
Statistica Sinica 29 (2019), 47-66
doi:https://doi.org/10.5705/ss.202015.0369

ADDITIVE MEAN RESIDUAL LIFE MODEL WITH

LATENT VARIABLES UNDER RIGHT CENSORING

Haijin He, Deng Pan, Xinyuan Song and Liuquan Sun

Shenzhen University, Huazhong University of Science and Technology,

The Chinese University of Hong Kong and Chinese Academy of Sciences

Abstract: We propose a novel additive mean residual life model to examine the

effects of observable and latent risk factors on the mean residual life function of

interest in the presence of right censoring. We use factor analysis to characterize the

latent risk factors on the basis of multiple observed variables. We develop a borrow-

strength estimation procedure that incorporates an asymptotically distribution-free

generalized least square method and a corrected estimating equation approach.

We establish the asymptotic properties of the proposed estimators. We develop a

goodness-of-fit test for model checking. We report on simulations to evaluate the

finite sample performance of the method. The application to a study on chronic

kidney disease for type 2 diabetic patients reveals insights into the prevention of

such common diabetic complications.
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1. Introduction

In medical studies, patients and physicians are often interested in how much

a new treatment potentially affects the mean residual life (MRL) rather than

the hazard. It is thus appealing to directly investigate a surviving patient’s re-

maining life. A useful alternative to the hazard-based approach is the MRL

model (Oakes and Dasu (1990); Maguluri and Zhang (1994); Chen et al. (2005);

Chen (2007)). For a nonnegative survival time T with finite expectation, the

MRL function at time t ≥ 0 is m(t) = E(T − t|T > t), which measures the

remaining life expectancy of a subject who has survived until time t. The MRL

function has a one-to-one correspondence with the survival function of T ; thus,

in theory, it also characterizes the stochastic behavior of T . The MRL function

is widely applied in many substantive fields. For example, under the term ‘life

expectancy’, demographers studied the MRL function in human population re-

search. In industrial reliability studies, the MRL function is highly effective for
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enhancing system reliability and developing maintenance policies. In biomedi-

cal studies involving survivorship, a so-far survived patient may wish to know

how much longer he/she can expect to live. The MRL function is also useful in

actuarial studies relating to life insurance, health science, and so on. We refer

interested readers to Guess and Proschan (1988) for a detailed discussion on the

applications of the MRL function.

Various models have been proposed for regression analysis that assesses the

effects of covariates Z on the MRL function m(t|Z). For instance, Oakes and

Dasu (1990) and Maguluri and Zhang (1994) studied the proportional MRL

model without censoring. Chen and Cheng (2005) and Chen et al. (2005) de-

veloped semiparametric estimation procedures for the proportional MRL model

with censored data. Chen and Cheng (2006) and Chen (2007) proposed the ad-

ditive MRL model and discussed various estimation procedures with or without

right censoring. Sun and Zhang (2009) and Sun, Song and Zhang (2012) proposed

a class of transformed MRL models with time-independent and time-dependent

coefficients, and developed inference procedures for estimating model parameters

under right censoring.

These regression models assume that risk factors are observable and directly

assessable. However, unobservable traits, ‘latent variables’, are common in many

applications. Such latent variables cannot be fully measured by a single observed

variable, but are characterized by several highly correlated observed indicators

from different perspectives. Typical examples include ‘blood pressure’, summa-

rized by systolic blood pressure (SBP) and diastolic blood pressure (DBP) and

‘lipid’ is measured by total cholesterol (TC), high-density lipoprotein choles-

terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and/or triglycerides

(TG). A number of limitations are evident if the correlated indicators of a la-

tent trait are simply regarded as independent variables in a regression model

(Roy and Lin (2000, 2002)). Major limitations include incomplete measurement

of latent traits, multicollinearity incurred by high correlations among multiple

indicators, and incapability of providing insights into the overall effects of latent

risk factors or the determinants of latent responses. For instance, the application

reported in Section 7 shows that simultaneously incorporating the two indicators

of blood pressure, such as SBP and DBP, or the three indicators of lipid, such

as TC, HDL-C, and TG, in regression can cause multicollinearity and produce

misleading results.

Factor analysis is a widely used statistical tool that measures latent vari-

ables on the basis of multiple observed indicators (Lawley and Maxwell (1971)).
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Various latent variable models have been developed based on the factor anal-

ysis model (Jöreskog and Sörbom (1996); Lee (2007); Song and Lee (2012)).

Sammel and Ryan (1996) analyzed the effects of anticonvulsant medication dur-

ing pregnancy with the use of a joint modeling approach, wherein the response

(the overall severity of birth defects) in their regression model was characterized

by various adverse effects through a confirmatory factor analysis model (Bollen

(1989)). Roy and Lin (2000) extended the model of Sammel and Ryan (1996)

to accommodate longitudinal latent variables in a linear mixed model, where the

latent response was summarized by three longitudinal outcomes relating to the

effectiveness of the treatment practice. Roy and Lin (2002) considered similar

models that further accounted for non-ignorable dropouts and missing covariates.

