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S1 Asymptotic results of the ADF-GLS estimator

To study the asymptotic properties of the ADF-GLS estimator, we need

the following regularity condition:

(C1) I1(8) is positive definite; all partial derivatives of the first three orders

of I1(0) with respect to the elements of 8 are continuous and bounded

in a neighborhood of 8; I1(0) is of full rank in a neighborhood of 6y;

the eighth-order moments of V; are finite.
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We first define
K(0) = |TI(6)=(6) 'TI(6)"] T1(6)x(9) ",
Ri(60) = [I1(0)K(O)vee{VE? —T1(O)}, - T, (0)K(0)vec{VE? — T1(6)}],
P;(0) = [I')l(O)K(B)vec{V;€<>2 —T11(6)},--- ,Dq(49)K(¢9)vec{V§92 — H(O)}},
where I';(0) (s = 1,--- ,p) and D,(0) (r =1,--- ,q) denote the derivatives

of the sth column of I'(@) and the rth column of D(8) with respect to 67,

respectively.

K@) = [[o)w'1e)"] mew,
RI(0) = [[1(O)K (O)vec{VE* —TI(@)}, - T, (@)K (B)vec{ VF* ~T1(6)}],
Pl(6) = [Di(OK(@)vec{VI* ~TI(0)}, - Dy(O)K!(B)vec{VF* —T1(8)}],
are estimates of K(6y), R;(0y) and P;(6y), respectively.

(S1.1) in the following Lemma is basically an adoption of Browne (1984),
while we adjust the statement for our purpose. (S1.2) and (S1.3) can be

regarded as an application of the delta-method.

Lemma 1. Under the condition (C1), F(@) and D(b\) are consistent to

I'(6¢) and D(0y), respectively. Furthermore,

0 — 6y = K(0y)vec{S* — I1(6p)} + 0,(n~"/?), (S1.1)

T(0) — T[(8y) = n~" zn: R:(0,) + 0,(n"1/2), (S1.2)

i=1
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D) — D(8,) = n"! Z P,(0,) + 0,(n~7?), (S1.3)

=1

where S* =n~13" V&2
Proof. To prove the consistency of 5, we define

F(0) = %{VGC(H(‘%) —I1(6))}" 7 (680) " {vec(IL(6;) — IL(6))}.
Given that model (2.1) of the main text is identified and 3*(6y) is positive
definite, F*(0) has its unique minimum 0 at @ = 6,. Since S and W
converge in probability to II(6y) and X*(6,), respectively, and II(0) is
bounded in a neighborhood of 6y, F(6) converges in probability to F*(8)
in a neighborhood of 8, then the unique minimizer 0of F () converges in
probability to the unique minimizer 8y of F*(6), this consistency proof is
an adoption of Browne (1974, 1984).

By the uniform convergence theorem, F'(8) converges to a deterministic
function uniformly in a neighborhood of 8. In particular, F'(8,) converges
in probability to I1(6¢)3*(8¢)'TI(0y)", which is nonsingular by regularity
condition (C1). Since F(8) = 0, apply the Taylor expansion to each element

of (5), and use the consistency of 8, we have

—F(80) = F(80)(6 — 6g) + 0,(n"7?).
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Note that by the multivariate central limit theorem, F(8,) = O,(n"1/?).

Using the convergence of (), we obtain
0 — 6y = K(6y)vec{S — II(8g)} + 0,(n~/?),
since we can show
S-S *=(n-1)"1'S"—(n— 1)_1n\7\7T = 0,(n"1?%),
(S1.1) follows. Similarly, by the Taylor expansion,
T(6) — T(60) = |T1(65)(6 — 6), -+, T,(60)(6 — Bo)| + 0(n~"/?),

which together with (S1.1) gives (S1.2). In a similar manner, we obtain

(S1.3).

S2 Proofs of Asymptotic Results of CEE1 estimators

Expressions in a,.

. n T Z; — Za(t) =~ . Z;
OUa(c;0) Z/ Omao(t; e, 0) dNi(1)
oaT — Jo ~ - oaT -~
=t §,(0) —£,(t;0) £,(0)
Osxs 08><q

- Zn: /0 dANi(t), (S2.1)

04xs D(O) | 7!

and

(Swat)™! /t ’ Siva(u)du ) dN; ).
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Notations in Theorem 1.

Valt) = Y YiOVi/ YY)

W.(t) = %/0 §NA(u)_1;{Zj—Za(u)}de(u),
We(t:0) = ZSN:*% / Swalu Z{r € (u: 6) N (u),

Q1) = {Fiunlt) + BLZs + 5TTO)V AN (1) — Vi(O)d{ (1) + 1},
Qu = 1Y [ - 2.0 - W vEan o,

Qu = Y [V V) lt) + B2+ FIT@ Va0

Quy = —12 / (T@)V. — £,(1:8) — We(t:0)}VTaN,(1),
C5(14 = n_IZ/ dN;(t), ia:n_liﬁ?,
i=1 70 i=1
Uy = 0 {Z; — Z(t) — W.(1) (1) + Q,R{(0)77,,
Uy = T{I‘(@)Vi—EZ(t;g)—Wg(tG}dQ / D(6)7,dN;(t)
0

+R[(0)Q,, + QusR[(0)7F, — PI(0)7,Qu,

~ AT AT 10U, (o 0)
Uu = (U1, Ugya)'s AGZET’

in which Rj(@) and Pj(a) are defined in Supplementary Material S1. The

explicit expression of A, can be obtained from (3.8) in Section 3.1 of the
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main text and (52.1).

Conditions for CEE1 estimators.
To study the asymptotic properties of the proposed CEE1 estimators,

in addition to condition (C1), we need the following regularity conditions:

(C2) The true value (87, ad)” of (87, a”)7 lies in the interior of a compact

set ©.

(C3) Z; is bounded almost surely; mg(t) is continuously differentiable on

[0, 7].
(C4) The limiting matrix of A, denoted by A,, is nonsingular.

