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Abstract: Statistical inference on the circle may strongly depend on the chosen

reference system. Here, we introduce necessary and sufficient conditions to avoid

inferential problems and misinterpretation of parameter estimates for any circular

distribution. The construction of invariant distributions, with respect to the refer-

ence system, is discussed by introducing specific properties. Numerical examples on

simulations and data are presented to corroborate and illustrate theoretical results.
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1. Introduction

Circular data (for a review see e.g. Lee (2010)) arise naturally in many

scientific fields where observations are recorded as directions or angles. Such

data are encountered in environmental science (Bulla et al. (2012); Di Marzio,

Panzera and Taylor (2013); Wang and Gelfand (2014); Lagona et al. (2015);

Lagona, Picone and Maruotti (2015); Mastrantonio, Maruotti and Jona Lasinio

(2015); Mastrantonio, Jona Lasinio and Gelfand (2016); Mastrantonio, Gelfand

and Jona Lasinio (2016)), animal movements (Eckert et al. (2008); Langrock et al.

(2012, 2014); McLellan et al. (2015); Maruotti et al. (2016); Maruotti (2016)),

social science (Gill and Hangartner (2010)) and musicology (Lee and Oh (2008)).

Standard techniques cannot be used to analyze circular data, mainly due to

the circular geometry of the sample space (for details, see Section 2). Many

ad-hoc methods and statistical techniques have been developed to analyze and

understand circular data (Mardia (1972); Fisher (1996); Mardia and Jupp (1999);

Jammalamadaka and SenGupta (2001); Pewsey, Neuhäuser and Ruxton (2013)),

leading to important probability distribution theory and inferential results.

Probability distributions for circular data often assume a general structure

using the unit circle as support and having a closed-form density. However, cir-

cular data have some specific features that should be taken into account in any
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analysis. Indeed, circular data have no designed zero (i.e. initial direction) or

end, and the designation of the natural orientation is arbitrary. Despite having

tractable forms, the use of well-known circular distributions can lead to mislead-

ing inference if the issues of the initial direction and orientation are overlooked.

This article studies the impact on statistical inference of overlooking changes in

the reference system.

We define two properties for circular distributions: invariance under changes

of initial direction (ICID) and invariance under changes of system orientation

(ICO). We demonstrate that only a distribution holding these properties allows

inference independent of the reference system. We give necessary and sufficient

conditions for a distribution to be ICID and ICO, and we investigate the nature

of existing circular distributions in order to check if the invariance properties

hold. We also show that by introducing two additional parameters, accounting

for changes in the reference system, an invariant circular distribution can be built

from one that is not-invariant.

This article is organized as follows. Section 2 introduces the notation used

throughout the article and basic definitions on circular variables. It discusses the

ICID and ICO properties and provides examples demonstrating the importance

of those properties. Section 3 deals with the construction of invariant distribu-

tions. Focusing on widely-used circular distributions, we present the main sta-

tistical properties of invariant distributions and we stress the inferential issues of

overlooking the initial direction and orientation in empirical analysis. Section 4

considers some numerical examples pointing out the issues in parameters inter-

pretation and model fitting if the mentioned data features are ignored. Section

5 concludes with a summary of the main results and some concluding remarks.

Extensive examples of the use of our proposal are reported in the supplementary

material; Appendix A illustrates analytical applications, and Appendix B collects

some further numerical examples.

2. Invariance in Circular Distributions

Let {S,A, P} be a probability space, where the sample space S = {(x, y) :

x2 + y2 = 1} is the unit circle, A is the σ−algebra on S and P : S→ [0, 1] is the

normalized Lebesgue measure on the measurable space {S,A}.
Let D = [a, b) with b − a = 2π and consider the measurable function Θ :

S → D, with Θ−1(d) = (x, y) = (cos d, sin d), let D = σ(D) be the σ−algebra

of D induced by Θ, AΘ,D ≡ {(x, y) : Θ(x, y) ∈ D} and PΘ(D) = P (Θ−1(D)) =



INVARIANCE PROPERTIES AND STATISTICAL INFERENCE FOR CIRCULAR DATA 69

P (AΘ,D) , ∀D ∈ D. Then the measurable space induced by Θ, (D,D,PΘ), is a

probability space.