The development of latent variable modeling in survival analysis is rather lim-

ited. Pan et al. (2015) proposed an additive hazards model with latent variables

to investigate the observed and latent risk factors of failure time and demon-

strated the advantages of their model over the conventional additive hazards

model. However, the construction of latent risk factors has never been intro-

duced into the MRL regression framework. The MRL function is an attractive

alternative to hazard when the ordering assumption on a hazard function is vi-

olated (Sun and Zhang (2009)), and it can provide straightforward knowledge

about the remaining life expectancy for events of interest. Despite the develop-

ments of Pan et al. (2015), considering the construction of the MRL model with

latent variables remains important because the MRL model represents another

type of model that has been commonly used in survival and reliability analy-

ses. Moreover, Pan et al. (2015) assumed that latent risk factors and residual

errors were normally distributed, and this may not hold in a substantive study,

misspecification leading to erroneous inference. To advance matters, we propose

a joint model that comprises a distribution-free factor analysis model for mea-

suring latent risk factors via multiple observed indicators and a MRL model for

examining the effects of latent and observed risk factors on the MRL function of

interest. Two types of MRL models, additive and proportional, can be consid-

ered. We focus on the former because its additive structure complies with the

intrinsic constraint that m(t|Z) + t is monotonically nondecreasing for all values

of covariates Z, and its regression parameters allow interpretation in mean differ-

ences. The proportional MRL model can violate the intrinsic constraint without

a monotonically nondecreasing baseline MRL function that is not always com-

patible with the underlying process (Oakes and Dasu (1990); Chen and Cheng

(2006)).
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In conducting inference in the proposed model, the EM-type algorithms that

are commonly used in the latent variable modeling literature (Sammel and Ryan

(1996); Roy and Lin (2000, 2002)) are not directly applicable. The difficulty lies in

the fact that the likelihood function is unavailable because the distributions of the

latent variables and residual errors in the factor analysis model are unspecified.

To circumvent this, we propose the use of an asymptotically distribution-free

generalized least square (ADF-GLS, Browne (1984)) approach to estimate the

parameters and latent variables in our factor analysis model. We develop a

borrow-strength estimation procedure that copes with the ideas of the corrected

score method (Carroll, Ruppert and Stefanski (1995)) and of the estimating

equation methods (Chen and Cheng (2005, 2006); Sun and Zhang (2009)) to

estimate the parameters in the MRL model.

Although the basic ideas of constructing a joint model with latent risk factors

are similar, ours differs from the study of Pan et al. (2015) in several aspects. In

particular, the model frameworks are different.

The rest of the paper is organized as follows. Section 2 describes the proposed

joint model. Section 3 presents the borrow-strength estimation procedure for

regression parameters of interest. The asymptotic properties of the proposed

estimators are established in Section 4. A goodness-of-fit test is developed for

checking the adequacy of the proposed model, in Section 5. Section 6 reports

on simulation studies to evaluate the empirical performance of the proposed

methods. Section 7 reports on an application to a study on chronic kidney

disease (CKD) for type 2 diabetic patients. Section 8 presents the conclusions

drawn by the paper. Technical details are in Supplementary Materials.

2. Model

Let Vi (i = 1, 2, . . . , n) be a p × 1 vector of observed variables, and ξi be a

q × 1 vector of latent variables. The latent variables in ξi are measured by the

observed variables in Vi via a distribution-free factor analysis model

Vi = Bξi + εi, (2.1)

where B is p×q factor loading matrix, ξi has mean zero and covariance matrix Φ,

εi is a p×1 vector of random errors independent of ξi, and εi is assumed to have

mean zero and diagonal covariance matrix Ψε. In this study, we consider model

(2.1) as a confirmatory factor analysis model, where the numbers of observed

variables and latent factors, p and q, as well as the structure of the factor loading

matrix, B, are pre-determined based on substantive theory, expert knowledge,
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and/or existing literature (Bollen (1989); Lee (2007)). If such information is

unavailable, one can conduct an exploratory factor analysis to determine p, q,

and the structure of B based on the data (Jöreskog and Sörbom (1996)).

Let Zi be an s × 1 vector of observed covariates. To investigate the effects

of Zi and ξi on the failure time Ti, we propose the additive MRL model

m(t|Zi, ξi) = m0(t) + βTZi + γT ξi, (2.2)

where m0(t) is the unspecified baseline MRL function, and β and γ are s×1 and

q × 1 vectors of unknown regression parameters. Assume that m0(t) + βTZi +

γT ξi is nonnegative. The joint model defined by (2.1) and (2.2) preserves the

embedding constraint of the MRL function that m(t|Zi, ξi) + t = E(Ti|Ti > t) is

nondecreasing (Chen and Cheng (2006)) and the regression parameters β and γ

directly explain the effects of Zi and ξi on the MRL function. Here the ξi in (2.2)

include latent traits (e.g., lipid) that truly exist but cannot be characterized by

a single observed variable.

It is possible to use other techniques such as principle component analysis

(PCA) to project groups of correlated variables into independent basis functions.

If, however, all the principal components are included in a regression, the result-

ing model is equivalent to the one obtained using least squares, and the large

variances caused by multicollinearity do not diminish (Jolliffe (2002)). Selection

of the number of principal components is an important issue (Jolliffe (2002); Bair

et al. (2006)). But latent variables in a factor analysis represent traits that have

intuitive meanings not available through PCA.

To identify the proposed model and obtain a clear interpretation of latent

factors, we follow the common practice (Bollen (1989); Song and Lee (2012)) of

imposing the identifiability constraints that the diagonal elements of Φ are fixed

to 1 to unify the scales of latent factors and a non-overlapping structure of B

is assigned to ensure that each observed variable does not measure two or more

latent factors.

3. Inference Procedure

In this section, we describe the statistical inference of the proposed model.

Section 3.1 proposes a corrected estimating equation approach under both

covariate-independent censoring and covariate-dependent censoring (CEE1). We

also develop a corrected estimating equation method in the presence of covariate-

independent censoring only (CEE2). We present CEE1 in Section 3.1 and defer

CEE2 to Supplementary Material S3. Section 3.2 proposes the use of an ADF-
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GLS approach for the inference of the factor analysis model.