Proof of Theorem 1.
Denote d€2;(t) = d€;(t; o, 0g) for simplicity. We have the following

decomposition

= 3 [ 2O Ml 0. 00) — mof) N ()

+ Z_; /OT{Z@' — Za(t)H{mo(t) + ﬁgzi + 'Yg/\i(eo)}dNi(t). (S2.2)

Using (3.7) of the main text, and interchanging the order of integration
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with respect to ¢ and u, the first term of (S2.2) becomes
_ i /0 W (1)du (1), (52.3)
i=1

Some algebraic manipulations yield that the second term of (S2.2) equals
> [z -z (s24)
i=1

By (S2.2), (S2.3) and (S2.4), and Lemma 1 of Lin et al. (2000), we have

Uaui(ap; 00) = i /OT{Zz' — Z(t) — W, (1) }dQu(t)

i=1

= Z /0 T{Zz — ea:(t) — WL () () + 0,(n'/?)(S2.5)

where e, (t) and w.(t) are the limits of Z,(t) and W.(¢), respectively. A

direct calculation shows
Uai(tg; 0) — Uay(cxg; 0)
=S /0 Zi = Za(t) Hiaolt: 0, 8) — fao(t: cvo, 80) NI (1)
By | 7=z @) - Te0) v (520
i=1
Similar to the derivation of (S2.3), the first term in (S2.6) equals
-3 [ WaovIan @) - o) v,
i=1

By Lemma 1 in Supplementary Material S1, (S2.6) equals

nQu{T(6) —T(80)} vy = > QuRi(00) v, + 0p(n'/?),  (S2.7)

i=1
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where Q,; is the limit of Q,;. Then by (S2.5), (S2.6) and (S2.7), we have

-~ ~

Uu(a;0) = Up(o;0) +{Uai(ag; 0) — Uy (ag: 60)}
S U o) 28
i=1

where

Ui = /OT{Zi — e,:(t) — W ()} () + Qo Ri(00) o

Similar to the derivation of (S2.5), we have

Unauib) = > [ {D00)V: - &(5:00) ~ Wett: 00) (0

- Z/OTD(O())")’odNi(t)
= Y [ D60V - ewt) - welt a0

=3 [ DO 0) + o0, (529)
i=1 70
where ey (t) and we(t) are the limits of £ (t; 8) and W(t; ), respectively.

Some algebra yields

UaQ(ao; /9\) - Uaz(ao; 90)
= n{[(0) — T(60)}Qu; + 1Q{T(8) — T(85)} T,

—n{D(0) — D(60)}vQu, (52.10)

Q= 0 Y [ AVi= ValOHolts0.8) + B2+ ATT OV N 1),
i=1 70
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A~ %

Q, = n! Z/ {T(00) Vi — £,(t: 60) — We(t;00)} Vi dNi(t).
i=1 70
Let Q, Q3 and Q,4 be the limits of @22, Q:3 and @a4, respectively, then

(52.10) becomes

ZR ) ag+ZQa3R 0)" ZP 00)70Qas + 0,(n/?)(S2.11)

By (52.9) and (S2.11), we have

-~

Up(ap;0) = Uglap; 0p) + {Uu(ap; a) — Uga(ag; 60)}
> Uiz + 0p(n'?), (S2.12)
i=1

where

/{r (80) Vi — eac(t) — we(t) (1 /Deo YodNi(t)
+Ri(00)Q.s + Qu3R:(00) v — Pi(00) 7 Qas-

Let U,; = (UL, UL,)T. Then, it follows from (52.8) and (52.12) that

Ua(a;0) =Y Uy +0,(n'/?), (S2.13)

=1

which is a sum of n iid zero-mean random vectors plus an asymptotically
negligible term. The law of large numbers shows that n_an(ao;a) —
0 in probability, and the multivariate central limit theorem shows that
12U, (a; 5) converges in distribution to a normal random vector with

mean zero and covariance matrix X, = F{U%*}. Note that

Gy — o= —n'A. U,(ap;8), (52.14)
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and A, — A, in probability by the consistency of I'(8) and D(6). Then,
based on (S2.14), @, converges in probability to ag, and n'/?(a, — ayp) is

asymptotically normal with mean zero and covariance matrix A;lEaAng,

-1l ~—1T
a 2fllAa

which can be consistently estimated by A

Notations in Theorem 2.
Oult) = Lu()"A, U, — L) RI(0)"7,

c e [T Swalw) o
—Sna(t) /tn_lzgllyj(u)d()z(u),

in which

S (ZF,€,0)7) dNi(u)
Z?:l Y;(U) ’

~

Lai(t) = Sya(t)? /t " Svalu)

and

> _icy VidNi(u)
Z?:l Yz(“) .

Toa(t) = Swa(t)! /t " Gualu)

Proof of Theorem 2.

By (3.7) in Section 3.1 of the main text, and the uniform law of large
numbers, Mqo(t; o, @) — mo(t) converges in probability to 0 uniformly in
t € [0,7]. Along with the consistency of e, and 6, we have that Mao(t)
converges in probability to m(t) uniformly in ¢ € [0, 7]. Using (5S2.13) and

(52.14), we have

-~

maO(t; aa; 9) - maO(t; Oy, 0)



S2. PROOFS OF ASYMPTOTIC RESULTS OF CEE1 ESTIMATORS

= —La()" (@ — o)
= n 1zn:1 HTA Uy + 0p(n~ 1), (S2.15)

and using (S1.2) of Lemma 1 of Supplementary Material S1,

-~

Mao(t; o, B) — Mao(t; o, 6)

= —Lao(®){T(®) - T(00)} ",

S Zlaz Vot op(n 2, (8216)
where 1,1(t) and 1,5(t) are the limits of Ly (¢) and Lao (), respectively. We
also have

Mao(t; o, Bg) — mo(t)

