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A Technical Lemmas

We introduce several technical lemmas, which will be used throughout the proofs of our propositions and theorems.

In particular, let Ψ = (ψij)q×q and recall the definition of Ψ̂ = (ψ̂ij)q×q from Section 3.2. We first prove a maximal

concentration inequality on ψ̂ij in Lemma 1. Note that this result differs from the standard concentration inequality

on the sample covariance matrix with i.i.d. samples since the “row samples” for constructing Ψ̂ are correlated.

Lemma 1 We have for any M > 0, there exists a constant C such that

P
(

max
1≤i≤j≤q

∣∣∣ψ̂ij − tr(Σ)

p
ψij

∣∣∣ ≥ C
√

log max(q, np)

np

)
= O((q + np)−M ).

Proof. Recall that for any pair of i ∈ [q] and j ∈ [q]

ψ̂ij =
1

(n− 1)p

n∑
k=1

p∑
l=1

(X
(k)
li − X̄li)(X

(k)
lj − X̄lj)

=
1

(n− 1)p

p∑
l=1

n∑
k=1

(X
(k)
li − X̄li)(X

(k)
lj − X̄lj), (1)

where X̄li = 1
n

∑n
k=1X

(k)
li and X̄lj = 1

n

∑n
k=1X

(k)
lj . Without loss of generality, we assume that µ = 0.

Let A ∈ Rn×n be an orthogonal matrix with the last row ( 1√
n
, . . . , 1√

n
). Let Yli = (Y

(1)
li , . . . , Y

(n)
li )

′
=

A(X
(1)
li , . . . , X

(n)
li )

′
∈ Rn×1. So we have

√
nX̄li = Y

(n)
li and

n∑
k=1

(X
(k)
li − X̄li)(X

(k)
lj − X̄lj) = Y

′
liYlj − Y (n)

li Y
(n)
lj =

n−1∑
k=1

Y
(k)
li Y

(k)
lj . (2)
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Since (X
(1)
li , . . . , X

(n)
li )

′
∼ N(0, σllψiiIn×n), (Y

(1)
li , . . . , Y

(n−1)
li )

′
∼ N(0, σllψiiI(n−1)×(n−1)). Let Yk = (Y

(k)
li )1≤l≤p,1≤i≤q

for 1 ≤ k ≤ n − 1. We have Yk ∼ N(0,Σ ⊗ Ψ) and Yk, 1 ≤ k ≤ n − 1, are independent. Let us define

Zk = Σ−1/2Yk ∼ N(0, Ip×p ⊗Ψ). Let Zki be the i-th column of Yk. Then (Zki,Zkj) ∼ N(0, Ip×p ⊗Ψ[i,j]), where

Ψ[i,j] =

 ϕii ϕij

ϕji ϕjj

 .

Let the U
′
DU be the eigenvalue decomposition of Σ, where U is an orthogonal matrix and D = diag(λ

(1)
1 , . . . , λ

(1)
p ).

Define (Wki,Wkj) := (UZki,UZkj) ∈ Rp×2 where Wki = (wki,1, . . . , wki,p)
′
∈ Rp×1 and Wkj = (wkj,1, . . . , wkj,p)

′
∈

Rp×1. Since U is an orthogonal matrix, (Wki,Wkj) ∼ N(0, Ip×p ⊗Ψ[i,j]), which also implies that (wki,l, wkj,l) are

independent for 1 ≤ l ≤ p.

Now combining (1) and (2), we have,

ψ̂ij =
1

(n− 1)p

p∑
l=1

n−1∑
k=1

Y′kiYki

=
1

(n− 1)p

n−1∑
k=1

(UZki)
′
DUZkj

=
1

(n− 1)p

n−1∑
k=1

p∑
l=1

λ
(1)
l wki,lwkj,l. (3)

We further note that

Eψ̂ij =
1

(n− 1)p

n−1∑
k=1

p∑
l=1

λ
(1)
l ψij =

tr(Σ)

p
ψij .

Put wkij,l = wki,lwkj,l−Ewki,lwkj,l. We have for some η > 0 such that Ee2η|λ
(1)
l
wkij,l| ≤ K for some K > 0, uniformly

in i, j, l, k. It implies that

n−1∑
k=1

p∑
l=1

E(λ
(1)
l wkij,l)

2eη|λ
(1)
l
wkij,l| ≤ K

n−1∑
k=1

p∑
l=1

(E(λ
(1)
l wkij,l)

4)1/2

=
√

2K(n− 1)‖Σ‖2F (ϕiiϕjj + ϕ2
ij).