3.1. Corrected estimating equation procedure (CEE1)

Denote the unknown parameters in (B,Φ,Ψε) by a p∗ × 1 vector θ. Based

on {Vi, i = 1, . . . , n}, by adopting an ADF-GLS approach (Browne (1984)), we

obtain the estimator of θ, θ̂. The implementation of the ADF-GLS approach in

(2.1) and the asymptotic properties of θ̂ are deferred to Section 3.2 and Supple-

mentary Material S1, respectively.

Let Ci be the censoring time. The support of Ci is assumed to be longer than

that of the survival time Ti to ensure that the MRL function is estimable, and

Ti and Ci are assumed to be independent given Zi and ξi. Let Xi = min{Ti, Ci}
be the observed time, and ∆i = I(Ti ≤ Ci) be the censoring indicator, I(·)
the indicator function. {(Vi,Zi, ξi, Xi,∆i), i = 1, . . . , n} are independent and

identically distributed copies. The observed data consist of {(Vi,Zi, Xi,∆i), i =

1, . . . , n}.
Let Ni(t) = I(Xi ≤ t)∆i be the observed failure counting process, and

Yi(t) = I(Xi ≥ t) be the at-risk process. Let λ(t|Zi, ξi) and Λ(t|Zi, ξi) be the

hazard function and cumulative hazard function of Ti given Zi and ξi, respec-

tively. Then (Sun and Zhang (2009))

λ(t|Zi, ξi) =
m′(t|Zi, ξi) + 1

m(t|Zi, ξi)
,

which is equivalent to

{m0(t) + βTZi + γT ξi}dΛ(t|Zi, ξi) = d{m0(t) + t}.

Take α = (βT ,γT )T . If ξi are observable, for given α, m0(t) can be estimated

by m̂a0(t;α) which satisfies the estimating equation (Chen and Cheng (2006))
n∑
i=1

{m̂a0(t;α) + βTZi + γT ξi}dNi(t)−
n∑
i=1

Yi(t)d{m̂a0(t;α) + t} = 0. (3.1)

As the ξi are unobservable, the estimating equation (3.1) is intractable. To

address this, we consider the estimator of ξi based on (2.1) with known θ, which

takes the form (Lee (2007))

ξ̂i(θ) = Γ(θ)Vi, (3.2)

where Γ(θ) = (BTΨ−1ε B)−1BTΨ−1ε is a q × p matrix function of θ. For a given

θ, we can estimate m0(t) using m̂a0(t;α,θ) which satisfies
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n∑
i=1

{m̂a0(t;α,θ) + βTZi + γT ξ̂i(θ)}dNi(t)−
n∑
i=1

Yi(t)d{m̂a0(t;α,θ) + t} = 0.

(3.3)

Solving the first order linear differential equation (3.3), we have

m̂a0(t;α,θ) = ŜNA(t)−1
∫ τ

t
ŜNA(u)

∑n
i=1

[
Yi(u)du−{βTZi + γT ξ̂i(θ)}dNi(u)

]∑n
i=1 Yi(u)

,

(3.4)

where

ŜNA(t) = exp

(
−
∫ t

0

∑n
i=1 dNi(u)∑n
i=1 Yi(u)

)
,

and 0 < τ = inf{t : P (Xi ≥ t) = 0} <∞. Define

dΩi(t;α,θ) = {m0(t) + βTZi + γT ξ̂i(θ)}dNi(t)− Yi(t)d{m0(t) + t},

or equivalently

Ωi(t;α,θ) =

∫ t

0

[
{m0(s) + βTZi + γT ξ̂i(θ)}dNi(s)− Yi(s)d{m0(s) + s}

]
,

then the Ωi(t;α,θ) are zero-mean processes under the true model. Subtracting∑n
i=1 dΩi(t;α,θ) from both sides of (3.3) results in

n∑
i=1

dΩi(t;α,θ) +

n∑
i=1

{m̂a0(t;α,θ)−m0(t)}dNi(t)

−
n∑
i=1

Yi(t)d{m̂a0(t;α,θ)−m0(t)} = 0,

which gives the solution

m̂a0(t;α,θ)−m0(t) = −ŜNA(t)−1
∫ τ

t
ŜNA(u)

∑n
i=1 dΩi(u;α,θ)∑n

i=1 Yi(u)
. (3.5)

Consistency and asymptotic normality of m̂a0(t;α,θ) can be derived based on

(3.5). We can check that

∂m̂a0(t;α,θ)

∂αT
= −ŜNA(t)−1

∫ τ

t
ŜNA(u)

∑n
i=1

{
ZTi , ξ̂i(θ)T

}
dNi(u)∑n

i=1 Yi(u)
. (3.6)

If the ξi are observable, given m0(t) estimated by m̂a0(t;α), the estimating

equation for α (Chen and Cheng (2006)) is

U∗a(α) =

n∑
i=1

∫ τ

0

(
Zi − Z̄a(t)

ξi − ξ̄a(t)

)
{m̂a0(t;α) + βTZi + γT ξi}dNi(t) = 0,

where Z̄a(t) =
∑n

i=1 Yi(t)Zi/
∑n

i=1 Yi(t), ξ̄a(t) =
∑n

i=1 Yi(t)ξi/
∑n

i=1 Yi(t).
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Notably, U∗a(α) is not directly tractable because the ξi are unobservable in

the proposed model. Although E{ξ̂i(θ)|ξi} = ξi, a simple replacement of ξi by

ξ̂i(θ) in U∗a(α) results in a biased estimator because

E{ξ̂i(θ)⊗2|ξi} = D(θ) + ξ⊗2i ,

where D(θ) = (BTΨ−1ε B)−1 is a q × q matrix function of θ and a⊗2 = aaT

for a vector a. Plugging in ξ̂i(θ) as an estimate of ξi introduces error in the

covariates, requiring correction as in the measurement error literature. A com-

mon technique to manage covariate measurement error is the corrected score

method, of which the key idea is to remove the incurred bias through correction

of the score function. The applications of such kinds of methods can be found

in Carroll, Ruppert and Stefanski (1995) for non-censored data, in Nakumura

(1992), Kong and Gu (1999), and Huang and Wang (2000) for Cox models with

censored data, and in Kulich and Lin (2000) and Song and Huang (2006) for

additive hazards models with censored data. This motivates us to develop the

corrected estimating equation approach for the MRL model with latent variables.

