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Abstract: This paper is concerned with testing for infinite variation jumps, in addi-

tion to a continuous local martingale component, driven by Brownian motion using

high-frequency data. We develop a lack of fit type test based on the empirical

distribution of the “devolatized” increments. Under the null hypothesis that the

jump component is of finite variation, the empirical process associated with the “de-

volatized” increments converges to a Gaussian process in the Skorohod topology.

Under the alternative hypothesis that the jumps are of infinite variation, the empir-

ical process explodes. Theoretical results and simulation show good performance

on the size and power of the test. A financial data set is analyzed.

Key words and phrases: Infinite activity jumps, infinite variation jumps, Itô semi-

martingale.

1. Introduction

Itô’s semimartingale is of vital importance in stochastic calculus and widely

used in empirical studies in finance, environmental science, and other fields.

Mathematically, it is defined on a filtered probability space (Ω,Ft,F , P ) and

assumes the integral form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +Xd

t , (1.1)

where
∫ t

0 bsds is the drift with b an optional and càdlàg process,
∫ t

0 σsdWs is

a continuous local martingale with σs an adapted process and W a standard

Brownian motion, and Xd is a pure-jump component with the jump activity

index (JAI) β defined by

β = inf

{
r

∣∣∣∣ ∑
0≤s≤T

|∆sX|r <∞
}
, (1.2)

where ∆sX = Xs−Xs− is the jump size of X at time s and T is a fixed time hori-

zon. For the estimation of β, we refer to Aı̈t-Sahalia and Jacod (2009a), Todorov

and Tauchen (2010), Todorov and Tauchen (2011), and Jing et al. (2012). In
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this paper, we restrict Itô semimartingales to a deterministic JAI. β serves as an

indicator of the activity of jumps contained in Xd. The larger the β, the more

active the jumps. In particular, jump processes of finite activity (e.g., compound

Poisson process), finite variation, and infinite variation correspond to β = 0,

0 < β < 1 and 1 < β < 2, respectively.

Model (1.1) contains the Brownian driving force in the continuous local mar-

tingale term and the jump driving force in Xd, including the infinite variation

jump driving force (β > 1) and the finite variation jump driving force (β < 1).

Inference on the types of driving force underlying high-frequency data or time

series is of increasing interest in recent years. Barndorff-Nielsen and Shephard

(2006), Fan and Wang (2008), and Aı̈t-Sahalia and Jacod (2009b) derived tests

for the existence of jumps. Aı̈t-Sahalia and Jacod (2010), Todorov and Tauchen

(2014), Jing, Kong and Liu (2012), Kong, Liu and Jing (2015), and Todorov

(2015) established tests for the necessity of adding a Brownian force. Aı̈t-Sahalia

and Jacod (2011) studied whether the jump component is of finite activity or

not when the Brownian force is present. See Jacod and Protter (2012) for recent

developments.

In this paper, we investigate whether it is necessary to add an infinite vari-

ation jump term, in addition to a continuous local martingale, for the purpose

of modeling high-frequency data. It is generally accepted that small jumps of

infinite variation fluctuate rapidly and play the role of a Brownian motion. But

many empirical studies, cf, Aı̈t-Sahalia and Jacod (2009a), show evidence of in-

finite variation jumps in the presence of the diffusive process. This asks for a

statistical method to validate the modeling assumption of no infinite variation

jumps given a diffusive term. Statistically, this could be formulated as testing

for the hypotheses on {inf0≤s≤T σ
2
s > 0},

H0 : β ≤ 1 vs. H1 : β > 1. (1.3)

While much empirical evidence for the presence of infinite variation jumps

is based on an estimate of JAI, it is not reliable to propose a test using a point

estimator of it, since the estimation is challenging in the simultaneous presence

of a diffusive term. For example, the best convergence rate in Bull (2016) is nβ/4,

which is slow for β ≤ 1 and depends on the unknown β. In this paper, we develop

a lack of fit type test based on the empirical distribution of the “devolatized”

increments. Under H0, the empirical process associated with the “devolatized”

increments converges to a fully specified Gaussian process on any compact subset

of R at a rate close to
√
n. Under H1, it explodes. A comparison of the em-
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pirical distribution function with the Gaussian distribution function yields the

“Kolmognov-Smirnov type” test statistic, which successfully differentiates the

null and alternative hypotheses.