By the exponential inequality in Lemma 1 in Cai and Liu (2011) and ‖Σ‖2F /p ≤ λ
(1)
p , for any M > 0, there exists a

constant C > 0,

P
(
|ψ̂ij − Eψ̂ij | ≥ C

√
log max(q, np)

np

)
= O((q + np)−M ).

This proves Lemma 1.

The next concentration inequality involves the residuals. In particular, for k ∈ [n], l ∈ [p] and j ∈ [q], we define:

ε̃
(k)
lj = ε

(k)
lj −

1

n

n∑
k=1

ε
(k)
lj =: ε

(k)
lj − ε̄lj , σ̂jj,ε =

1

(n− 1)p

n∑
k=1

p∑
l=1

(
ε̃
(k)
lj

)2
.
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Lemma 2 For any M > 0, there exists a constant C such that

P
(

max
1≤i≤q

max
1≤h≤q,h6=i

∣∣∣ 1

np

n∑
k=1

p∑
l=1

ε̃
(k)
li (X

(k)
lh − X̄lh)

∣∣∣ ≥ C
√

log max(q, np)

np

)
= O((q + np)−M )

and

P
(

max
1≤i≤p

∣∣∣ 1

np

n∑
k=1

p∑
l=1

ε̃
(k)
li (X

(k)
l,−i − X̄l,−i)βi

∣∣∣ ≥ C
√

log max(q, np)

np

)
= O((q + np)−M ).

Proof. Recall that

ε
(k)
li = X

(k)
li − αli −X

(k)
l,−iβi.

Set ε
(k)
i = (ε

(k)
1i , . . . , ε

(k)
pi )

′
and Y

(k)
i = (X

(k)
1,−iβi, . . . ,X

(k)
p,−iβi)

′
. It is easy to see that Cov(ε

(k)
i ) = γ−1

ii Σ. Let X
(k)
h

be the h-th column of X(k). Since ε
(k)
i and X

(k)
h are independent for h 6= i, for the p× 2 matrix (ε

(k)
i ,X

(k)
h ), we have

Cov((ε
(k)
i ,X

(k)
h )) = Σ⊗ diag(γ−1

ii , ψii) for h 6= i.

In addition, X
(k)
·,−i ∼ N(0,Σ⊗Ψ−i,−i) and βi = − 1

γii
Γ−i,i, we have

Cov(Y
(k)
i ) =

1

γ2
ii

tr(Γ−i,iΓi,−iΨ−i,−i)Σ.

Further, by the fact that,

tr(Γ−i,iΓi,−iΨ−i,−i) = Γi,−iΨ−i,−iΓ−i,i = −γiiΨi,−iΓ−i,i = −γii(1− ψiiγii),

which further implies that,

Cov(Y
(k)
i ) =

ψiiγii − 1

γii
Σ.

Since ε
(k)
i and Y

(k)
i are independent, Cov((ε

(k)
i ,Y

(k)
i )) = Σ⊗ diag(γ−1

ii , (ψiiγii − 1)/γii). Following exactly the same

proof of Lemma 1, where we replace (X
(k)
li , X

(k)
lj ) by (ε

(k)
li , X

(k)
lh ) or (ε

(k)
li ,X

(k)
l,−iβi) and Ψ[i,j] by diag(γ−1

ii , ψii) or

diag(γ−1
ii , (ψiiγii − 1)/γii), we can obtain Lemma 2 immediately.

Lemma 3 (i). We have, as np→∞,

∑n
k=1

∑p
l=1(ε̃

(k)
li ε̃

(k)
lj − Eε̃(k)li ε̃

(k)
lj )√

n1‖Σ‖2F
→ N

(
0,

1

γiiγjj
+

γ2
ij

(γiiγjj)2

)
in distribution.

(ii). For any M > 0, there exists a constant C such that

P
(

max
1≤i≤j≤q

∣∣∣σ̂ij,ε − tr(Σ)

p

γij
γiiγjj

∣∣∣ ≥ C
√

log max(q, np)

np

)
= O((q + np)−M ).