It follows that Θ is a circular random variable and PΘ is its probability

distribution. Accordingly, for all d ∈ D, Θ−1(d) = Θ−1(d mod (2π)). D can

be either continuous or discrete and, in the latter case, it is composed of l < ∞
distinct points equally spaced between 0 and 2π with D ≡ {2πj/l}l−1

j=0.

If D is a continuous domain, Θ is a continuous circular variable and PΘ is

the Lebesgue measure; if D is discrete, Θ is a discrete circular variable and PΘ is

its counting measure. In either case, let fΘ be the probability density function

(pdf) of Θ, with fΘ = dPΘ/dPΘ : D→ R+.

In the representation of circular variables, a key role is played by the initial

direction and the orientation of the domain (clockwise or anti-clockwise). Both

are uniquely determined by the choice of the orthogonal reference system on the

plane. Any statistical tool for circular variables should be invariant with respect

to different choices of the reference system to avoid conflicting or misleading

conclusions, see Section 3.3.

With ψ a vector of parameters, ICID and ICO distributions are defined as

follow:

Definition 1. A probability density function fΘ is invariant under changes of

initial direction (ICID) if, for all ξ ∈ D and ψ ∈ Ψ, there exists ψ∗ ∈ Ψ such

that fΘ(θ|ψ) = fΘ(θ − ξ|ψ∗) for all θ ∈ D.

Definition 2. A probability density function fΘ is invariant under changes of

the reference system orientation (ICO) if, for all ψ ∈ Ψ, there exists ψ∗ ∈ Ψ

such that fΘ(θ|ψ) = fΘ(−θ|ψ∗) for all θ ∈ D.

The following examples demonstrate that inference should not depend on

the reference system. In Figure 1 (a), a wrapped skew normal (WSN) density

(Pewsey (2000)) is plotted. The origin (initial direction) is chosen according to

a geographical template and set to East. The orientation is anti-clockwise. By

changing the initial direction (Figure 1 (b)) or the system orientation (Figure 1

(c)), we can obtain WSN pdfs with shapes exactly as the one in Figure 1 (a):

there exists ψ∗ such that fΘ(θ|ψ) = fΘ(θ − π|ψ∗) and fΘ(θ|ψ) = fΘ(−θ|ψ∗∗).
This example is not sufficient to prove that the WSN verifies the ICID and ICO

because the properties must hold for all possible reference systems; the formal

demonstration is given in Section 3.3 using Theorem 1, to be introduced in the

next section.

A further example is provided in Figure 1 (d): a wrapped exponential (WE)
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Figure 1. Probability density functions of a WSN (a-c) and a WE (d-f) under different
initial directions and orientations. The arrows indicate the axis orientation.

distribution (Jammalamadaka and Kozubowski (2004)). We proceed as before,

changing the initial direction (Figure 1 (e)) and the system orientation (Figure

1 (f)). The intuition tells us that a necessary (but not sufficient) condition for

a circular distribution to be ICID and ICO is that the circular variance must be

constant across reference systems (technical details are given in Section 3.2). We

find that this holds only for the densities in Figure 1 (e) and (f) that, on the

other hand, concentrate their probability mass in different portion of the circle

with respect to Figure 1 (d). Hence the wrapped exponential is not ICID nor

ICO.

3. Building Invariant Circular Distributions

In this section we introduce necessary and sufficient conditions for a distri-
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bution to verify ICID and ICO. We then derive the ICID and ICO counterparts

of existing distributions.

3.1. Invariance: necessary and sufficient conditions

Theorem 1. Let fΘ(·|ψ) be the pdf of the circular variable Θ ∈ D, with ψ ∈ Ψ.

Let Θ∗ = δ(Θ + ξ), with δ = {−1, 1} and ξ ∈ D, and fΘ∗(·|ψ∗), ψ∗ ∈ Ψ∗. Then

fΘ is ICID and ICO iff fΘ∗(θ∗|ψ∗) = fΘ(θ∗|ψ∗) almost everywhere with Ψ∗ ≡ Ψ.

