

For Rn11(β) we can write

Rn11(β) =
1

n(n− 1)2h

∑
i 6=j

〈
Yi(·)− Yj(·), Yj(·)− rj(t; β̄)

〉
H fβ̄(X ′j β̄)

×
{
g−1Lij(β)− g−1Lij(β̄)

}
Kij(β̄)φij(β̄)

+
1

n(n− 1)2h

∑
i 6=j,i6=k

〈
Yi(·)− Yk(·), Yj(·)− rj(t; β̄)

〉
HR1,nj
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×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

+
1

n(n− 1)2h

∑
i 6=j,i6=k

〈Yi(·)− Yk(·), R2,nj(·) +R3,nj(·)〉H

×
{
g−1Lik(β)− g−1Lik(β̄)

}
Kij(β̄)φij(β̄)

= Rn111(β) +Rn112(β) +Rn113(β).

We only investigate Rn111(β), the terms Rn112(β) and Rn113(β) are uniformly

smaller compared to Dn111(β). We can write

Rn111(β) =
1

n− 1

1

n(n− 1)h

∑
i 6=j
〈εi(·)− εj(·), εj(·)〉H fβ̄(X ′j β̄)

×
{
g−1Lij(β)− g−1Lij(β̄)

}
Kij(β̄)φij(β̄)

+
1

n− 1

1

n(n− 1)h

∑
i 6=j

〈
ri(·; β̄)− rj(·; β̄), εj(·)

〉
H fβ̄(X ′j β̄)

×
{
g−1Lij(β)− g−1Lij(β̄)

}
Kij(β̄)φij(β̄)

+
1

n− 1

rn
n(n− 1)h

∑
i 6=j
〈δ(Xi, t)− δ(Xj , t), εj(·)〉H fβ̄(X ′j β̄)

×
{
g−1Lij(β)− g−1Lij(β̄)

}
Kij(β̄)φij(β̄)

= Rn1111(β) +Rn1112(β) + rnRn1113(β).

The leading term in Rn1111(β) is

1

n− 1

1

n(n− 1)h

∑
i 6=j
‖εj(·)‖2H fβ̄(X ′j β̄)

{
1

g
Lij(β)− 1

g
Lij(β̄)

}
Kij(β̄)φij(β̄).

By the boundedness of E[‖εj(·)‖2H |Xj ] and fβ̄(X ′j β̄), with Lemma 4, we find that

Rn1111(βn) = oP(n−1). Gathering these facts, Dn11(βn) = oP(n−1h−1/2 + r2
n).

The rate of Dn12. We have V̂i(β)(t) − V̂i(β̄)(t) = Yi(t)∆1,ni(β) + ∆2,ni(β)

with ∆1,ni(β) and ∆2,ni(β) independent of t, and

sup
1≤i≤n

sup
β∈Bn

(|∆1,ni|+ |∆2,ni|) = OP(n−1/2g−1/2 log1/2 n+ bn);

see Lemma 1. Replacing and taking absolute values, deduce

Dn12(βn) = OP(n−1g−1 log n+ n−1 log2 n) = oP(n−1h−1/2)

since g−1h1/2 → 0 and h log4 n→ 0. Gathering these facts,

Dn1(βn) = Dn11(βn) +Dn12(βn) = oP(n−1h−1/2 + r2
n).
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Uniform bounds for Dn2.

Dn2(β) =
1

n(n− 1)h

∑
i 6=j

〈
V̂i(β̄), V̂j(β̄)

〉
H

{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
=

1

n(n− 1)h

∑
i 6=j

〈
{Yi(t)− ri(t; β̄)}fβ̄(X ′iβ̄), {Yj(t)− rj(t; β̄)}fβ̄(X ′j β̄)

〉
H

×
{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
+ terms of smaller rate

= Dn21(β) + terms of smaller rate.

By construction, E{Yi(t)|Xi} = ri(t; β̄) + rnδ(Xi, t), so that

{Yi(t)− ri(t; β̄)}fβ̄(X ′iβ̄) = {εi(t) + rnδ(Xi, t)}fβ̄(X ′iβ̄),

with E[εi(t)|Xi] = 0, ∀t ∈ [0, 1]. Thus

Dn21(β) =
h−1

n(n− 1)

∑
i 6=j
〈εi(t), εj(t)〉H fβ̄(X ′iβ̄)fβ̄(X ′j β̄)

×
{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
+

2rnh
−1

n(n−1)

∑
i 6=j
〈εi(t), δ(Xj , t)〉H fβ̄(X ′iβ̄)fβ̄(X ′j β̄)

{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
+

r2
nh
−1

n(n−1)

∑
i 6=j
〈δ(Xi, t), δ(Xj , t)〉H fβ̄(X ′iβ̄)fβ̄(X ′j β̄)

{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
= Dn211(β) + 2rnDn212(β) + r2

nDn213(β).