Proof. Note that Cov(ε
(k)
li , ε

(k)
li ) =

γij
γiiγjj

. It is easy to show that Cov((ε
(k)
i , ε

(k)
j )) = Σ ⊗ ∆[i,j], where ∆[i,j] =
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γii

γij
γiiγjj

γji
γiiγjj

1
γjj

 . As in the proof of Lemma 1, we can write

n∑
k=1

p∑
l=1

ε̃
(k)
li ε̃

(k)
lj =

n−1∑
k=1

p∑
l=1

λ
(1)
l ηki,lηkj,l, (4)

where (ηki,l, ηkj,l), 1 ≤ l ≤ p, 1 ≤ k ≤ n − 1, are i.i.d. N(0,∆[i,j]) random vectors. Note that Var(ηki,lηkj,l) =

1
γiiγjj

+
γ2ij

(γiiγjj)2
and

∑p
l=1(λ

(1)
l )2 = ‖Σ‖2F. (i) follows from Lindeberg-Feller central limit theorem. (ii) follows from

the exponential inequality in Lemma 1 in Cai and Liu (2011).

B Proof of Proposition 1–3 on the properties of the proposed test

statistics

Proof of Proposition 1. For notational simplicity, let n1 = n− 1 and ζ
(k)
lji = ε̃

(k)
lj + (Xli − X̄li)βi,j . Note that for

all k ∈ [n] and i 6= j,

ε̂
(k)
lji = ε̃

(k)
lj + (Xli − X̄li)βi,j − (X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i),

which implies that

ε̂
(k)
lij ε̂

(k)
lji = ζ

(k)
lij ζ

(k)
lji − ζ

(k)
lij (X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i)

−ζ(k)lji (X
(k)
l,−i − X̄l,−i)(β̂i,\j − βi,\j)

+(β̂i,\j − βi,\j)
′
(X

(k)
l,−i − X̄l,−i)

′
(X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i). (5)

Let σ = tr(Σ)/p. By the assumption (C1), we have c−1 ≤ σ ≤ c. For the last term in (5), by Cauchy-Schwarz

inequality, we have ∣∣∣∣∣ 1

n1p

n∑
k=1

p∑
l=1

(β̂i,\j − βi,\j)
′
(X

(k)
l,−i − X̄l,−i)

′
(X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i)

∣∣∣∣∣
≤ max

1≤i,j≤p

∣∣∣(β̂i,\j − βi,\j)′Ψ̂−i,−i(β̂i,\j − βi,\j)∣∣∣ .
For any i, j ∈ [q], we have

|(β̂i,\j − βi,\j)
′
Ψ̂−i,−i(β̂i,\j − βi,\j)| ≤ |(β̂i,\j − βi,\j)

′
(Ψ̂−i,−i − σΨ−i,−i)(β̂i,\j − βi,\j)|

+σ|(β̂i,\j − βi,\j)
′
Ψ−i,−i(β̂i,\j − βi,\j)|.

By Lemma 1,

max
1≤i,j≤q

|(β̂i,\j − βi,\j)
′
(Ψ̂−i,−i − σΨ−i,−i)(β̂i,\j − βi,\j)| = OP

(
a2n1

√
log max(q, np)

np

)
.
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Moreover,

|(β̂i,\j − βi,\j)
′
Ψ−i,−i(β̂i,\j − βi,\j)| = OP(λmax(Ψ)|β̂i − βi|

2
2)

uniformly in i ∈ [q]. Combining the above arguments,

∣∣∣∣∣ 1

n1p

n∑
k=1

p∑
l=1

(β̂i,\j − βi,\j)
′
(X

(k)
l,−i − X̄l,−i)

′
(X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i)

∣∣∣∣∣
= OP

(
a2n2 + a2n1

√
log max(q, np)

np

)
. (6)

Under the null H0ij : γij = 0, we have ζ
(k)
lji = ε̃

(k)
lj . Note that

(X
(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i) = (X

(k)

l,−{i,j} − X̄l,−{i,j})(β̂j,−i − βj,−i). (7)

So

ζ
(k)
lij (X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i) =

∑
h 6=i,j

ε̃
(k)
li (X

(k)
lh − X̄lh)(β̂h,j − βh,j),

where β̂j = (β̂1,j , . . . , β̂p−1,j)
′

and we set β̂p,j = 0. By Lemma 2 (i),

max
1≤i≤j≤q

∣∣∣ ∑
h 6=i,j

1

n1p

n∑
k=1

p∑
l=1

ε̃
(k)
li (X

(k)
lh − X̄lh)(β̂h,j − βh,j)