Proof. From the rule of variable transformation we have that

fΘ∗(θ∗|ψ∗) = fΘ(δθ∗ − ξ|ψ), (3.1)

where ψ∗ is a function of (ψ, δ, ξ).

For sufficiency, with (3.1) true for all θ∗ ∈ D, ξ ∈ D, δ ∈ {−1, 1}, as long as

fΘ∗ and fΘ belong to the same parametric family, Ψ∗ ≡ Ψ. Then we can write

fΘ(θ∗|ψ∗) = fΘ(δθ∗ − ξ|ψ). (3.2)

Set δ = 1 in (3.2) to satisfy Definition 1 and set δ = −1 and ξ = 0 to satisfy

Definition 2.

For necessity, according to the ICID and ICO properties, we have fΘ(δθ∗ −
ξ|ψ) = fΘ(θ∗|ψ∗∗), where ψ∗∗ ∈ Ψ. Since fΘ∗(θ∗|ψ∗) = fΘ(δθ∗−ξ|ψ) (see (3.1))

we have fΘ∗(θ∗|ψ∗) = fΘ(θ∗|ψ∗∗) which implies ψ∗ ≡ ψ∗∗, ending the proof.

It is always possible to transform non-invariant pdf so to obtain its ICID and

ICO version.

Proposition 1. If fΘ(·|ψ) is not ICID and ICO, the density fΘ∗(·|ψ∗), with

Θ∗ = δ(Θ + ξ), δ ∈ {−1, 1}, ξ ∈ D, and ψ∗ = (ψ, δ, ξ) ∈ Ψ∗, is ICID and ICO.

Proof. Let Θ∗∗ = δ∗(Θ∗+ ξ∗). Following Theorem 1, if fΘ∗∗ belongs to the same

parametric family as fΘ∗ , then fΘ∗ is ICID and ICO. Because fΘ∗∗(θ∗∗|ψ∗∗) =

fΘ∗(δ∗θ∗∗ − ξ∗|ψ∗) and fΘ∗(θ∗|ψ∗) = fΘ(δθ∗ − ξ|ψ), we have fΘ∗∗(θ∗∗|ψ∗∗) =

fΘ∗(δ∗θ∗∗ − ξ∗|ψ∗) = fΘ(δ(δ∗θ∗∗ − ξ∗) − ξ|ψ). Now if δ∗∗ = δδ∗ and ξ∗∗ =

(δξ∗ + ξ), we can write fΘ∗∗(θ∗∗|ψ∗∗) = fΘ(δ∗∗θ∗∗ − ξ∗∗|ψ). Bearing in mind

that δ∗∗ ∈ {−1, 1} and ξ∗∗ ∈ D, Θ∗∗ is obtained starting from Θ by transforming

Θ∗ and the vector of parameters (ψ, δ∗∗, ξ∗∗) belonging to the same space Ψ∗ of

ψ∗ = (ψ, δ, ξ). Then fΘ∗∗ and fΘ∗ belong to the same parametric family. Thus

one can get the invariant version of any circular density.

3.2. Invariance: statistical properties

A number of circular distributions have been studied in the literature, and

their characteristic functions, as well as the trigonometric moments, circular
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means, and concentrations have been defined. Here we show how to obtain these

quantities when ICID and ICO distributions are obtained by using Proposition 1.

The trigonometric moments, αp = E cos pΘ and βp = E sin pΘ, of a circu-

lar density are related to the characteristic function ϕΘ(p) of Θ. As ϕΘ(p) =

E(exp (ipΘ)) = αp + iβp. Let cp = |ϕΘ(p)| =
√
α2
p + β2

p and µp = atan∗(βp/αp)

(atan∗ is the modified inverse tangent function, see for example Jammalamadaka

and SenGupta (2001)). It is well known that ϕΘ(p) = cp exp (iµp) = cp cosµp +

icp sinµp, and then αp = cp cosµp and βp = cp sinµp. When p = 1, the quantities

µ1 and c1 are called the circular mean and the circular concentration, respec-

tively. Now let Θ∗ = δ(Θ+ξ) and suppose that the density of Θ is not-invariant.