To deduct the bias, for given θ, we propose the corrected estimating function

Ua(α;θ) = (Ua1(α;θ)T ,Ua2(α;θ)T )T , with

Ua1(α;θ) =

n∑
i=1

∫ τ

0
{Zi − Z̄a(t)}

{
m̂a0(t;α,θ) + βTZi + γT ξ̂i(θ)

}
dNi(t),

Ua2(α;θ) =

n∑
i=1

∫ τ

0
{ξ̂i(θ)− ξ̄∗a(t;θ)}

{
m̂a0(t;α,θ) + βTZi + γT ξ̂i(θ)

}
dNi(t)

−D(θ)γ

n∑
i=1

∫ τ

0
dNi(t),

where ξ̄∗a(t;θ) =
∑n

i=1 Yi(t)ξ̂i(θ)/
∑n

i=1 Yi(t). Now Ua(α;θ) meets the need

for correcting the bias because it can be shown that (Kulich and Lin (2000))

E{Ua(α;θ)|(ξ1, ξ2, . . . , ξn)} = U∗a(α) + op(n
1/2).

If θ is estimated by θ̂, we can solve Ua(α; θ̂) = 0 to obtain the estimate of

α. The explicit form of the estimator is

α̂a = −

{
∂Ua(α; θ̂)

∂αT

}−1
Ua(0; θ̂),

with detailed expression provided in Supplementary Material S2. The estimator

of the baseline MRL function m0(t) on t ∈ [0, τ ] is then given by m̂a0(t) =

m̂a0(t; α̂a, θ̂), where m̂a0(t;α,θ) is defined in (3.4).
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3.2. Inference of distribution-free factor analysis model

The true value of θ (the vector of unknowns of (B,Φ,Ψε) in model (2.1)) is

denoted by θ0. To estimate θ, under the normality assumption of ξi and εi, Pan

et al. (2015) employed a commonly used EM algorithm to obtain the maximum

likelihood estimator, it is not directly applicable here because the distributions

of ξi and εi are unspecified. We propose the use of an ADF-GLS approach based

on the discrepancy function (Browne (1974, 1984); Lee (2007))

F (θ) =
1

2
{vec(S−Π(θ))}TW−1{vec(S−Π(θ))},

where vec(·) denotes the operation that converts a matrix into a column vec-

tor by stacking the rows sequentially; S = (n − 1)−1
∑n

i=1(Vi − V̄)⊗2 and

Π(θ) = BΦBT + Ψε are the sample and the theoretical covariance matrices

of Vi, respectively; V̄ = n−1
∑n

i=1 Vi, W is a p2 × p2 random weight matrix;

n1/2vec(S − Π(θ0)) has an asymptotic covariance matrix, denoted by Σ∗(θ0),

and W is chosen to converge in probability to Σ∗(θ0).

For a, b, c, d = 1, . . . , p, let Σ∗(θ0)[ab, cd] denote the {(a− 1)p+ b, (c− 1)p+

d} element of Σ∗(θ0), Πab(θ0) denote the (a, b) element of Π(θ0), and Vi[a]

denote the ath element of Vi. Then (Lee (2007)), Σ∗(θ0)[ab, cd] = σabcd −
Πab(θ0)Πcd(θ0), where

σabcd = E{Vi[a]− EVi[a]}{Vi[b]− EVi[b]}{Vi[c]− EVi[c]}{Vi[d]− EVi[d]},

in which the expectation is taken with respect to Vi.

A natural choice of W is W[ab, cd] = Sabcd − SabScd, where

Sabcd = n−1
n∑
i=1

{Vi[a]− V̄[a]}{Vi[b]− V̄[b]}{Vi[c]− V̄[c]}{Vi[d]− V̄[d]},

Sab is the (a, b) element of S, and V̄[a] = n−1
∑n

i=1 Vi[a]. Notably, Sabcd and

Sab are the empirical counterparts of σabcd and Πab(θ0), respectively. Thus, W

is basically the empirical estimate of Σ∗(θ0).

The ADF-GLS estimator of θ, θ̂, is defined as the minimizer of F (θ). Asymp-

totic properties of θ̂ are stated in Lemma 1 of Supplementary Material S1. Its

proof in Browne (1984) is an extension to the proof of the asymptotic results

of the maximum likelihood estimator provided in Browne (1974). The Newton-

Raphson, Gauss-Newton, or Fletcher-Powell algorithm (Lee (2007)) can be em-

ployed to carry out the estimation. These algorithms involve the gradient and the

Hessian matrix of F (θ) that have closed forms Ḟ (θ) = −Π̇(θ)W−1vec(S−Π(θ))

and F̈ (θ) = Π̇(θ)W−1Π̇(θ)T −Π̈(θ)[Ip∗⊗{W−1vec(S−Π(θ))}], where Π̇(θ) =
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∂(vecΠ(θ))T /∂θ, Π̈(θ) = ∂(vecΠ̇(θ))T /∂θ. We use the Newton-Raphson algo-

rithm to compute θ̂ as follows. Set an initial value θ(0), for the current value

θ(r), the estimate is updated by θ(r+1) = θ(r) − {F̈ (θ(r))}−1Ḟ (θ(r)). The iter-

ation stops, for example, when the difference of the two successive estimates is

less than 0.001 for each element of θ.