∣∣∣
≤ max

1≤i≤j≤q
max
h 6=i,j

∣∣∣∣∣ 1

n1p

n∑
k=1

p∑
l=1

ε̃
(k)
li (X

(k)
lh − X̄lh)

∣∣∣∣∣ |β̂j − βj |1
= OP

(
an1

√
log max(q, np)

np

)
. (8)

A similar inequality holds for the third term on the right hand side of (5). Therefore, for i 6= j, under γij = 0,

1

n1p

n∑
k=1

p∑
l=1

ε̂
(k)
lij ε̂

(k)
lji =

1

n1p

n∑
k=1

p∑
l=1

ε̃
(k)
li ε̃

(k)
lj

+OP

(
(a2n1 + an1)

√
log max(q, np)

np
+ a2n2

)
(9)

uniformly in 1 ≤ i 6= j ≤ q. By (6) and (8) with i = j, we obtain that

r̂ii =
1

n1p

n∑
k=1

p∑
l=1

(ε̃
(k)
li )2 +OP

(
(a2n1 + an1)

√
log max(q, np)

np
+ a2n2

)
(10)

uniformly in 1 ≤ i ≤ q. The proof of Proposition 1 is complete by Lemma 3.
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Proof of Proposition 2. By Lemma 1, it is easy to show that

1

n1p

n∑
k=1

p∑
l=1

(Xli − X̄li)(X(k)
l,−i − X̄l,−i)(β̂i,\j − βi,\j) = OP(an1) (11)

uniformly in i, j. Also, by (7) and (8),

1

n1p

n∑
k=1

p∑
l=1

ε̃
(k)
li (X

(k)
l,−j − X̄l,−j)(β̂j,\i − βj,\i) = OP

(
an1

√
log max(q, np)

np

)
. (12)

By (6), (10), (11) and (12), it suffices to prove that

p

tr(Σ)

√
γiiγjj

n1p

n∑
k=1

p∑
l=1

ζ
(k)
lij ζ

(k)
lji − (1− γijψij)ρΓij· → 0 (13)

in probability. We have

E
[
(ε

(k)
lj +Xliβi,j)(ε

(k)
li +Xljβi,j)

]
= σll(−

γij
γiiγjj

+ ψij
γ2
ij

γiiγjj
).

Now, as the proof of Lemma 1, we can write

n∑
k=1

p∑
l=1

ζ
(k)
lij ζ

(k)
lji =

n−1∑
k=1

p∑
l=1

λ
(1)
l ξki,lξkj,l, (14)

where (ξki,l, ξkj,l), 1 ≤ l ≤ p, are i.i.d. with Eξki,lξkj,l = (− γij
γiiγjj

+ ψij
γ2ij

γiiγjj
). This proves (13).

Proof of Proposition 3. Let φij = tr(Γ)
q
σij and define λ̃ = λ

√
logmax(p,nq)

nq
. We have

p∑
j=1

σ̂2
ij,λ =

p∑
j=1

(σ̂2
ij − φ2

ij)I{|σ̂ij | ≥ λ̃}+

p∑
j=1

φ2
ijI{|σ̂ij | ≥ λ̃}.

Also by Lemma 1, with probability tending to one,

p∑
j=1

φ2
ijI{|σ̂ij | < λ̃} ≤

p∑
j=1

φ2
ijI{|φij | < 2λ̃} = O(λ̃2−τs(p))

uniformly in 1 ≤ i ≤ p by the assumption (C2). So, for the last term,

p∑
j=1

φ2
ijI{|σ̂ij | ≥ λ̃} =

p∑
j=1

φ2
ij −

p∑
j=1

φ2
ijI{|σ̂ij | < λ̃} = (1 +OP(λ̃2−τs(p)))

p∑
j=1

φ2
ij

uniformly in 1 ≤ i ≤ p. Moreover, with probability tending to one,

p∑
j=1

|σ̂2
ij − φ2

ij |I{|σ̂ij | ≥ λ̃} =

p∑
j=1

|σ̂ij + φij ||σ̂ij − φij |I{|σ̂ij | ≥ λ̃}
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≤ C

p∑
j=1

|φij ||σ̂ij − φij |I{|φij | ≥ λ̃/2}

≤ Cλ̃−(τ−1)∨0
p∑
j=1

|φij |τ |σ̂ij − φij |

≤ Cλ̃(2−τ)∧1s(p),

where the last inequality following from max1≤i≤j≤q |σ̂ij−φij | = OP(λ̃) by Lemma 1. It implies that max1≤i≤q |
∑p
j=1 σ̂