= —n ZSNA / (u) + 0,(n~Y?), (S2.17)

where Sy 4(t) is the limit of Sy4(t). Then by (S2.15)~(S2.17), we have

1 {Mgo(t) — mo(t)}
= 02 {0 (t; &, 0) — a(t; o0, 0)}
02 {0 (1 0, 8) — a0 (t; o, 80) }
+n g0 (t; o, 00) — mo(t)}
n-1/2 Z Oui(t) + 0,(1 (52.18)

where

Oui(t) = L ()T A, Uy — Lo ()" Ri(00) vy — Syalt) ™ /T Min(u).
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By the multivariate central limit theorem, n'/2{fqo(t) —mg(t)} converges in
finite-distribution to a zero-mean Gaussian process. Since each Oy;(t) can
be written as the sum or product of monotone functions of ¢ and is thus
managable, O,;(t) is tight, then n'/2{fo(t) —mo(t)} is tight and converges
weakly to a zero-mean Gaussian process with covariance function at (t, s)
given by Yo(t,s) = E{O,i(t)Oq;(s)}, which can be consistently estimated

~

by Y.(t, s).

S3 Corrected estimating equations under

covariate-independent censoring (CEE2)

S3.1 The CEE2 Method

In this Supplementary Material S3, we develop another corrected estimat-
ing equation method under the assumption that the censoring time C; is
independent of T}, Z;, and &,. Notably, the CEE1 method is also applicable
to the case of independent censoring time. However, the simulation results
show that CEE2 does attain a higher efficiency in certain situations. Thus,
we present the CEE2 method for comparison.

Let G(t) be the survivor function of C;, and @(t) be the Kaplan-Meier
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estimator of G(t) based on data {X;,1 — A;;i =1,--- ,n}. Define

Vi) = 20— ) o) ~ 87247 i1

Under model (2.2) of the main text, M (t) are mean-zero processes. If &,
are observable, for given a, my(t) can be estimated by m(t; o) satisfying

the following estimating equation (Sun and Zhang, 2009):

Z %[(Xi—t)—mbo(t;a)—BTzi—7T€i] =0,0<t<T (S3.1)
i=1 i

The estimator is then given by

et ) — et DX > DG (X)X, 1) — B2~ 4"¢]
o S UAI(X: > H)GLX) '

Without censoring, (S3.1) is similar to the efficient nonparametric estima-
tion of the MRL function as discussed in Bickel et al. (1993).

To estimate «, inspired by the generalized estimating equation method
(Liang and Zeger, 1986) and the inverse probability censoring weighting
(IPCW) technique (Robins and Rotnitzky, 1992; Robins, et al., 1994; van
der Laan and Robins, 2003, Sun and Zhang, 2009), we can obtain the

estimating function

. - ~[TAI(X; > ) Z; e (o) — 3T 7 — AT
Ub(a)—; /0 o0 | . [(Xi=t)—uo(t; )~ B Zi—T € JdH (1),

where H(t) is an increasing and known weight function on [0, 7]. Substi-
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tuting muo(t; @) to the above estimating function, we have

= [TAIX >t | L ATy T
-3 /O T |, L, |Xes e e,
(S3.2)

where H () is an increasing and known weight function on [0, 7],

Zo(t) = Z?:nl AT(X; > )G (X)) Zs
SUANI(X > DG
Eb(t) — Z?:l AzI(XZ > t)G EX )éz ‘

SUNI(X; > 06

Likewise, A simple replacement of &, by 51(0) in Uj(a) would lead to
a biased estimator. To reduce bias, for given @, we propose the corrected

estimating function Uy(a;0) = (Uy (a;0)T, Ups(a; 8)T)T with
Unlaie) = 3 [ %{z 2K — 1) — BTZ, — AE(O)dH (1),
Ustes0) = 3 [ SEESIE ) €006 -0 - '~y (0 ()

" TAT(X > )
D> / ey D),

where

~

ST AT (X > G HX)E(0)
S AI(X > )G(X)

&,(t;0) =

For /é, we use the estimating equation Ub(a;a) = 0, which results in an
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explicit form estimator a; of a as follows:

The estimator of the baseline MRL function is given by m0(t) = muo(t; au, 0),

0 <t <7, where

mpo(t; o, 8) =

;

Z; — Zy(t)
T'(0)V; — & (t;6)
Z; — Zy(t)

T(0)V, — &(t:0)

®2
Osxs

Osxq

~

045 D(6)

(X, — t)dH (1)

~

S ANI(X > HGTHX)[(XG — t) — BTZ — ATT(0) V]

~

Yo A(XG > 1)GH(XG)

The weight function H(t) plays a similar role to that of the weighted

log-rank statistic in survival analysis. Ideally, we would choose H(t) to

minimize the variance of ay.

However, it turns out to be very difficult

to derive an optimal H(t) analytically (Lin et al., 2001; Sun and Zhang,

2009). Thus, our choice of H (t) is somewhat ad hoc. We will investigate the

efficiency of @, using two different H(¢) functions in the simulation study.

S3.2 Asymptotic results of CEE2 estimator

To study the asymptotic properties of the proposed CEE2 estimators, in

addition to conditions (C1) and (C2), we need the following regularity con-

ditions:

dH ()
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(C5) Z; is bounded almost surely; H(t) converges almost surely to a non-

random and bounded function H(t) uniformly in ¢t € [0,7]; G(t) is

continuous; mg(t) is continuously differentiable on [0, 7].

(C6) A, is nonsingular, and

Abll

A, =

Ab12

T
Ab12 Ab22

Ay, = F -/T I(T; > t){Z; — ebz(if)}®2 d]:l(t)} ,

A — B /OTJm>t){zz-—ebz@)}{a—eg<t>}Tdﬁf<t>},

A — E| /0 TI(Ti>t){£i—ebf<t>}®2dﬁ(t>},

where ey (t) and ey (t) are the limits of Z;(t) and &,(t), respectively.