Thus we provide a theoretically sound test for the presence of infinite vari-

ation jumps in the presence of a diffusive term and a jump component of finite

variation. This test has many nice properties. In addition to its good perfor-

mance on size and power, the test becomes more powerful as JAI increases. This

is surprising since, at first glance, the larger the β the more the jump process

behaves like a Brownian motion in path regularities and hence seemingly harder

to detect. The reason for the increasing power against β is essentially because

of the frequency of small jumps or equivalently the jump intensity around the

origin. See the remark below Assumption 1 for more details.

We establish the asymptotic theory of the empirical distribution of the “de-

volatized” increments of Itô semimartingales with infinitely active or even infi-

nite variation jumps that is more desirable than that presented in Todorov and

Tauchen (2014) allowing only for finitely many jumps. Proofs are nontrivial.

Another distinctive feature of our paper is that we estimate the spot volatility

based on the realized Laplace transform approach.

The rest of the paper is arranged as follows. In Section 2, we state the as-

sumptions. Main results including the limit theorems of the empirical processes,

and the size and power performance of the lack of fit test are presented in Section

3. Section 4 is devoted to monte carlo simulations and data analysis. Proofs are

postponed to the supplement.

Throughout the paper, we assume that the available data set is {Xti ; 0 ≤
i ≤ n}, discretely sampled from X, with ti = i∆n with ∆n = T/n for 0 ≤ i ≤ n.

We denote the jth one-step increment by ∆n
jX = Xtj −Xtj−1

, 1 ≤ j ≤ n.

2. Basic Assumptions

First, we make an assumption on the pure-jump process Xd.

Assumption 1. 1. If β > 1,

Xd
t =

∫ t

0
γ+
s−dY

+
s +

∫ t

0
γ−s−dY

−
s +

∫ t

0

∫
R
δ(s, z)p(ds, dz),

where Y + and Y − are independent Lévy processes with positive jumps and Lévy

triplets (0, 0, F±), γ± are two càdlàg adapted processes, δ is a càdlàg predictable

process, and p is a Poisson random measure on R+×R with intensity q(dt, dx) =

dt⊗ dx. For some r < 1, the Lévy measure satisfies
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xβ

∣∣∣∣ ≡ ∣∣∣∣F±((x,∞))− 1

xβ

∣∣∣∣ ≤ g(x), x ∈ (0,∞),

with g(x) being a decreasing function s.t.
∫ 1

0 x
r−1g(x)dx <∞ and

∫∞
1 g(x)dx <

∞.

2. If β ≤ 1, γ+ = γ− ≡ 0.

Thus when β > 1, Xd has two β-stable-like driving forces. The assump-

tion on the Lévy measure of the stable-like driving processes is flexible enough,

requiring that the Lévy density is equivalent to that of a stable Lévy process

around the origin. The families of tempered stable processes with Lévy den-

sity
(
e−cx/x1+β

)
I(x > 0) and truncated stable processes with Lévy density(

1/x1+β
)
I(x ∈ (0, c]) are special examples. For them, the jumps have moments

of any polynomial order. As the coefficient processes γ±t can be either positive or

negative, Xd allows for asymmetric jumps in its trajectory, which captures the

empirical feature (downward jumps occur more frequently than upward jumps)

in financial markets due to risk aversion. When the jump activity index is smaller

than 1, Xd is completely nonparametric.

Assumption 2. 1. σt is an Itô semimartingale of the form

σt = σ0 +

∫ t

0
bσs ds+

∫ t

0
Hσ
s dWs +

∫ t

0
H ′σs dW

′
s +

∫ t

0

∫
R
δσ(s, x)p̃(ds, dx),

where all the integrands are optional processes satisfying the integrable condition

in Itô’s sense, and p̃ is another Poisson random measure independent of W with

intensity q̃(dt, dx) = dt⊗dx. W and W ′ are independent Brownian motions that

are independent of (p, Y +, Y −).

2. γ±t are Itô semimartingales of the form

γ±t = γ±0 +

∫ t

0
bγ

±

s ds+

∫ t

0
Hγ±

s dWs +

∫ t

0
H ′γ

±

s dW ′s

+

∫ t

0

∫
R
δγ

±
(s, x)p̄(ds, dx),

where all the integrands are optional processes satisfying the integrable condition

in Itô’s sense, and p̄ is another Poisson random measure independent of W with

intensity q̄(dt, dx) = dt⊗ dx.