4. Asymptotic Properties

The asymptotic properties of the ADF-GLS estimator θ̂ was studied by

Browne (1984). We adjust its statement and make use of the delta method,

see Supplementary Material S1. In conjunction with the asymptotic theory for

the MRL model (Chen and Cheng (2006)), we are able to obtain the asymptotics

of CEE1 estimators. Let α0 be the true value of α.

Theorem 1. Under the regularity conditions (C1)–(C4) in Supplementary Ma-

terials S1 and S2, α̂a is consistent for α0, and n1/2(α̂a − α0) is asymptoti-

cally normal with mean zero and covariance matrix consistently estimated by

Â
−1
a Σ̂aÂ

−1T
a , with explicit expressions given in Supplementary Material S2.

Theorem 2. Under the regularity conditions (C1)–(C4) in Supplementary Ma-

terials S1 and S2, m̂a0(t) converges in probability to m0(t) uniformly in t ∈ [0, τ ],

and n1/2{m̂a0(t)−m0(t)} converges weakly on [0, τ ] to a zero-mean Gaussian pro-

cess whose covariance function at (t, s) can be consistently estimated by Υ̂a(t, s) =

n−1
∑n

i=1 Ôai(t)Ôai(s), with explicit expressions given in Supplementary Material

S2.

5. Goodness-of-fit Test

We propose a test procedure for assessing the goodness-of-fit of the additive

MRL model (2.2). Let Ẑ∗i =
(
ZTi , (Γ(θ̂)Vi)

T
)T

, and

Ω̂i(t) =

∫ t

0

[
{m̂a0(s) + β̂Ta Zi + γ̂Ta Γ(θ̂)Vi}dNi(s)− Yi(s)d{m̂a0(s) + s}

]
.

Lin, Wei and Ying (1993) used martingale-based residuals to check the adequacy

of the Cox model and applied a similar idea to the model checking for the mean

and rate models of recurrent events (Lin et al. (2000)). Here Ω̂i(t) is analogous

to the martingale residual. We consider the process

ϕ(t; z) = n−1/2
n∑
i=1

I(Ẑ∗i ≤ z)Ω̂i(t),

where I(Ẑ∗i ≤ z) is 1 when each component of Ẑ∗i is less than or equal to the
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corresponding component of z, and 0 otherwise. In Supplementary Material

S4, we define ϕ̃i(t; z) and show that ϕ(t; z) is asymptotically equivalent to the

zero-mean Gaussian process ϕ̃(t; z) = n−1/2
∑n

i=1 ϕ̃i(t; z).

As estimating the asymptotic covariance function of ϕ(t; z) analytically is

difficult, we propose resampling (Lin, Wei and Ying (1993); Lin et al. (2000);

Sun, Song and Zhang (2012)) and approximate ϕ(t; z) with ϕ̂(t; z) = n−1/2
∑n

i=1

ϕ̃i(t; z)ηi, where (η1, . . . , ηn) are independent standard normal variables indepen-

dent of {(Vi,Zi, Xi,∆i)} (i = 1, . . . , n). Thus, we can obtain a large number of

realizations from ϕ̂(t; z) by repeatedly generating standard normal random sam-

ples (η1, . . . , ηn) while holding the observed data {(Vi,Zi, Xi,∆i)}(i = 1, . . . , n)

fixed to approximate the null distribution of ϕ(t; z).

To assess the overall fit of the additive MRL model (2.2), we can plot the

observed ϕ(t; z) along with a few realizations from ϕ̂(t; z), and see how unusual

the observed ϕ(t; z) is under the posited model. Quantitatively, we can apply the

supremum test statistic supt;z |ϕ(t; z)|. The p-value of the test can be estimated

by drawing a large number of realizations from supt;z |ϕ̂(t; z)|.

6. Simulation Study

In this section we report on simulations conducted to assess the finite sam-

ple performance of CEE1 in the presence of covariate-independent censoring in

Section 6.1 and covariate-dependent censoring in Section 6.2.

6.1. Simulation 1

We considered a model defined by (2.1)) and (2.2)) with p = 6, q = 2, and

s = 1. The true values of parameters in model (2.1)) were set as

BT =

[
0.8 0.8 0.8 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0.8 0.8 0.8

]
, Φ =

[
1∗ φ12
φ21 1∗

]
,

where the elements with asterisk are fixed. The εi were N(0,Ψε) with Ψε =

diag(0.3, 0.3, 0.3, 0.3, 0.3, 0.3). The diagonal elements of Φ were fixed at 1.0 to

identify the factor analysis model.

In the MRL model (2.2)), we generated Zi independently from the Bernoulli

distribution with a success probability of 0.5. To evaluate the empirical perfor-

mance of the proposed methods under different distributions of ξi, we considered

the three cases: (I) ξi ∼ N(0,Φ); (II) ξi ∼ {Γ(4, 2) − 2}I, where I is a two-

dimensional identity matrix; and (III) ξi ∼ 2/3N(µ1,Σ) + 1/3N(µ2,Σ), where

µ1 = (−0.5,−0.5)T , µ2 = (1.0, 1.0)T , and {σ11, σ12, σ22} in Σ are {0.5, 0.3, 0.5}.