Define

Y (X > t),
1=1
n t NC
nl Z/ d/\z (U)’
i—1 J0 7(u)

NE(t) — /Ot I(X; > u)dA(u),
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M(t) = %[(& — ) — uo(t) — By Zi — ALT(O) V],

Si(t) = n1ZI(Xizt)/OT]\//E(u){Zi—Zb(u)}dH(u),
Spft) = 7Y 1K= 1) /0 ' [M(u){r@m—&(u;@)H;
Sy(t,u) = n‘lil\/fi(t)l(XiZU),

. _nfln TAIXi >t S T
Q= Y / S B moan),

-~

~ n_l” TAIXi >t o o o Al AT 4

Qb2 — ; /0 é(XZ) {Vz Vb(t)}[(Xl t) IBb Zz 'Yb F(O)Vz]dH(t)a
~ B n_l n TA1[<Xl>t) 3 e ) T

Q% = Y / o @V, &)V,

~ L TANT(X >t
Qo = n_IZ/ #dl—](t).
i=1 Y0 G(X;)
The following Theorems 3 and 4 establish the asymptotic properties of

CEE2-based ay, and my(t).

Theorem 3. Under the reqularity conditions (C1), (C2), (C5), and (C6),
Qy, is consistent to ap, and n*/?(ay — ag) has asymptotically a normal
distribution with mean zero and covariance matrixz that can be consistently

‘ P P N @2 -~ AT AT
estimated by A, ZpA, , where By =n~' > " Uy, Uy = (Uyy, Upi) T,

O = [ B0 - 2an) + [ 2 - QuRI @)1,
O = [ [mw{r(@)vi—éZ(u@H%D@m] a1
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—l—/ St >nd( t)+ RT( )Qyr — ngRI(a)T’AYb + @MPI(@)’%’
o ()

Abll Ab12

~T —~
Apy Ape

AN ALK, )
At = Z / B o CREZCILO)

~ _ L TAI(X > ) 5 N E . AT
Aup = 07> / S B BOHT @V - €8 H ),

Ry = wz | A= @)v, - g0 2att0) - GuD®)

Theorem 4. Under the reqularity conditions (C1), (C2), (C5), and (C6),
Myo(t) converges in probability to mo(t) uniformly int € [0, 7], and n'/?{fy(t)—
mo(t)} converges weakly on [0,7]| to a zero-mean Gaussian process whose

covariance function at (t,s) can be consistently estimated by Tb(t, s) =

nty abi(t)ébi(s), where

7(u)

Oult) = 5°(1)" [m v [ >] LA, Oy V0 RIB)7F,

and

Proof of Theorem 3.



S3. CORRECTED ESTIMATING EQUATIONS UNDER
COVARIATE-INDEPENDENT CENSORING (CEE2)

We first define

M;(t) = GOX)

[(X; —t) —mo(t) — By Zi — ¥4 T'(6o) V).

Since E{I'(0y)V,|&;} = &,;, then M;(t) are zero-mean stochastic pro-

cesses, ¢t = 1,--- ,n, we can rewrite

Ubl 0407 00 Z/

By the uniform consistency of G(-), and the uniform strong law of large

Zy(t) }dH (t).

numbers (USLLN), Z(t) converges almost surely to a bounded ey, (t) uni-

formly in ¢ € [0, 7]. By the fact that P(C' > 7) > 0, we have

G(X))
sup

0<i<n @(

- 1‘ L, (n12).

Since M;(t) can be written as the sums or products of monotone function
of t, it is managable, then by the functional central limit theorem (Pollard,
1990, P53), Y-, M;(t) = O,(n'/?) uniformly in ¢ € [0, 7], thus we have the

following

| Mz - enoyan
< [ 1) -0l > M0IaH ()
< sup |Zy(t) — ep(t \/ ]ZM )| dH (t)

0<i<n

= 0,(1)0,(n'?) = 0,(n"/?),
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and
— ey A
G( X)
< Z (1) — (T — M dH
_osglgn| o(1) eb()|0<z<nG X;) ‘/ |Z (£)|dH(f)
= Op(1>0p(n_1/2)0p( 1/2) = OP(nl/z)
Then,

is of order 0,(n'/?). By a similar argument, we have

> [ MO GE e )t~ A = o) (83

Then,

Uy (0;00) = Z/OT Mz‘(t)G(XZ:){Zi — ey (t)}dH (t)

i=1 G(XZ)
s /0 "M gg; [Z; — e (t)}d(H — H)(1)
-y /0 ’ M;(t) gg; {Z(t) — ep.(t)}dH (t)
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— Z/OT Mi(){Z; — ey (t) }dH (t) +

G(X;) — G(X,)

+ o nl/?).
X, p(n'7)

> [ Moz - e}y

(83.4)

By the martingale representation of Kaplan-Meier estimate, the second ter-

m on the right hand side (RHS) of (S3.4) equals

> /0 MA){Z: — e (1)} (1) G(Xg (;QG<XZ'> + 0p(n'/?)

-y /0 CMO{Z: — e ()} AH ()

~

Xi u—)— Gu j—1 dM;(u 1/2
S e B e
noopr . T =1 dM; (u 1/2
= Z/o M;(t){Z; — ebz(t)}dH(t)/o I(X; > U)% +0p(n'/?)
— Zn: ' SAl(t)de(t) + 0,(n*?), (53.5)
— Jo 7(t)

where

1) =0 Y1 2 1) /O Mi(w){Z — ey (u) YT (u).

It follows from the USSLN that S;(¢) and 7(t) converge almost surely to
nonrandom functions s;(¢) and 7(t) uniformly in ¢ € [0, 7], respectively.