Assumption 2 is standard in the literature. It allows for the “leverage”

effect due to the common driving force W in X, σ, and γ±. p̃ and p̄ are two

new Poisson random measures that may not necessarily be independent of each

other, or independent of p.
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Assumption 3. There is a sequence τn of stopping times increasing to infinity,

a sequence a′n of numbers, and a nonnegative Lebesgue-integrable function J on

R, such that the processes b, Hσ, Hγ±
, γ± are càdlàg adapted, the coefficients δ,

δσ and δγ
±

are predictable, the processes bσ, H ′σ, bγ
±

and H ′γ
±

are progressively

measurable and, for some constant r < 1,

t < τn ⇒ |δ(t, z)|r ∧ 1 ≤ a′nJ(z), |δσ(t, z)| ∧ 1 ≤ a′nJ(z),

|δγ±
(t, z)| ∧ 1 ≤ a′nJ(z);

t < τn, V = b, bσ, Hσ, H ′σ, bγ
±
, Hγ±

, H ′γ
±
, |σ|, |σ|−1 ⇒ |Vt| ≤ a′n,

V = b,Hσ, H ′σ, δσ, Hγ±
, H ′γ

±
, δγ

±

⇒ |E(V(t+s)∧τn − Vt∧τn |Ft)|+ E(|V(t+s)∧τn − Vt∧τn |
2|Ft) ≤ a′ns.

If β = 1, E([δ{(t + s) ∧ τn, x} − δ(t ∧ τn, x)]2|Ft) ≤ a′ns
1+ε uniformly for x ∈ R

and any ε > 0.

Assumption 3 is rather general. It is satisfied by the multifactor stochastic

volatility model that is widely used in financial econometrics, e.g., the popular

affine jump diffusion model in Duffie, Pan and Singleton (2000). This assumption

also requires that the jumps in σ and γ± be of finite variation.

3. Methodology and Main Results

3.1. Motivational example

Our test statistic is based on the empirical process of the “devolatized”

increments. As a motivation for constructing the empirical process, consider a

simple example of an Itô process, Xt = σ0
tWt + γα,tYα,t + γβ,tYβ,t, where σ0

t ,

γα,t, and γβ,t are three deterministic smooth functions, and Yα,t and Yβ,t are,

respectively, symmetric α and β stable Lévy processes with α < 1 and β > 1

representing jump processes of finite variation and infinite variation, respectively.

By smoothness and self-similarity, we have

∆n
jX√
∆n
≈ σ0

j∆n
Nj(0, 1) + γα,j∆n

∆1/α−1/2
n Sαj + γβ,j∆n

∆1/β−1/2
n Sβj , (3.1)

where the Nj(0, 1)’s, Sαj ’s, and Sβj ’s form sequences of i.i.d. standard normal,

symmetric α and β stable variables, respectively. From (3.1), the function

P ((∆n
jX)/

√
∆n > x) is not time invariant due to time varying of σ0

t . So, it

is beneficial to standardize the increments by estimated spot volatilities.

For fixed x, the function P (∆n
jX/(|σ0

j∆n
|
√

∆n) > x) ∼ 1−Φ(x) where Φ(x)

is the c.d.f. of standard normal random variable and hence is mainly due to the
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Brownian motion. The α-stable Lévy motion is completely dominated by the

other two terms and reduces to 0 even faster than
√

∆n. Although the β-stable

Lévy motion is negligible, its rate converging to 0 is slower than
√

∆n resulting in

a non-negligible bias (‘signal’ under H1) that cannot be balanced by the asymp-

totic variance (typically of order close to
√

∆n). So under the null hypothesis,

the devolatized increments look like those of a standard Brownian motion in dis-

tribution. Under H1, the unbalanced bias term due to γβ,j∆n
∆

1/β−1/2
n Sβj stands

out, resulting in good power which increases against β.

The tail for x ∼ c∆−$n , for some constants c > 0 and 0 < $ < 1/2,

is dominated by β (α under H0) stable Lévy motion if it is present, since

P (∆n
j Yβ/

√
∆n > x) ∼ c′x−β∆

1−β/2
n (c′x−α∆

1−α/2
n under H0) for some constant

c′ > 0, while P (∆n
jW/
√

∆n > x) ∼ (1/x)φ(x), where φ(x) is the p.d.f. of the

standard normal distribution. So it is better not to consider too large values of

x, otherwise size may not be safeguarded.