Following Proposition 1, the density of Θ∗ is ICID and ICO. Θ∗ is a linear trans-

formation of Θ and its characteristic function is then

ϕΘ∗(p) = eipδξϕΘ(δp) = cδpe
i(pδξ+µδp). (3.3)

ϕΘ(−p) the complex conjugate of ϕΘ(p) and, since |ϕΘ(−p)| = |ϕΘ(p)|, then

cp = c−p, α−p = αp, β−p = −βp and it follows that µ−p = −µp. Then (3.3)

can be written as cp exp (i(pδξ + δµp)) = cp cos(pδξ + δµp) + icp sin(pδξ + δµp).

If α∗p, β
∗
p , µ∗p and c∗p, are the trigonometric moments, the circular mean, and

concentration of the random variable Θ∗, we have

α∗p = cp cos(pδξ + δµp) = cp cos(pξ + µp), (3.4)

β∗p = cp sin(pδξ + δµp) = δcp sin(pξ + µp), (3.5)

with µ∗p = pδξ + δµp and c∗p = cp. For all invariant distributions, (3.4) and (3.5)

can be used to compute the trigonometric moments when the reference system

is changed.

3.3. Examples of inferential problems

Consider a WE(λ) circular variable Θ, first we check whether this distribu-

tion is ICID and ICO. The WE (Jammalamadaka and Kozubowski (2004)) has

density

fΘ(θ|λ) =
λe−λθ

1− e−2πλ
, λ > 0. (3.6)

We find the density of the random variable Θ∗,

fΘ∗(θ∗|λ, δ, ξ) =
λe−λ(δθ∗−ξ)

1− e−2πλ
. (3.7)

To see that the WE is not ICID and ICO, it is sufficient to prove that for a given

λ, δ, and ξ, there is no λ∗ such that (3.7) can be written as a WE density; this
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would necessitate
λe−λ(δθ∗−ξ)

1− e−2πλ
=
λ∗e−λ

∗(θ∗ mod (2π))

1− e−2πλ∗ . (3.8)

In (3.8) the modulus on the right side is required to ensure that the density is well

defined. To show that the WE is not ICID and ICO, it is sufficient to show that

−λ(δθ∗ − ξ) 6= −λ∗(θ∗ mod (2π)) for a set of values. For example, at Θ∗ = 2π,

with δ = 1, we obtain −λ(2π − ξ) = −λ∗0; thus, the WE is not ICID and ICO.

The density of Θ∗ in (3.7) is the invariant version of the wrapped exponential

(IWE) and it depends on parameters λ, δ, ξ. The domain of Θ∗ depends on δ

and ξ and, as this may lead to issues in model fitting, we prefer to write (3.7) as

fΘ∗(θ∗|λ, δ, ξ) =
λe−λ[(δθ∗−ξ) mod (2π)]

1− e−2πλ
, θ∗ ∈ D.

The trigonometric moments of the WE (see Jammalamadaka and Kozubowski

(2004)) are λ/
√
λ2 + p2 cos {atan∗(p/λ)} and λ/

√
λ2 + p2 sin {atan∗(p/λ)}. From

them, using the results of Section 3.2, we can derive those of the IWE: αp =

(λ/
√
λ2 + p2) cos (pξ + atan∗p/λ) and βp = δ(λ/

√
λ2 + p2) sin (pξ + atan∗p/λ) .

The circular mean is then µ1 = δξ + δatan∗(1/λ) and the circular concentration

is c1 = λ/
√
λ2 + 12.