Using Lemma 1 of Lin et al. (2000), (S3.5) becomes

Z /0 ' il((f)) dME(L) + 0,(n"/?). (S3.6)
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By (S1.2) of Lemma 1 in Supplementary Material S1, we obtain

Uy (0;8) — Upi (s 00) = —nQy{T'(0) — T(60)} v,

- Z QuiR:(80)" o + 0p(n'/?). (S3.7)

y (S3.5)—(S3.7), we have

o~

Up(ao;0) = Up(ap; 0) + Uy (ap; 5) — Upi(a; 6p)

= Z Ui + Op<n1/2), <S38>

i=1

where

Upis = /OT M;(t){Z; — ey, (t)}dH () + /OT Sﬂl((tt)) dMF(t) — QuRi(00) v,

Uz (a; 8p) can be written as

AI(X; > 1) G(X;)
Z/[ ﬂwﬂf&@%}—am—mwﬂéwﬂm)
=3 [ [om@av.- e + 2G| Zedaio
=3 [ [ - et + LR Ii60] Sat - i)
-3 MG &0 — et} () ($39)

Xi)

By the USLLN, we have supg<,, |&,(t;00) — eu(t)| = o,(1), thus, by a
similar argument to derive (S3.3) we can show the third term of (S3.9) is

0,(n'/?), similarly, the second term of (S3.9) is also 0,(n'/?). The first term
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of (S3.9) equals
S [ [ - e + 2= p00,) aiy

+Z /[ OOV, - (0]} + S5 D60y, | a0

G(X;) — G(X,)
@(Xi) '

By a similar argument as in (S3.5), the second term of (S3.10) equals

x (S3.10)

ANI(X; > t) .
Z/ [ T (00) Vi — ewe(t)} + WD(%)‘YO] dH (t)

></ I(X; > )w+%(nl/?)

n7(u)

Z/ 82 +0p(n'/?), (93.11)

where

— ! ; (X, > 1) /0 ' [Mi(u){r(eom o)} + WD(OO)% a1 ()

By the USLLN, Sy(t) converges almost surely to nonrandom function s (t)
uniformly in ¢ € [0, 7], again by Lemma 1 of Lin et al. (2000), the RHS of

(S3.11) becomes

— [T sa(t) 1/2
dME(t) + o,(n/*). S3.12
> [ Hy e+ o (53.12)
Some algebraic manipulation yields
Usa(exo: ) — Uss(cx0;80) = n{T'(6) — T(60)} Qs — nQu{T'(8) —T(80)} o

+nQuu{D(8) — D(60)}7,, (93.13)
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where
A~k _ " T All(X’L > t) =k T
Qy; = nt /A—FO V,—&,(t;00)}V; dH(t).

b ; a0 {T'(6o) b(1;60)} (t)
By the consistency of I‘(/O\) and G(-), and the law of large numbers, (AQZZ, QZ3
and @M converge to some nonrandom Q,, Q,3 and @y respectively, then
by (S1.2) and (S1.3) of Lemma 1 in Supplementary Material S1, (S3.13)

becomes

Z Ri(600)Quz — Z QusRi(00) v + Z Q1P (00)7,- (S3.14)
i=1 i=1 i=1

By (S3.10), (S3.12) and (S3.14) we have

~ -~

Up(a;0) = Upla; o) + Up(a; 0) — Upa(a; 00)

= ) Upp+0y(n'/?), (S3.15)

=1

where

Ubi2 - /OT {Mz(t){I‘(BO)VZ — ebg(t>} -+ %D(eo)’yo d]:.r(t)

+ /T () dM;(t) + Ri(00)Qpr — QusRi(60) vy + QuaPi(80) 7o
o (1)

Let Uy, = (UL, UL)T, then it follows from (S3.8) and (S3.15) that
bil bi2

Up(ag;0) =Y Uy, +0,(n'/?). (S3.16)

=1

B nfln TAZI(XZ>15) X N ATy TV
Q= Y [ i (Vi V- ) - 67 - AT @ViaH(D)
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-~ -~

Likewise, n~'Uy(cxp; @) — 0 in probability and n~/2U,(cxy; 8) converges
in distribution to a normal random vector with mean zero and covariance

matrix X, = F{U*}. Note that

o~

&y — o =n"1A, Uylan;8), (93.17)

:&b converges to some A, in probability by the law of large numbers and
the consistency of I‘(@) and D(@) Then, based on (S3.17), &, converges in
probability to ag, and n'/?(a, — ay) is asymptotically normal with mean
zero and covariance matrix A;IEbAgl, which can be consistently estimated

by A, S,A, .

Proof of Theorem 4.

By the uniform law of large numbers, Ly(t) and V,,(¢) converge in prob-
ability to nonrandom ey (t) and ey, (t) uniformly in ¢ € [0, 7], respectively.

With the use of (S3.16) and (S3.17), we have

~

o (t; &, B) — g (t; ato, 6)
= L) (@ — )
= =) eu(t) A Uy + 0p(n1?), (S3.18)
=1

and using (S1.2) of Lemma 1 in Supplementary Material S1,

-~

mpo(t; o, @) — Mo (t; g, B)
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= —V,(t)"{T(0) — T(85)} ",

= —n Zebv ’YO + Op( 1/2>. (Sv319>

By the USLLN, S(©(#) converges almost surely to s (¢) uniformly in ¢t €

[0, 7]. Again using the martingale representation of G (t), we have

Mo (t; g, Bg) — mo(t)
= 5O S (M) + My CE) G

=1

and it converges almost surely to nonrandom s3(¢, u) by the USLLN. Then

by (53.18)—(S3.20), we have
nl/Q{fhbo(t) —mg(t)} = n~1/? ZObz + 0,(1

where

Oyi(t) = sO (1) {Mi(t)Jr /0 S:;(w))nd( )} —ep ()T A, Upi—ep () R (00)
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Upon checking the finite dimensional convergence and tightness, n'/2{fmq(t)—
mo(t)} converges weakly to a zero-mean Gaussian process with covariance
function at (¢, s) given by Yy(t,s) = E{Oy;(t)Owi(s)}, which can be consis-

tently estimated by T, (¢, s).