3.2. Method of devolatizing the increments

To estimate the spot volatility, we use the local method and thus split the

interval into non-overlapping shrinking blocks with block lengths equal to 2vn,

consisting of 2kn intervals of length ∆n, where kn is some integer depending

on n. Aggregation of local estimates is widely used in other contexts, cf, Myk-

land and Zhang (2009) Mykland, Shephard and Shephard (2012), and Todorov

and Tauchen (2012). Returning to our simple example of an Itô process, the

characteristic function of the symmetrized increment is

E

[
exp

{√
−1u

Xt+2∆n
−Xt+∆n

− (Xt+∆n
−Xt)√

∆n

}]
≈ E cos

{
u
Xt+2∆n

−Xt+∆n
− (Xt+∆n

−Xt)√
∆n

}
≈ exp (−u2σ02

t − 2|uγα,t|α∆1−α/2
n − 2|uγβ,t|β∆1−β/2

n ).

This suggests computing the sample analogue in the jth shrinking block,

Lj(u) =
1

kn

kn∑
l=1

cos

(
u

∆n
2jkn+2lX −∆n

2jkn+2l−1X√
∆n

)
,

cj(u) = − 1

u2
log

{
Lj(u) ∨ c√

kn

}
, 0 ≤ j ≤

{
n

(2kn)

}
− 1,

where the lower threshold c/
√
kn is to assure that the logarithmic function makes

sense. Our local estimate of σ2
j ≡ σ2

2jkn∆n
is
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σ̂2
j (u) = cj(u)− 1

u2kn
[sinh{u2cj(u)}]2,

where the subtracted term is used to correct the bias due to the jumps. This local

estimate was used in Jacod and Todorov (2014) to get an efficient estimator of

the integrated volatility, and in Kong, Liu and Jing (2015) to test for the presence

of a Brownian force. There are some other methods to estimate spot volatility,

cf, Todorov and Tauchen (2014), Jacod and Rosenbaum (2013), Fan and Wang

(2007), Li and Xiu (2016), and Li, Liu and Xiu (2017). For long-memory volatility

models that are driven by fractional Brownian motion, we refer to Comte and

Renault (1996) and Comte and Renault (1998). The major advantage of this

Laplace-transform-based local estimator is that it can easily separate the effect

of the Brownian force and the stable-like driving force.

For properly chosen mn and un, the empirical distribution function of the

devolatized increments is defined as

F̂n(un, τ) =
1

{n/(2kn)}mn

[n/(2kn)]∑
j=1

2jkn+mn∑
i=2jkn+1

I

 ∆n
i X√

σ̂2
j−1(un)∆n

≤ τ

 , (3.2)

for τ ∈ R.

3.3. Empirical processes and their limiting properties

We need some notation. Let Φ̃n
j,i(τ) be the c.d.f. of

∆n
2jkn+iW√

∆n
+
γ+
t2jvn+(i−1)∆n

∆n
2jkn+iY

+ + γ−t2jvn+(i−1)∆n
∆n

2jkn+iY
−

|σ2(j−1)kn∆n
|
√

∆n
,

conditional on F2jvn+(i−1)∆n
, and

Φn(τ) =
1

[n/(2kn)]mn

[n/(2kn)]∑
j=1

mn∑
i=1

Φ̃n
j,i(τ).

When the JAI of Xd is no larger than 1, Φ̄n(τ) reduces to Φ(τ).

Consider the empirical process

Ŷn(τ) =

√
n

2kn
mn

{
F̂n(un, τ)− Φ(τ)

}
.

As notation, let

Ut(u) = exp (−u2σ2
t − 2∆1−β/2

n uβat),where at = χ(β)(|γ+
t |β + |γ−t |β)

with χ(β) =
∫∞

0 y−β sin(y)dy, and ξj(u) = Lj(u)/U2jkn∆n
(u)− 1. Take
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Ẑn1 (τ) =
1

{n/(2kn)}mn

[n/(2kn)]−1∑
j=1

mn∑
i=1

{
I

(
∆n

2jkn+iW√
∆n

≤ τ
)
− Φ(τ)

}
,

Ẑn2 (τ) =
1

{n/(2kn)}

{n/(2kn)}−1∑
j=1

{
1

2
τΦ′(τ)

ξj−1(un)

u2
nσ

2
2kn(j−1)∆n

}
.