58 HE ET AL.

Table 1. Results of the MRL model in Simulation 1.

n = 500 n = 1,500
Case CR Par Bias SE SEE CP Bias SE SEE CP
(I) 10% β −0.021 0.081 0.082 0.957 −0.007 0.048 0.048 0.947

γ1 −0.001 0.048 0.046 0.943 −0.003 0.026 0.027 0.953
γ2 −0.013 0.048 0.046 0.936 −0.007 0.028 0.027 0.933

30% β −0.023 0.097 0.098 0.952 −0.008 0.058 0.056 0.939
γ1 −0.001 0.058 0.055 0.941 −0.003 0.032 0.032 0.950
γ2 −0.012 0.056 0.055 0.943 −0.007 0.034 0.032 0.935

(II) 10% β −0.020 0.086 0.082 0.935 −0.006 0.046 0.048 0.953
γ1 −0.006 0.049 0.047 0.937 −0.003 0.028 0.027 0.947
γ2 −0.021 0.053 0.050 0.938 −0.012 0.030 0.030 0.933

30% β −0.021 0.100 0.098 0.943 −0.007 0.055 0.056 0.947
γ1 −0.006 0.060 0.057 0.928 −0.003 0.034 0.033 0.940
γ2 −0.020 0.064 0.061 0.930 −0.012 0.037 0.036 0.938

(III) 10% β −0.021 0.083 0.082 0.933 −0.008 0.048 0.048 0.940
γ1 0.000 0.046 0.047 0.939 0.000 0.028 0.027 0.939
γ2 −0.011 0.048 0.047 0.948 −0.006 0.028 0.027 0.934

30% β −0.026 0.100 0.098 0.935 −0.010 0.057 0.057 0.953
γ1 0.000 0.057 0.057 0.945 0.001 0.035 0.033 0.930
γ2 −0.011 0.058 0.056 0.944 −0.007 0.034 0.033 0.937

The elements φ12 and φ21 were 0.2 in (I) and (III), and 0 in (II). Notably, the

distribution of Vi is determined by the distributions of ξi and εi through the

factor analysis model, and is thus normal in Case (I) but non-normal in Cases

(II) and (III). To generate failure time T , the true value of α = (β, γ1, γ2) was

set as (1, 0.2, 0.5) and m0(t) was taken from the Hall-Wellner family such that

m(t|Zi, ξi) = D1t+D2 + βZi + γT ξi for 0 ≤ t ≤ −(D2 + βZi + γT ξi)/D1, where

D1 > −1 and D2 > 0. We set D1 = −0.9 and D2 = 3 in this simulation. The

independent censoring time C was generated as Uniform(0, c), where c was se-

lected to yield censoring rates of 10% and 30%, respectively, and to ensure that

the support of C be longer than the support of T for all Zi and ξi.

The simulation results were based on 1,000 replications with n = 500 and

n = 1,500. The parameter estimates in the MRL model are summarized in

Table 1, whereas those in the factor analysis model are reported in Supplementary

Material S3. In these tables, Bias is the sampling mean of the estimate minus

the true value, SE is the sampling standard error of the estimate, SEE is the

sampling mean of standard error estimate, and CP is the 95% empirical coverage

probability based on the normal approximation. For the methods and sample

sizes considered, the biases of the estimates of α and θ are small, their estimated
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Table 2. Comparison between the GLS and the EM-type methods.

ξi ∼ N(0,Φ), n = 500, CR = 10%
GLS EM Algorithm

Par Bias SE SEE CP Bias SE SEE CP
b11 −0.004 0.039 0.038 0.934 0.001 0.039 0.038 0.945
b21 −0.004 0.040 0.037 0.940 0.001 0.038 0.038 0.946
b31 −0.005 0.039 0.037 0.940 0.001 0.038 0.038 0.950
b42 −0.004 0.039 0.038 0.934 −0.000 0.040 0.038 0.939
b52 −0.004 0.039 0.037 0.942 −0.001 0.039 0.038 0.949
b62 0.003 0.037 0.037 0.950 0.000 0.038 0.038 0.949

ξi ∼ {Γ(4, 2)− 2}I, n = 1,500, CR = 10%
GLS EM Algorithm

Par Bias SE SEE CP Bias SE SEE CP
b11 −0.001 0.026 0.025 0.941 0.001 0.025 0.022 0.928
b21 −0.002 0.026 0.025 0.940 0.001 0.025 0.022 0.909
b31 −0.002 0.026 0.025 0.940 0.001 0.025 0.022 0.915
b42 −0.001 0.025 0.025 0.960 0.001 0.025 0.022 0.918
b52 −0.001 0.026 0.025 0.939 0.001 0.025 0.022 0.911
b62 −0.001 0.026 0.025 0.950 0.001 0.025 0.022 0.924

standard errors are close to the sampling standard errors, and the CP’s are close

to the nominal level.

In addition, we examined how much efficiency the GLS would lose comparing

to the EM-type method when the normal assumption of the factor analysis model

was satisfied and how biased the EM-type method would be when the normality

assumption was violated. We re-analyzed the simulated datasets using the EM-

type method for the factor analysis in the two settings of Simulation 1: (1) ξi ∼
N(0,Φ) with n = 500 and censoring rate 10%, and (2) ξi ∼ {Γ(4, 2)− 2}I with

n = 1,500 and censoring rate 10%. In the first setting, the GLS and EM-type

methods perform almost the same except that the biases of the factor loadings

(see the upper panel of Table 2) are slightly larger for the GLS approach than for

the EM-type method. Thus, the efficiency loss of the GLS is not substantial. In

the second setting, although both methods perform similarly for the MRL model,

the EM-type method cannot provide correct 95% empirical coverage probabilities

for the factor loadings (see the lower panel of Table 2). Thus, routinely using

the EM-type method for a factor analysis with non-normal latent variables is

problematic.

6.2. Simulation 2

To assess the performances of CEE1 in the presence of covariate-dependent
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Table 3. Results of the MRL model in Simulation 2.