S3.3 Simulation

This part presents the estimation results of the factor analysis model in

Simulation 1. A comparison between the empirical performances of CEE1

and CEE2 is also provided.

Parameter estimates of the factor analysis model in Simulation 1

The parameter estimates of the factor analysis model in Simulation 1 are
presented in Tables S1 and S2. Table S1 shows that the values of ¥’s are
slightly underestimated and the CP’s are in general less than the nominal
level when n = 500. The performance of CP’s gets improved with an in-
crease in the sample size. For instance, the number of CP’s above 95% for
Case (II) increases from 1 to 4 when n increases from 500 to 1500 (Tables S1
and S2), and the CP’s get improved further when the sample size becomes
larger (not reported). Likewise, the biases associated with the variances of
the residual errors in the factor analysis get closer to zero when n increases.

Thus, a sufficiently large sample size is required to achieve high estimation
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accuracy because the latent variables introduce additional uncertainty to
the estimation procedure. The phenomenon of underestimating the vari-
ances of residual errors in a factor analysis with finite sample sizes is also
found in the existing works, such as Lee et al. (2003) and Pan et al. (2015).
An explicit reason why latent variables cause such underestimation requires

further investigation.

Comparison of CEE1 and CEE2 under covariate-independent censoring

Under the setting of Simulation 1 in Section 6.1 of the main text, given
that the effect of integrator H is difficult to assess analytically (e.g., Lin
et al., 2001; Sun and Zhang, 2009), we conduct simulation based on two
different H functions: Hi(t) = > . AJ(X; < t) and Ho(t) =0if ¢t < 0
and 1 otherwise. The results are presented in Tables S3 and S4.

In comparison (for the simulation results of CEE1 please refer to the
main text), we find that the performance of estimation is slightly better
for CEE2-H,(t) (CEE2 with weight function H;(¢)) than for CEE2-Hy(t)
(CEE2 with weight function Hs(t)) and CEE1, whereas the performance of
CEE2-H,(t) aligns with that of CEEL. As the sample size increases, the
estimation performs better in all the cases.

As for the choice of H(t) for CEE2, a common practice in the literature
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is to compare it through simulation on a case-by-case basis. For the two
types of H(t) considered in this study, Hi(t) = > i AI(X; < t) takes
into account all uncensored observations and assigns them an equal weight,
whereas H(t) takes 0 if t < 0 and 1 otherwise. H;(t) apparently incor-
porates more information about the data and is thus expected to achieve
a higher estimation efficiency in general. The simulation results shown in
Tables S3 and S4 demonstrate that H;(t) does outperform Hs(t) under the

cases considered. However, Hi(t) is relatively computationally demanding.

Comparison of CEE1 and CEE2 under covariate-dependent censoring

Under the setting of censoring rate 73% and case (II): &, = (&1,&2)7 ~
{I'(4,2) —2}I in Section 6.2 of the main text, we again conduct the analysis
using CEE2-H, (t), and CEE2-H,(t), respectively. The results are presented
in Table S5.

Although CEE2-H,(t) performs better than CEE2-H,(t), they both
produce biased estimation in the presence of covariate-dependent censor-
ing. Specifically, the parameters are consistently underestimated and the
coverage rates are significantly lower than the nominal level (95%) under
CEE2-H,(t) and CEE2-H,(t). Moreover, as the sample size increases, the

biases remain the same levels and the coverage rates are even further from
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the nominal level, implying that CEE2-based estimators, their standard er-
ror estimates, and their asymptotic normality are questionable. In contrast,
the biases of parameter estimates are close to zero and the coverage rates
are close to the nominal level under CEE1. Furthermore, the performance
of CEEL is significantly improved when the sample size increases.

In conclusion, CEE1 performs slightly worse than CEE2 in the pres-
ence of covariate-independent censoring but much better than CEE2 when
censoring is covariate-dependent. Given that CEE1 does not require spec-
ifying the censoring mechanism, such robust feature of CEE1 to censoring

mechanisms is expected.

S3.4 Real data comparison between CEE1 and CEE2

For comparison, we re-conducted the analysis using the CEE2-based ap-
proach for the data in Section 7 of the main text. Regardless of the use
of CEE2-H,(t) or CEE2-H,(t), the estimated effects of obesity, blood pres-
sure, and lipid on the MRL function of CKD became nonsignificant. These
results contradict the previous findings and those obtained in the medical
literature (Song et al., 2008; Pan et al., 2015). A possible reason is that
the assumption of covariate-independent censoring in the CEE2 approach

is erroneous in the CKD study. Therefore, CEE1 is recommend when the
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censoring mechanism is unknown.

S4 Weak convergence of ¢(t;z)

Definition of ;(t;z).

~—1~

¢
Gi(tyz) = I1(Z7 <z)Q(t) +/ O,i(s)dJy(s;z) —Jg(t;Z)TAa U
0

t

~ ~

+34(t:2) TR (6)75, — / Ti(5:2)d0,i(s),
0

where
Ttz) = S IE < 9N,
i=1
Jo(t;z) = nt i[(i; < z)N;(t)Z?,
i=1
Js(t;z) = n! i[(i; < z)N;(t)V;,
i=1
Ttz) = S IZ < Vi),
i=1
Proof of the asymptotic equivalence of p(t;z) and ¢(¢;z).
Let Z7 = (ZiT,gi(OO)T)T. Some algebraic manipulations yield
o(t;z) = n_l/an:I(Z;‘ < 2)$4(t; ap, Bp)
i=1

+nt/? /0 {Ma0(s) — mo(s)}dJy (s;2)

0235 (t;2)" (B — o)