We first state a functional central limit theorem of Donsker’s type on the

empirical process when β ≤ 1.

Theorem 1. Suppose kn, un ↓ 0, mn, and ∆n satisfy kn∆
1/2
n → 0,

kn∆1/2−ε
n →∞, sup

n

kn∆
1/2
n

u4
n

<∞, kn
mn(log n)4

→∞, kn∆ε
n

mn
→ 0, (3.3)

for any ε > 0, and β ≤ 1 (γ+ = γ− ≡ 0). Under Assumptions 1-3, we have that

Ŷn(τ) and √
n

2kn
mn

[
Ẑn1 (τ) + Ẑn2 (τ)− 1

4Tkn
τ2
{

Φ′′(τ)− Φ′(τ)
}]

(3.4)

converge weakly to the same Gaussian process in Skorohod’s topology for all τ ∈
Ac where Ac is any compact subset of R, and{√

n

2kn
mnẐ

n
1 (τ),

√
n

2kn
2knẐ

n
2 (τ)

}
⇒ {Z1(τ), Z2(τ)}, (3.5)

functionally in τ ∈ Ac, in the sense of the Skorohod topology, where Z1(τ) and

Z2(τ) are two independent centered Gaussian processes with covariance functions

Cov{Z1(τ1), Z1(τ2)} = Φ(τ1 ∧ τ2)− Φ(τ1)Φ(τ2), τ1, τ2 ∈ R, (3.6)

Cov{Z2(τ1), Z2(τ2)} =
τ1Φ′(τ1)τ2Φ′(τ2)

T
. (3.7)

When β > 1, we do not have the functional central limit theorem, but we do

have a pointwise central limit theorem for Ŷn(τ). This is already enough in the

context of detecting infinite variation jumps.

Theorem 2. If β > 1 and the other conditions in Theorem 1 hold, then

Ŷn(τ) =

√
n

2kn
mn

[
Ẑn1 (τ) + Ẑn2 (τ)− 1

4Tkn
τ2{Φ′′(τ)− Φ′(τ)}

]
+

√
n

2kn
mn

(
Φn(τ)− Φ(τ)

)
+
m

1/2
n τΦ′(τ)uβ−2

n ∆
1−β/2
n

{n/(2kn)}1/2

{n/(2kn)}∑
j=1

aj∆n

σ2
(j−1)∆n

+ op(1), (3.8)

pointwise in τ ∈ R.
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Remark 1. In Theorem 2, Φn(τ) depends on the mixed distribution of the

Brownian force and the β-stable-like Lévy process. In the limiting sense, under

the conditions in Theorem 2, we have (proved in the supplement),

Φn(τ)

= Φ(τ)− Φ′(τ)∆
1/β−1/2
n

(n/2kn)mn

{n/(2kn)}∑
j=1

mn∑
i=1

γ−j,i−1EY
−

1 + γ+
j,i−1EY

+
1

|σ2(j−1)kn∆n
|

+Op(∆
1−β/2−ε
n )

= Φ(τ)− Φ′(τ)∆
1/β−1/2
n

T

∫ T

0

γ+
s EY

+
1 +γ−s EY

−
1

|σs|
ds+Op(∆

(1−β/2−ε)∧(1/β−1/4+ε)
n ).

(3.9)

There are then two major sources of the bias for the empirical process. One

is the increment of the driving jump process, ∆n
2jkn+iY

±, which distorts the

empirical distribution function away from Φ(τ), see (3.9); The second is the

estimation error of the instantaneous volatility using the Laplace-transform-based

procedure, see (3.8). If the jump component is of finite variation, both biases

vanish asymptotically, but explode otherwise. If β > 1, the first bias dominates

the second in the explosive rate.

Remark 2. (3.3) provides guidelines for choosing kn, mn, and un. If one sets

un = c1/ log n, kn = [c2
√
n/(log n)4], and mn = [c1kn/(log n)4+ε] for some ε >

0, (3.3) is satisfied. This implies that the convergence rate of the empirical

distribution function of the “devolatized” increments is almost
√
n.