2
ij,λ−∑p

j=1 φ
2
ij | = OP(λ̃(2−τ)∧1s(p)) and hence

‖Σ̂λ‖2F
‖Σ‖2F

= OP(λ̃(2−τ)∧1s(p)).

By Lemma 1, we have tr(Σ̂λ)/tr(Σ) = OP(λ̃). This implies this proposition holds.

C Proof of Theorems 1–4 on FDR control and power analysis

It is easy to see that the Benjamini and Hochberg (BH) method is equivalent to reject H0ij if |T̂ij | ≥ t̂, where

t̂ = inf
{
t ≥ 0 :

G(t)(q2 − q)/2
max{

∑
1≤i<j≤q I{|T̂ij | ≥ t}, 1}

≤ α
}
, (15)

where G(t) := 2− 2Φ(t). We first give some key lemmas which are the generalization of Lemmas 6,1 and 6.2 in Liu

(2013) from i.i.d. case to independent case (but not necessarily identically distributed).

Let ξ1, . . . , ξn be independent d-dimensional random vectors with mean zero. Define |·|(d) by |z|(d) = min{|zi|; 1 ≤

i ≤ d} for z = (z1, . . . , zd)
′
. Let (p, n) be a sequence of positive integers and the constants c, r, b, γ,K,C mentioned

below do not depend on (p, n).

Lemma 4 Suppose that p ≤ cnr and max1≤k≤n E|ξk|bdr+2+ε
2 ≤ K for some fixed c > 0, r > 0, b > 0, K > 0 and

ε > 0. Assume that ‖ 1
n

Cov(
∑n
k=1 ξk)− Id‖ ≤ C(log p)−2−γ for some γ > 0 and C > 0. Then we have

sup
0≤t≤

√
b log p

∣∣∣P(|
∑n
k=1 ξk|(d) ≥ t

√
n)

(G(t))d
− 1
∣∣∣ ≤ C(log p)−1−γ1

for γ1 = min{γ, 1/2}.

Let ηk = (ηk1, ηk2)
′
, 1 ≤ k ≤ n, are independent 2-dimensional random vectors with mean zero.

Lemma 5 Suppose that p ≤ cnr and max1≤k≤n E|ηk|
2br+2+ε
2 < ∞ for some fixed c > 0, r > 0, b > 0 and ε > 0.

Assume that
∑n
k=1 Var(ηk1) =

∑n
k=1 Var(ηk2) = n and | 1

n

∑n
k=1 Cov(ηk1, ηk2)| ≤ δ for some 0 ≤ δ < 1. Then we

have

P
(
|
n∑
k=1

ηk1| ≥ t
√
n, |

n∑
k=1

ηk2| ≥ t
√
n
)
≤ C(t+ 1)−2 exp(−t2/(1 + δ))

uniformly for 0 ≤ t ≤
√
b log p, where C only depends on c, b, r, ε, δ.
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The proofs of Lemmas 4 and 5 are the same as those of Lemma 6.1 and 6.2 in Liu (2013).

Recall ηki,l in (4) and ξki,l in (14). For 1 ≤ i < j ≤ q, let

Uij =

∑n−1
k=1

∑p
l=1 λ

(1)
l (ηki,lηkj,l − Eηki,lηkj,l)(γiiγjj)1/2√

(n− 1)pEp
,

Vij =

∑n−1
k=1

∑p
l=1 λ

(1)
l (ξki,lξkj,l − Eξki,lξkj,l)(γiiγjj)1/2√

(n− 1)pEp
, (16)

where Ep = p−1∑p
l=1(λ

(1)
l )2. Note that λ

(1)
l are bounded away from zero and infinity. Also, Var(ηki,lηkj,l) =

(γiiγjj)
−1(1 + γ2

ij(γiiγjj)
−1), Var(Uij) = 1 + γ2

ij(γiiγjj)
−1 and Corr(Uij , Ukl) = Corr(η1i,1η1j,1, η1k,1η1l,1). By

Lemma 4 with d = 1, we have

max
1≤i,j≤q

sup
0≤t≤4

√
log q

∣∣∣P(|Uij | ≥ t
√

1 + γ2
ij(γiiγjj)