ξi ∼ N(0,Φ) ξi ∼ {Γ(4, 2)− 2}I
n CR Par Bias SE SEE CP Bias SE SEE CP
500 10% β −0.017 0.083 0.081 0.941 −0.015 0.085 0.080 0.940

γ1 −0.003 0.047 0.045 0.941 0.001 0.049 0.047 0.943
γ2 −0.008 0.046 0.047 0.944 −0.006 0.063 0.055 0.929

50% β −0.013 0.147 0.143 0.943 −0.006 0.148 0.139 0.930
γ1 0.005 0.073 0.070 0.941 0.009 0.089 0.083 0.924
γ2 0.005 0.079 0.078 0.943 0.022 0.122 0.118 0.920

73% β 0.013 0.264 0.257 0.932 0.005 0.307 0.285 0.924
γ1 0.012 0.104 0.104 0.940 0.022 0.152 0.141 0.925
γ2 0.024 0.125 0.119 0.926 0.054 0.220 0.205 0.923

1,500 10% β −0.007 0.047 0.047 0.940 −0.006 0.047 0.047 0.950
γ1 0.002 0.027 0.026 0.947 0.001 0.028 0.028 0.951
γ2 −0.001 0.027 0.027 0.951 −0.001 0.034 0.033 0.941

50% β −0.003 0.085 0.082 0.930 −0.002 0.085 0.080 0.944
γ1 0.008 0.041 0.041 0.959 0.009 0.050 0.049 0.937
γ2 0.007 0.049 0.045 0.939 0.016 0.068 0.066 0.938

73% β 0.015 0.150 0.145 0.944 0.008 0.164 0.160 0.943
γ1 0.016 0.059 0.060 0.932 0.014 0.080 0.080 0.942
γ2 0.016 0.074 0.068 0.937 0.025 0.126 0.118 0.926

3,000 10% β −0.003 0.032 0.033 0.962 −0.003 0.031 0.033 0.962
γ1 0.001 0.019 0.019 0.954 0.003 0.020 0.020 0.951
γ2 −0.000 0.020 0.019 0.942 0.002 0.024 0.023 0.943

50% β −0.000 0.058 0.058 0.952 −0.003 0.060 0.057 0.939
γ1 0.007 0.028 0.029 0.955 0.010 0.035 0.035 0.931
γ2 0.006 0.033 0.032 0.927 0.008 0.044 0.046 0.952

73% β −0.005 0.103 0.102 0.951 −0.007 0.119 0.113 0.938
γ1 0.009 0.041 0.042 0.950 0.009 0.058 0.057 0.950
γ2 0.010 0.051 0.048 0.934 0.015 0.084 0.083 0.937

censoring, we considered the same joint model under cases (I): ξi = (ξi1, ξi2)
T ∼

N(0,Φ) and case (II): ξi ∼ {Γ(4, 2)−2}I, as in Section 6.1. The parameter setup

was the same, except for the covariate-dependent censoring

λC(t|Zi, ξi) = λC0(t) exp(κZi + η1ξi1 + η2ξi2),

where λC(t|Zi, ξi) is the hazard function of censoring time given Zi and ξi. We

set κ = 1.5, η1 = 0.5, and η2 = 1. λC0(t) was chosen to yield censoring rates of

10%, 50%, and 73%, where the censoring rate of 73% mimics that of the CKD

study presented in Section 7.

We considered n = 500, 1,500, and 3,000, where the size 3,000 mimics that

of the CKD study. The results of parameter estimates in the MRL model are
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summarized in Table 3. The parameter estimates associated with the factor

analysis model are similar to those presented in Section 6.1 and are not reported.

We observe from Table 3 that the sample size, censoring rate, and the distribution

of ξi all have impact on the estimation results. For instance, all the CP’s are

slightly less than the nominal level when n = 500. This is improved when n =

1,500 and further improved when n = 3,000. Likewise, the performance of CP’s

is enhanced with a decrease of the censoring rate and/or a normally distributed

ξi.

To investigate the impact of the misspecification of B on the inference results,

we conducted an additional simulation based on this model setup except that the

factor loading matrix B∗ was overlapping with b∗12 = 0.3. Based on the proposed

model with B∗, we generated 1,000 datasets under the setting of n = 500, CR

= 73%, and ξi ∼ {Γ(4, 2) − 2}I. We analyzed the datasets by assuming a non-

overlapping B (b12 = 0). The results (not reported) show that the parameter

estimates in the CFA model are sensitive to the misspecification of B, but those

in the MRL model are relatively less sensitive.

7. Application

We applied the proposed method to the CKD study described in the Intro-

duction. A main goal was to identify the potential risk factors that might influ-

ence the MRL function of CKD for diabetic patients. A total of 3,586 Chinese

type 2 diabetic patients entered a 10-year prospective cohort study conducted

by Hong Kong Diabetes Registry. The failure (clinical endpoint) of CKD was

defined by DNP plus follow up estimate glomerular filtration rate (eGFR) < 60

(Song et al. (2009)). The failure time of CKD was calculated as the period from

enrollment to the date of the first clinical endpoint or 31 January 2009, whichever

came first. Thus, the data were censored at 31 January 2009 with 73% censoring

rate. The information of patients was collected as follows: age at enrollment

(Age), duration of diabetes (Duration), Sex (1 = female, 0 = male), WAIST,

BMI, SBP, DBP, HbAlc, FPG, TC, HDL-C, and TG, where WAIST and BMI

characterize the latent factor ‘Obesity, ξ1’; SBP and DBP summarize the latent

factor ‘Blood pressure, ξ2’; HbAlc and FPG measure the latent factor ‘Glycemia,

ξ3’; and TC, HDL-C, and TG group the latent factor ‘Lipid, ξ4’.