HAIJIN HE, DENG PAN, XINYUAN SONG AND LIUQUAN SUN

+n!235(t;2)"{T'(6) — T'(00)} v,
e /0 Ti(ss 2)d{an(s) — mols)}
+n” 12 i{f (Z; < 2) — I(Z; < 2)}u(t; a, 0).
i=1
Let Jy(t;2),J2(t; 2), J5(t: z) and J4(t; z) denote the limits of J, (¢; z), Ja(t; ),
jg(t; z) and j4(t; z), respectively. By (S1.2) of Supplementary Material S1,
(52.14) and (S2.18) of Supplementary Material S2, and noting that the last

term of the right hand side is asymptotically negligible, we have, uniformly

int e 0,7],

o(t;z) = n_l/QZI(Zf < z)Q;(t; g, o)
i=1

noopt
—H’L_I/QZ/ O,i(s)dJy(s;z)
i=1 70
—n Py (t; )" Z AU,
i=1

+n 235t 2) " Z R (60)" o

i=1

nooat

—n~Y? Z/ Ja(s;2)d0qg;(s) + 0p(1),

i=1 70
which is a sum of i.i.d. zero-mean random variables for fixed ¢ and z. By
the multivariate central limit theorem, ¢(¢;z) converges in finite dimen-
sional distributions to a zero-mean Gaussian process. It follows from the
functional central limit theorem that the first, the second and the fifth

terms of p(t;z) are tight. The third and fourth terms are tight because
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Jo(t;z) and J3(t; z) are deterministic functions and n=%/23"" A 'U,; and
n~Y23"  Ri(00)Tv, converge in distribution. Thus, ¢(t;z) converges
weakly to a zero-mean Gaussian process, which can be approximated by

the zero-mean Gaussian process ¢(t;z).

S5 Exploratory factor analysis in the CKD study

The structure of factor loading matrix (7.9) in the CKD study can be
cross validated by the result of an exploratory factor analysis through well-
known software, such as LISREL (Joreskog and Sérbom, 1996) and Mplus
(Muthén and Muthén, 1998-2007). Table S6 shows that the estimated num-
ber of factors is four, Factor 1 is clearly interpreted as “obesity” because
large loadings are associated with WAIST and BMI, and small loadings are
associated with others, and Factors 2, 3, and 4 can be likewise interpreted

PR

as “blood pressure,” “glycemia,” and “lipid,” respectively. Consequently, a
non-overlapping structure of B in (7.9) is determined by fixing those with

small loadings at zero.
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Table S1: Results of the factor analysis model in Simulation 1, n = 500

Case Par Bias SE SEE CcP Par Bias SE SEE CP

q8) bin  —0.004 0.039 0.038 0934 ¢ —0.003 0.031 0.029 0.933
b1 —0.004 0.040 0.037 0.940 1o —0.005 0.030 0.029 0.929
bs1  —0.005 0.039 0.037 0.940 5 —0.005 0.031 0.029 0.920
b, —0.004 0.039 0.038 0.934 ¢4 —0.005 0.029 0.029 0.951
bsa  —0.004 0.039 0.037 0.942 45 —0.004 0.030 0.029 0.930
be2 0.003 0.037 0.037 0.950 s —0.005 0.029 0.029 0.942

b12 0.000 0.051 0.049 0.944

(I by 0.004 0.043 0.043 0937 ; —0.006 0.030 0.031 0.935
bo1  —0.006 0.045 0.043 0915 1o —0.005 0.030 0.029 0.945
bs;  —0.007 0.045 0.043 0.940 13 —0.003 0.029 0.031 0.953
by, —0.008 0.044 0.044 0939 ¢4 —0.004 0.032 0.030 0.923
bs  —0.007 0.043 0.044 0.939 s —0.005 0.031 0.031 0.936
b2 —0.008 0.044 0.044 0922 s —0.005 0.031 0.030 0.927

P12 0.001 0.054 0.051 0.920

(III)  b;;  —0.006 0.036 0.036 0.945 ¢; —0.003 0.031 0.029 0.929
ba1 0.001 0.036 0.036 0.948 o —0.007 0.031 0.029 0.913
bs1 0.000 0.036 0.036 0.960 3 —0.006 0.031 0.029 0.922
b —0.002 0.037 0.036 0.934 ¥4 —0.004 0.031 0.029 0.932
bsa  —0.003 0.036 0.036 0.942 5 —0.005 0.029 0.029 0.945
bsz —0.002 0.036 0.036 0.951 s —0.006 0.030 0.029 0.932

P12 0.003 0.044 0.044 0.946
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Table S2: Results of the factor analysis model in Simulation 1, n = 1500

Case Par Bias SE SEE CP Par Bias SE SEE CP

q8) bip  —0.001 0.022 0.022 0.944 ¢ —0.002 0.017 0.017 0.943
ba1  —0.001 0.023 0.022 0.942 ¢ —0.002 0.018 0.017 0.942
bs1  —0.001 0.022 0.022 0.949 3 —0.001 0.017 0.017 0.958
by, —0.001 0.022 0.022 0.956 ¢4 —0.002 0.018 0.017 0.941
bsa  —0.001 0.022 0.022 0.940 s —0.002 0.017 0.017 0.942
bsz —0.001 0.021 0.022 0.953 s —0.001 0.017 0.017 0.942
¢12  —0.001 0.029 0.029 0.945

(II) b1 —0.001 0.026 0.025 0.941 ¢; —0.002 0.017 0.017 0.945
ba1  —0.002 0.026 0.025 0.940 s 0.000 0.017 0.017 0.951
bs1 —0.002 0.026 0.025 0.940 3 —0.001 0.017 0.017 0.944
by, —0.001 0.025 0.025 0.960 4 —0.001 0.018 0.017 0.941
bsa  —0.001 0.026 0.025 0.939 15 —0.002 0.017 0.017 0.958
bsz —0.001 0.026 0.025 0.950 s —0.001 0.018 0.017 0.949
P12 0.000 0.031 0.030 0.935