The term Dn211(·) is a degenerate U -process of order 2, indexed by β. Consider

Fn = {h(·, ·;β) : β ∈ Bn} with

h((x1, ε1), (x2, ε2);β) = 〈ε1(·), ε2(·)〉Hfβ̄(x′1β̄)fβ̄(x′2β̄){K12(β)φ12(β)

−K12(β̄)φ12(β̄)}.

One can see that Fn is a VC class, Euclidean in the terminology of Sherman

(1994), for a squared integrable envelope H(·), with some A and V independent

of n, the δ-covering number of an Euclidean class of function is bounded by Aδ−V .

Indeed, the functions h(·, ·;β) are indexed by the parameter β that occurs only in

K12(β)φ12(β), all the other terms in the definition of h(·, ·;β) are fixed real-valued

functions of the observations. Thus it suffices to use the bounded variation of

the functions K(·) and φ(·), and apply standard results from Nolan and Pollard

(1987), Pakes and Pollard (1989) or van der Vaart (1998) to derive the polynomial

covering number for the family Fn, with constants A and V independent of n.

Since E{‖ε1(·)‖2H|X1} and fβ̄(X ′1β̄) are bounded, and the kernel K is bounded,
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by Lemma 4 we find that E
{

supβ∈Bn
h(·, ·;β)2

}
≤ Ch1/2bn for some constant

C > 0 independent on n and β̄. See Lemma 4. Applying the Main Corollary of

Sherman (1994) with k = 2, p = 1,

sup
β
|hDn211(β)| ≤ C ′

n
(bnh

1/2)α/2 =
h1/2

n
× (bnn

1/2)α/2 ×O((nh−1+2/α)−α/4)

for 0 < α < 1. Since and α can be taken arbitrarily close to 1, in particular

it could be in the interval (2/3, 1), and bnn
1/2 can be any sequence diverging to

infinity faster than log n, with nh2 →∞, deduce that Dn211(βn) = oP(n−1h−1/2).

For the uniform rate of the centered U -process Dn212(·), use the Hoeffding de-

composition. The degenerate U -process of order 2 in this decomposition is of

uniform rate oP(n−1/2). The degenerate U -process of order 1 in the decomposi-

tion, denoted by Dn212,1(β), is defined by the equation

hDn212,1(β) =
1

n

∑
i 6=j

γi(β;h)fβ̄(X ′iβ̄),

where

γi(β;h) = E
[
〈εi(·), δ(Xj , ·)〉Hfβ̄(X ′j β̄)

{
Kij(β)φij(β)−Kij(β̄)φij(β̄)

}
|Xi, εi(·)

]
.

Since fβ̄ and δ(X, ·) are supposed bounded, we have

|γi(β;h)| ≤ C‖εi(·)‖HE
{∣∣Kij(β)φij(β)−Kij(β̄)φij(β̄)

∣∣ |Xi

}
for some constant C > 0 depending of the bounds of fβ̄(·) and ‖δ(·, ·)‖H. Now,

by Lemma 4, and since nh2/ log3 n→∞ and b2nn can converge to infinity faster

than log2 n but slower than log3 n,

E
[

sup
β∈Bn

γ2
i (β;h)

]
≤

CE
[
E{‖ε(·)‖2H|X} sup

β∈Bn

E2
{∣∣Kij(β)φij(β)−Kij(β̄)φij(β̄)

∣∣ |Xi

}]
=O(b2nh)=o(h2).

As the functions K(·) and φ(·) are functions of bounded variation, and the Eu-

clidean property is preserved after taking conditional expectations, by the results

of Nolan and Pollard (1987), Pakes and Pollard (1989), and Sherman (1994), the

empirical process hDn212,1(β) is indexed by an Euclidean family of functions.

By the maximal inequality of Sherman (1994), Dn212,1(βn) = oP(n−1/2). Gath-

ering facts, rnDn212(βn) is negligible compared to r2
n. By the same arguments,

Dn213(βn) = oP(1). Conclude that Dn2(βn) = oP(n−1h−1/2 + r2
n).

The proof of Proposition 2 is provided in the Supplementary Material.
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