For completeness, though irrelevant to the testing background here, we have

a result for F̂n(un, τ) when the Brownian force does not exist, but the β-stable-

like driving process is present.

Theorem 3. Suppose Assumptions 1-3 hold, except that |σ| ≡ 0 and |γ+|−1 and

|γ−|−1 are strictly positive. If (3.3) holds,

F̂n(un, τ)→P 1, (3.10)

pointwise in τ ∈ R.

3.4. Test statistics

Tests for infinite variation jumps via estimating the jump activity index

directly with simultaneous presence of diffusive process suffer from the difficulty

of separating the continuous term and the jump term, and typically some semi-

parametric assumption for the jumps under H0 are needed, see for example,

Aı̈t-Sahalia and Jacod (2009a) and Jing et al. (2012). Theorems 1-2, as well as
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their remarks, motivate us to propose a test statistic of the “Kolmogrov-Smirnov”

type as

T nAc
≡
√

n

2kn
mn sup

τ∈Ac

∣∣∣F̂ (un, τ)− Φ(τ)
∣∣∣ , (3.11)

where Ac is a compact subset in R. Under H0, by Theorem 1,

T nAc
=L

√
n

2kn
mn sup

τ∈Ac

∣∣∣∣Ẑn1 (τ) + Ẑn2 (τ)− τ2(Φ′′(τ)− Φ′(τ))

4knT

∣∣∣∣+ op(1). (3.12)

Then by (3.12) and Theorem 1, we can approximate the (1− α) quantile of the

null distribution by that of the distribution of

sup
τ∈Ac

∣∣∣∣∣Z1(τ) +

√
mn

2kn
Z2(τ)−

√
(n/2kn)mn

4knT
τ2{Φ′′(τ)− Φ′(τ)}

∣∣∣∣∣ , (3.13)

which is denoted by Qn(α,Ac); This can be estimated via simulation. The test

is

T nAc
> Qn(α,Ac)⇔ Rejecting H0. (3.14)

Theorem 4. Under the conditions in Theorem 2, we have

P (T nAc
> Qn(α,Ac) | β ≤ 1)→ α, (3.15)

and on {
∫ T

0 (γ+
s EY

+
1 + γ−s EY

−
1 )/|σs|ds 6= 0},

P (T nAc
> Qn(α,Ac) | β > 1)→ 1. (3.16)

As seen in (3.9), the larger the β, the higher the detection power.

4. Numerical Studies

4.1. Monte carlo experiments

In this section, we report on simulation studies to check the finite sample

performance of the test. We generated data from a stochastic volatility model,

5,000 times,

Xt = X0 +

∫ t

0

√
csdWs + 0.5Yt, 0 ≤ t ≤ T, (4.1)

ct = c0 +

∫ t

0
0.03(1.0− cs)ds+ 0.15

∫ t

0

√
csdW

′
s, (4.2)

where Yt is a skewed β-stable Lévy process, with the negative jumps appearing

twice as often as the positive jumps to capture the market stylized feature caused

by risk aversion. The volatility ct is a square root diffusion process widely used in

financial applications. The parameters in ct are specified as in Jacod and Todorov

(2014). To incorporate the leverage effect, we set corr(dW, dW ′) = −0.5. We
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also set un = 0.5 in estimating ct. To illustrate the effect of the microstructure

noise and find a good sampling frequency, we added a noise term to X at the

observation times, to observe

X̃ti = Xti + εti , where εti ∼ N (0, 0.035).

In the simulation studies, our tests were carried out on the data set {X̃ti ; i =

1, . . . , n}. We took Ac as a set of grid points in [−1, 1] with step length 0.2. On

the same Ac, we used the monte carlo method to find Qn(α,Ac) for α = 0.05

and 0.10.

We first sampled the data every 5, 10 or 30 seconds, or one minute in a single

day (T = 1). Correspondingly the sample sizes were 4,680, 2,340, 780 and 390,

respectively. The conditions in Theorem 1 imply that finite sample kn should

be smaller than
√
n and mn should be smaller than kn. Hence for the sampling

frequencies mentioned above we set the pairs of (kn,mn) to be (60, 28), (40, 20),

(26, 18), and (18, 12) with kn/mn ranging from 1.5 to 2.15 with an increasing

trend. Figure 1 displays the power functions of the test against β, from which

we observe the following.