Now consider n independent observations θ1, . . . θn, WE distributed, in a ref-

erence system with zero direction set to North and clockwise orientation. Con-

sider finding the maximum likelihood estimator λ̂ (MLE) of λ. The WE density,

(3.6), has the same functional form of the truncated exponential defined over the

domain [0, 2π). Then, likelihood functions based on the WE or the truncated

exponential lead to the same MLE. For a truncated exponential likelihood over

a given interval [a, b), the MLE of λ exists only if the arithmetic mean of the

observations is smaller than (b+a)/2 (Deemer and Votaw (1955)); in our setting

λ̂ is defined only if
∑
θi/n < π. Assume that we observed the same circular

variable but we recorded its values using an anticlockwise orientation. The data

have the same nature as before, but we have changed the reference system. In

it the value of the circular variable is 2π − θi, and the MLE of λ exists only if

2π −
∑
θi/n < π ⇒

∑
θi/n > π. The two conditions for the existence of λ̂ in

the two reference systems,
∑
θi/n < π and

∑
θi/n > π, cannot both hold. It

follows that the inference with the WE depends on the choice of the reference

system orientation.

If we record the values of the circular variable in another reference system

with the zero direction set to be the angle d ∈ [0, 2π) of the first system, the

observed values are θi− d. If d ≥ maxi,i=1,...,n θi, then θi− d = 2π+ θi− d. Here
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the condition for the existence of λ̂ is 2π +
∑
θi/n − d < π ⇒

∑
θi/n < d − π.

If d = π, the MLE does not exist.

The MLEs of λ, δ, and ξ, under an IWE likelihood, always exist. In the

original reference system λ̂ exists if
∑

[(δθi − ξ) mod (2π)]/n < π, that is at

least when δ = 1 and ξ = 0 if
∑
θi/n < π and δ = −1 and ξ = ε other-

wise where ε ∈ (0,mini,i=1,...,n θi). In the second reference system (anticlockwise

orientation) the condition is
∑
{(δ2π − δθi − ξ) mod (2π)}/n < π; this hold at

least when δ = −1 and ξ = 0 if
∑
θi/n < π, and δ = 1 and ξ = ε otherwise.

In the third reference system (changed zero direction) the existence condition is∑
{(δθi − δd− ξ) mod (2π)}/n < π which holds when δ = 1 and ξ = 2π − d

if
∑
θi/n < π, and δ = −1 and ξ = d + ε otherwise. We are not able to find

a closed form for the MLE of δ and ξ, but the log-likelihood is proportional to

−
∑

[(δθ∗i − ξ)] that is a finite function of (δ, ξ) and this is a sufficient condition

for the existence of their MLEs.

As a further example, consider a discrete circular variable Θ that can assume

l equally spaced points on the circle, such variable is said to follow a wrapped

Poisson (WP) distribution with parameter λ > 0 (Mardia and Jupp (1999)),

Θ ∼WPl(λ), if it has pdf
∑∞

k=0 λ
θ(l/2π)+kle−λ/(θl/2π + kl)!. The WP is not ICID

and ICO (see the Supplementary material for details) but, using Proposition 1,

we can obtain its invariant version (IWP). It has density

fΘ∗(θ∗|λ, δ, ξ) =

∞∑
k=0

λ[(δθ∗−ξ) mod (2π)]l/2π+kle−λ

[{(δθ∗ − ξ) mod (2π)} l/2π + kl]!
, θ∗ ∈ D. (3.9)

Now let Θ ∼WPl(λ) with n samples θi, in a reference system with zero direction

North and clockwise orientation. Let λ̂ be the MLE of λ and µ̂1 and ĉ1 the

associated circular mean and concentration, respectively, µ1 = λ sin(2π/l) and

c1 = exp[−λ{1− cos(2π/l)}]. If we change orientation, in the new reference

system the circular observations are 2π − θi. Since the transformation 2π − θi
is linear and the data are the same as in the first reference system, the circular

concentration should remain the same, ĉ∗1 = ĉ1, while the circular mean should

be µ̂∗1 = 2π− µ̂1. Since ĉ1 = exp[−λ̂{1− cos(2π/l)}], then ĉ∗1 = ĉ1 only if λ̂∗ = λ̂

and it follows that µ̂∗1 = 2π− µ̂1 never holds, since λ̂∗ sin(2π/l) 6= 2π− λ̂ sin(2π/l)

if λ̂∗ = λ̂.