(II1) b1 —0.001 0.022 0.021 0937 ¢; —0.001 0.017 0.017 0.954
b1 —0.001 0.022 0.021 0.943 o —0.002 0.018 0.017 0.935
bs1 —0.002 0.021 0.021 0.945 3 —0.002 0.018 0.017 0.927
bsp  —0.001 0.021 0.021 0.947 ¢4 —0.001 0.017 0.017 0.952
bs  —0.001 0.021 0.021 0.951 5 —0.002 0.017 0.017 0.947
be2 0.001 0.021 0.021 0.946 s —0.002 0.017 0.017 0.947
P12 0.003 0.026 0.026 0.945
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Table S3: Results of the MRL model - CEE2 - n = 500

Hy(t) Ha(t)

Case CR Par Bias SE SEE CP Bias SE SEE CP

I 10% p 0.000 0.039 0.039 0951 -0.004 0.077 0.078 0.954
v —0.001 0.021 0.021 0.952 0.002 0.045 0.043 0.936

v2  —0.005 0.034 0.028 0.936 —0.004 0.045 0.045 0.950

30% B 0.001 0.045 0.044 0946 —0.003 0.083 0.083 0.946

v1  —0.001 0.025 0.024 0.941 0.002 0.047 0.046 0.947

v2  —0.005 0.038 0.032 0.923 —0.004 0.047 0.048 0.954

(I 10% g 0.000 0.042 0.039 0952 -0.004 0.082 0.078 0.941
v1  —0.001 0.027 0.025 0.940 0.004 0.048 0.044 0.934

v2  —0.006 0.039 0.031 0.930 —0.008 0.058 0.050 0.950

30% B 0.001 0.048 0.045 0.951 —0.003 0.085 0.083 0.942

v1  —0.004 0.031 0.039 0.946 0.004 0.051 0.047 0.930

v2  —0.006 0.043 0.037 0.942 —0.009 0.061 0.053 0.942

(II1y  10% B —0.001 0.039 0.039 0.951 —0.003 0.080 0.078 0.938
" 0.000 0.020 0.020 0.945 0.001 0.043 0.044 0.942

v2  —0.004 0.032 0.026 0.940 —0.001 0.046 0.045 0.951

30% S —0.003 0.045 0.045 0.944 —0.003 0.085 0.083 0.934

" 0.001 0.024 0.023 0.938 0.002 0.047 0.047 0.942

v2  —0.003 0.037 0.030 0.952 —0.001 0.051 0.048 0.944
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Table S4: Results of the MRL model - CEE2 - n = 1500

Hy(t) Ha(t)

Case CR Par Bias SE SEE CP Bias SE SEE CP

I 10% p 0.000 0.022 0.022 0.945 0.000 0.046 0.045 0.944
7 0.000 0.012 0.012 0.952 0.000 0.025 0.025 0.950

v2  —0.002 0.017 0.016 0.930 —0.002 0.027 0.026 0.943

30% B 0.002 0.026 0.026 0.939 0.000 0.049 0.048 0.938

" 0.000 0.014 0.014 0.960 0.000 0.027 0.027 0.944

Y2 0.000 0.019 0.018 0.929 -0.002 0.029 0.028 0.944

Iy 10% B —0.001 0.023 0.023 0.950 0.001 0.044 0.045 0.952
" 0.000 0.012 0.012 0.953 —0.001 0.025 0.026 0.951

v2  —0.002 0.018 0.018 0.947 —0.003 0.029 0.029 0.949

30% B —0.001 0.026 0.026 0.959 0.001 0.047 0.048 0.948

" 0.000 0.014 0.014 0.936 —0.001 0.027 0.027 0.948

v2  —0.002 0.021 0.020 0.934 —0.003 0.031 0.031 0.947

(I 10% B 0.000 0.023 0.023 0.944 0.000 0.046 0.045 0.943
" 0.000 0.011 0.012 0.943 0.001 0.027 0.026 0.939

Y2 0.000 0.015 0.015 0.956 —0.001 0.027 0.026 0.945

30% p 0.000 0.026 0.026 0.946 0.000 0.048 0.048 0.947

" 0.000 0.013 0.013 0.948 0.001 0.028 0.027 0.942

Y2 0.000 0.018 0.017 0.930 -0.001 0.028 0.028 0.947
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Table S5: Results of the MRL model - CEE2 - &, ~ {I'(4,2) — 2}I, CR = 73%

n Method Par Bias SE SEE CP
500 Hq(t) B —0.040 0.115 0.104 0.897
Y —0.017 0.049 0.052 0.927
Y2 —0.026 0.092 0.087 0.905
Hy(t) I6] —0.275 0.191 0.175 0.686
Y1 —0.085 0.085 0.080 0.838
Y2 —0.177 0.129 0.123 0.686
1500 Hq(t) 16} —0.053 0.060 0.058 0.836
Y1 —0.017 0.028 0.027 0.882
Y2 —0.034 0.048 0.046 0.843
Hy(t) B —0.265 0.098 0.101 0.212
Y1 —0.084 0.045 0.046 0.564
Y2 —0.176 0.071 0.071 0.280
3000 Hq(t) B —0.051 0.042 0.041 0.751
Y1 —0.018 0.019 0.019 0.831
Y2 —0.037 0.033 0.032 0.774
H(t) 15} —0.268 0.073 0.071 0.017
Y1 —0.084 0.033 0.032 0.260
Y2 —0.180 0.049 0.050 0.037
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Table S6: The result of the exploratory factor analysis in the CKD study

Variable Factorl Factor2 Factor3d Factord

WAIST 1.004 0.014 -0.060 -0.016

BMI 0.830 0.009 0.027 -0.008
SBP 0.002 0.946 0.037 -0.038
DBP 0.045 0.643 -0.004 0.038
HbAlc 0.045 -0.035 -0.941 -0.043
FPG 0.003 -0.004  -0.738 0.025
TC -0.109 0.120 -0.155 0.358

HCL-C -0.177 0.091 -0.093 -0.416

TG -0.024 -0.020 0.024 1.014