To analyze the data, we let V = (V1, . . . , V9)
T = (WAIST, BMI, SBP,

DBP, HbAlc, FPG, TC, HDL-C, TG)T , ξ = (ξ1, ξ2, ξ3, ξ4)
T = (Obesity,Blood

pressure,Glycemia,Lipid)T , and Z = (Z1, Z2, Z3)
T = (Age,Duration, Sex)T .
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Figure 1. Path diagram of the proposed joint model, along with parameter estimates
and their standard error estimates (in parentheses), in the analysis of the CKD data.
In the path diagram, the latent variables are enclosed by ellipses, whereas the observed
variables are enclosed by squares.

The observed variables in V, as well as covariates Z1 and Z2, were standard-

ized prior to the analysis. The factor loading matrix B was set as

BT =


b11 b21 0 0 0 0 0 0 0

0 0 b32 b42 0 0 0 0 0

0 0 0 0 b53 b63 0 0 0

0 0 0 0 0 0 b74 b84 b94

 . (7.1)

This setting of the factor analysis model was well cross-validated by the result

of an exploratory factor analysis (see Supplementary Material S5). Parameter

estimates of primary interest, along with their standard error estimates obtained

using CEE1, are reported in Figure 1. The results are interpreted as follows. Age

at enrollment and duration of diabetes all have a significantly negative effect on
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the MRL function of CKD, implying that elder patients and those suffering from

diabetes in a longer duration are likely to develop CKD in a shorter time span.

Sex has a significantly positive effect on the MRL function of CKD. The time

span of evolving CKD is generally shorter for males than for females. As for

latent risk factors, obesity, blood pressure, glycemia, and lipid all have a signif-

icantly negative effect on the MRL function. Thus, overweight, hypertension,

bad glycemia control, and worse lipid profile would shorten the time span of

developing CKD for diabetic patients. The estimated factor loadings are all

highly significant, suggesting strong associations among latent factors and their

corresponding observed indicators.

We re-conducted the analysis using a conventional additive MRL model by

regarding the multiple observed indicators of the latent risk factors as indepen-

dent covariates and directly incorporating them into the regression. Confounding

results were obtained. The effect on the MRL function was significant for WAIST

[−1.232 (0.486)] but nonsignificant for BMI [0.303 (0.507)], negative for SBP

[−1.482 (0.310)] but positive (and nonsignificant) for DBP [0.480 (0.330)], sig-

nificant for HbA1c [−1.438 (0.288)] but nonsignificant for FPG [−0.150 (0.295)],

negative for TG [−1.994 (0.287)] and HDL-C [−0.405 (0.262)] but positive for

TC [0.676 (0.311)]. As shown in the factor analysis (see Figure 1), all the fac-

tor loadings are substantially different from zero, implying that each observed

indicator significantly contributes to characterization of the associated latent

variable. Further, the factor loadings, except that corresponding to HDL-C, are

all positive, implying that the observed indicators except HDL-C measure the

associated latent variables in the same direction, and should likewise influence

the MRL function of CKD in the same direction. These diverse effects are mis-

leading. When checking the data, we found that the sample correlations between

WAIST and BMI, SBP and DBP, HbA1c and FPG, TC and TG, as well as TC

and HDL-C were 0.827, 0.605, 0.682, 0.364, and −0.437, respectively. Simulta-

neously incorporating these highly correlated variables into the regression elicits

multicollinearity, thereby leading to the confounding results.

We further used the test procedure in Section 5 to examine the goodness-of-

fit of the proposed model. We obtained supt;z |ϕ(t; z)| ≈ 1.212 and a p-value of

0.822 based on 1,000 realizations of the statistic supt;z |ϕ̂(t; z)|. This indicates

that the proposed model fits the observed data well.

8. Discussion

Our joint modeling approach incorporates a distribution-free factor analysis
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model and an additive MRL model. This joint modeling includes the capability

to reveal both observed and latent risk factors of the MRL function of interest,

to avoid multicollinearity caused by highly correlated covariates, and to provide

comprehensible interpretation for the effects of those that really exist but can-

not be measured by a single observed variable. We develop a borrow-strength

estimation procedure by combining an ADF-GLS approach for the factor anal-

ysis model and a corrected estimating equation approach for the MRL model.

Asymptotic properties of the proposed estimators are established. Model check-

ing techniques are developed. The simulation results indicate that the method

works well. The joint model is general and robust because the distributions of

the latent risk factors and random errors are left unspecified. The utility of the

methodology is demonstrated by an application to the CKD dataset.

The present study has several extensions. We can consider a joint model

that consists of a factor analysis model and a proportional MRL model,

m(t|Zi, ξi) = m0(t) exp(βTZi + γT ξi),

but this is beyond the scope of this paper. We have not thoughtfully discussed the

efficiency of the method in the present study. An augmented IPCW estimating

equation approach (Sun and Zhang (2009)), or a weighted estimating equation

approach (Lin and Ying (1994); Chen and Cheng (2005, 2006)), could be used to

obtain more efficient estimators. Sun and Zhang (2009) and Sun, Song and Zhang

(2012) have studied a general class of transformed MRL models. The extension of

incorporating latent variables into these modeling frameworks is of interest, but

the feasibility of developing the corrected estimating equation approach requires

further investigation.

Supplementary Materials

The supplementary materials contain five sections. Section S1 presents

asymptotic results of the ADF-GLS estimator. Section S2 provides proofs of

asymptotic results of CEE1 estimator. Section S3 presents CEE2 and additional

simulation results. Section S4 shows weak convergence of ϕ(t, z). Section S5

reports the exploratory factor analysis in the CKD study.
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