If we take d ∈ [0, 2π) as the new zero direction, the circular observations are

θi− d. We expect ĉ∗1 = ĉ1 and µ̂∗1 = µ̂1− d. Since the two circular concentrations

should be the same, then λ̂∗ = λ̂ and, again, the equivalence λ̂∗ sin(2π/l) =

λ̂ sin(2π/l) − d does not hold if d > 0. On the other hand the circular mean of
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any invariant density can be written as δξ + δµ1, where we can think of µ1 as a

“baseline” circular mean, and parameters δ and ξ can account for changes in the

reference system in a coherent way without affecting the circular concentration,

see Section 3.2.

4. Numerical Examples

Two examples are considered in this section. The first is based on simulated

continuous data and the other is a data problem where discrete circular variables

were observed. Our intent lies in highlighting the consequences of the lack of ICO

and ICID properties on model inference. We use three reference systems: the

first fixes North as the zero direction and chooses a clockwise orientation (RS1),

in the second reference system (RS2) we move the zero direction to East, while we

obtain the third reference system (RS3) by changing the orientation of RS1. In

each reference system, we find the MLEs of the invariant distribution parameters,

for the IWE modeling continuous data, the IWP for describing discrete data, and

the MLE of the corresponding non-invariant distributions parameters, together

with their circular means and concentrations. We indicate with λ̂i, µ̂1,i and

ĉ1,i the MLEs of the non-invariant distribution parameter, circular mean, and

concentration in the ith reference system, respectively, while λ̂∗i , δ̂
∗
i , ξ̂

∗
i , µ̂∗1,i and

ĉ∗1,i are the corresponding parameters in the ith reference system. The MLEs

are found using numerical optimization procedures. An exact evaluation of the

IWP density is not possible since it involves the evaluation of an infinite sum (see

(3.9)) and a truncation strategy, often used with wrapped distributions (Coles

and Casson (1998); Jona Lasinio, Gelfand and Jona Lasinio (2012)), is adopted.

We approximate (3.9) with

fΘ∗(θ∗|λ, δ, ξ) =

kmax∑
k=0

λ[(δθ∗−ξ) mod (2π)]l/2π+kle−λ

[{(δθ∗ − ξ) mod (2π)} l/2π + kl]!
, θ∗ ∈ D,

and we choose kmax so that the total probability mass captured by the approxi-

mation is > 0.99999.

Artificial data - Wrapped exponential We simulated 500 observations from a

WE(1) in the RS1. The MLEs of the WE and IWE parameters are shown in

Table 1, while Figure 2 illustrates the density used to simulate the data and the

WE and IWE densities obtained with the MLEs in the three reference systems.
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Table 1. Simulated example - MLE of the WE and IWE parameters, circular mean and
concentration.

WE IWE

λ̂i µ̂1,i ĉ1,i λ̂∗i δ̂∗i ξ̂∗i µ̂∗
1,i ĉ∗1,i

RS1 1.04 0.7658 0.7208 1.04 1 0 0.7658 0.7208
RS2 · · · 1.04 1 4.7124 5.4782 0.7208
RS3 · · · 1.04 −1 0 5.5174 0.7208

ππ

π

(a) RS1

π

π

π

(b) RS2

ππ

π

(c) RS3

Figure 2. Simulated example - Density used to simulate the data (solid line), wrapped
exponential (dashed line) and invariant wrapped exponential (dotted line) density com-
puted using the MLE of the parameters in the three reference systems (the WE MLE
does not exist in RS2 and RS3).
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Figure 3. Wind example - Density estimate of observed data (solid line), wrapped Poisson
(dashed line) and invariant wrapped Poisson (dotted line) density computed using the
MLE of the parameters in the three reference systems.
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Table 2. Wind example - MLE of the WP and IWP parameters, circular mean and
circular concentration.