Due to the bias caused by the microstructure noise, our test cannot control

type I error when the sampling frequency is as high as every 5 seconds; when

the sampling frequencies are equal to or below every 10 seconds, our test is quite

robust to the microstructure noise. We observe that for β < 1, the three curves

in both panels are close to the nominal level, consistent with Theorem 4; for

β > 1, the four curves in both panels increase, demonstrating that the larger the

β, the more powerful our test, consistent with Remark 1; and as the sample sizes

increase, the performance of our test improves, consistent with Theorem 4.

To check the performance of the test for sparser sampling schemes, we gener-

ated five days (T = 5) of one-minute and five-minute data and ten days (T = 10)

of five-minute data from the noise contaminated model. We set (kn,mn) as

(39, 20), (12, 8), and (25, 15). The power functions are plotted in the left panel

of Figure 2. Except for five days of one-minute data, the power functions indi-

cate over-rejection of our test due to the increase of discretization error as ∆n

increases. This suggests why the power function for five days of one-minute data

performs better than that for five days of five-minute data. The power function

for five days of five-minute data is below that for ten days of five-minute data,

possibly due to the adverse effect of the microstructure noise. This and the find-

ings in Figure 1 show that sampling up to half a minute in a single day or every

one minute in five days is safe for killing the noise in testing for infinite variation
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β β

Figure 1. The power functions of the test for infinite variation jumps for five-second
(solid), ten-second (left triangle), thirty-second (circle), and one-minute (square) data in
a single day (T = 1); Left panel: α = 0.05; Right panel: α = 0.10.

β β

Figure 2. Left panel: the power functions of the test for infinite variation jumps for
one-minute data in five days (solid for α = 0.05 and diamond for α = 0.10, T = 5), five-
minute data in five days (left triangle for α = 0.05 and right triangle for α = 0.10, T = 5)
and ten days (circle for α = 0.05 and plus for α = 0.10, T = 10); Right panel: stability
analysis of the power function against kn for five days of one-minute data; α = 0.05.

jumps.

We did a sensitivity study on the tuning parameter kn and mn. We let

kn = 26, 28, 30, 32, 34, 36, 38, 40, 42 (mn changes correspondingly as 13, 15, 17,

19, 21, 23, 25, 23, 22). For each kn, we plot a power function in the right panel of

Figure 2. From the figure, it is not easy to tell the differences among the power

functions, suggesting that our test is not sensitive to the choice of kn and mn.
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−

Figure 3. Left panel: the observed test statistics against kn = 26, 28, 30, 32, 34, 36,
38, 40, 42 for stock 01 in Apr 8th (circle), Apr 11th (left triangle), and Apr 24 (solid)
in 2013, and for stock 02 in Apr 8th (plus), Apr 11th (right triangle), and Apr 24
(diamond) in 2013; Right panel: test statistics in 20 consecutive trading days from Apr
1st to 26th in 2013 for stock 01 (left triangle) and stock 02 (diamond); The upper 0.05,
and 0.10 quantiles are 1.23 (square) and 1.09 (star; two digital decimals are left for all
kn), respectively.

4.2. Data analysis

We implemented our test on two constituent stocks of the S&P 500 index.

The test was first carried on the every-one-minute data sets of Apr 8th, 11th,

and 24th in 2013 for stock 01 and stock 02 (T = 1 and n = 390). We plotted

the observed test statistics against different values of kn = 42, 40, 38, 36, 34,

32, 30, 28, 26 (correspondingly mn = 15, 13, 13, 12, 11, 10, 10, 9, 9). We set

other parameters as in the simulation studies. The results are illustrated in the

left panel of Figure 3. The finding is that for all three days and any value of kn,

there is strong evidence of infinite variation jumps in the continuous-time price

dynamics of stock 01. Such evidences is not significant for stock 02.

To study the existence of infinite variation jumps across different days, we

did the test on 20 consecutive trading days from Apr 1st to 26th in 2013, for

both stocks. The daily test statistics are plotted in the right panel of Figure 3.

We find that in all days the existence of infinite variation jumps is significant

(above upper 0.10 quantile) for stock 01 while for stock 02 only 20% of the days

present strong evidence of infinite variation jumps.
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Supplementary Materials

The supplement contains the proofs of the main results and some auxiliary

lemmas that are of interest.
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