WP IWP

λ̂i µ̂1,i ĉ1,i λ̂∗i δ̂∗i ξ̂∗i µ̂∗
1,i ĉ∗1,i

RS1 37.3434 0.2014 0.567 50.1254 1 4.0143 0.1520 0.4657
RS2 64.1283 4.8526 0.3775 50.1254 1 2.4435 4.8644 0.4657
RS3 71.3427 12.3885 0.3383 50.1254 −1 4.0143 6.1312 0.4657

Data - Wind direction The wind direction data were recorded in January 2000

at the monitoring station of Capo Palinuro (South Italy). The monitoring sta-

tion at Capo Palinuro (WMO code 16310) is one of the coastal stations managed

by the Meteorological Service of the Italian Air Force. The station is located

on the rocky cape of Capo Palinuro, in the town of Centola in the province of

Salerno, South Italy. Wind directions are monitored and routinely collected by

several environmental agencies. Analyzed data come from reports prepared at

the station and provided by the National Center of Aeronautical Meteorology

and Climatology (C.N.M.C.A.), special office of the Meteorological Service of

the Italian Air Force. The database includes date and time of registration, direc-

tion of the wind in degrees, with eight daily measurements (every three hours)

in the month of January 2000, and contains 240 observations. The measuring

instrument, anemometer, is placed away from obstacles and at the height of 10

meters above ground. A relevant issue with this measurement instrument is that

it measures wind directions on a discrete scale dividing the circle into ten-degrees

intervals (l = 36). The MLEs are reported in Table 2 while the barplot of the

observed data and the WP and IWP densities obtained with the MLEs in the

three reference systems, are shown in Figure 3.

General Comments The arithmetic mean
∑
θi/n in the first example is 0.9523

in the RS1, 4.4710 in the RS2, and 5.3308 in the RS3. Keeping in mind the

results of Section 3.3, it is not surprising that the MLE of the WE parameter

can be estimated only in the RS1.

In all the examples, see Table 1 and 2, we can appreciate how the MLEs of the

invariant densities parameters are coherent in moving among the three reference

systems: λ̂∗1 = λ̂∗2 = λ̂∗3. We have (δ̂∗2 , ξ̂
∗
2) =

(
δ̂∗1 , ξ̂

∗
1 − π/2

)
, since in the RS2 we

change the zero direction to π/2, and in the RS3 we have (δ̂∗3 , ξ̂
∗
3) =

(
−δ̂∗1 , ξ̂∗1

)
as we changed the orientation. The circular concentration remains the same in

the three reference systems, ĉ∗1,1 = ĉ∗1,2 = ĉ∗1,3, while the circular mean changes
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according to the reference system, µ̂∗1,2 = µ̂∗1,1 − π/2 and µ̂∗1,3 = −µ̂∗1,2. For

the non-invariant densities, even the circular concentration changes with the

reference system as well as the MLE of the parameter λ and the circular mean.

The shapes of the invariant densities remain the same in the three reference

systems, see Figures 2 and 3.

5. Summary and Concluding Remarks

In this paper we introduced the invariance under changes of initial direction

and the invariance under changes of the reference system orientation properties

that any circular distribution should hold to avoid misleading inferential results.

We introduced the necessary and sufficient conditions for a circular distribution

to have the ICID and ICO properties. By considering simulated and data exam-

ples, we illustrated how misleading the use of not-invariant distributions can be.

Not all the circular distributions proposed in the literature satisfy ICID and ICO

and we developed the method to modify them appropriately. Trigonometric mo-

ments are then easily obtained from those of the non-invariant version of circular

distributions (see Supplementary Material for more details and examples).

Further use of the invariant distributions in complex models can be found in

Mastrantonio and Calise (2016), where this is extended, in a Bayesian framework,

to address classification issues with discrete circular and linear variables; in that

paper a hidden Markov model for discrete valued time series with linear and

circular components is introduced. We believe that our proposal opens new

possibilities for the practical use of circular information measured on any scale.

Supplementary Materials

The online supplementary material contains more analytic applications and

two numerical examples. In particular we verify if the wrapped skew normal,

discrete circular uniform, wrapped Poisson, wrapped Weibull, wrapped geomet-

ric, wrapped skew Laplace on integers and wrapped binomial distributions are

ICI and ICO. We also report on artificial wrapped Poisson data, and on the

Drosophila change of direction data from Suster (2000).
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