−1)

G(t)
− 1
∣∣∣ ≤ C(log q)−1−ε,

max
1≤i,j≤q

sup
0≤t≤4

√
log q

∣∣∣P(|Vij | ≥ t
√

Var(ξ1i,1ξ1j,1)γiiγjj)

G(t)
− 1
∣∣∣ ≤ C(log q)−1−ε,

for some ε > 0. Therefore, max1≤i,j≤q |Uij | = OP(
√

log q) and max1≤i,j≤q |Vij | = OP(
√

log q). This, together with

(10), Lemma 3, Proposition 3, the proof of Proposition 2, (4.27) and (9), implies that

max
1≤i<j≤q

∣∣∣T̂ij + bnij

√
(n− 1)p

Ap
(1− γijψij)ρΓij· − Vij

∣∣∣ = oP((log q)−1/2) (17)

as np, q → ∞, where bnij satisfies max1≤i<j≤q |bnij − 1| → 0 in probability. Note that under the null γij = 0,

Uij = Vij . Now Theorem 1 follows from the proof of Theorem 3.1 in Liu (2013) step by step, by using Lemmas 4 and

5 and replacing Uij in Liu (2013) by Uij in (16) and the sample size in Liu (2013) by (n− 1)p. The proof of Theorem

2 is similar. Theorem 3 follows from the formula of FDP and Theorems 1 and 2.

Under (4.33), we have Var(ξ1i,1ξ1j,1)γiiγjj = 1 + o(1) uniformly in i, j. Hence max1≤i<j≤q |Vij | ≤ (2 + δ)
√

log q

for some δ > 0 with probability tending to one. This shows that

P
(

min
(i,j)∈H1

|T̂ij | ≥ (2 + δ
′
)
√

log q
)
→ 1.

for some δ
′
> 0. By the definition of t̂ in (15), we have t̂ ≤ 2

√
log q as q → ∞. Thus, P(H1 ⊆ ̂supp(Γ)) → 1.

Similarly, we can show that P(H
′
1 ⊆ ̂supp(Ω))→ 1. This finishes the proof of Theorem 4.

D Proof of Proposition 4 on the convergence rate of β̂j

Proof of Proposition 4. Define

âj =
1

(n− 1)p

n∑
k=1

p∑
l=1

(X
(k)
l,−j − X̄l,−j)

′
(X

(k)
lj − X̄lj).
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We let θnj and αj denote θnj(δ) = δ

√
ψ̂jj log q

np
and αj(δ) (defined in (3.18)), respectively. By the Karush-Kuhn-Tucker

(KKT) condition, we have

∣∣∣D−1/2
j Ψ̂−j,−jβ̂j −D

−1/2
j âj

∣∣∣
∞
≤ θnj . (18)

By Lemma 1, we have c−1 ≤ min1≤j≤q−1 Dj ≤ max1≤j≤q−1 Dj ≤ c for some c > 0 with probability tending to one.

This, together with Lemma 2, implies that, for sufficiently large δ,

∣∣∣ 1

(n− 1)p
D
−1/2
j

n∑
k=1

p∑
l=1

(X
(k)
l,−j − X̄l,−j)

′
ε̃
(k)
lj

∣∣∣
∞
≤ 1

2
θnj (19)

uniformly in 1 ≤ j ≤ q, with probability tending to one. Note that ε̃
(k)
lj = X

(k)
lj − X̄lj − (X

(k)
l,−j − X̄l,−j)βj . Therefore,

∣∣∣D−1/2
j Ψ̂−j,−jβj −D

−1/2
j âj

∣∣∣
∞
≤ 1

2
θnj (20)

uniformly in 1 ≤ j ≤ q. Note that inequalities (18) and (20) imply that

∣∣∣D−1/2
j Ψ̂−j,−j(β̂j − βj)

∣∣∣
∞
≤ 3

2
θnj . (21)

Define Λ = diag(Ψ)−1/2Ψdiag(Ψ)−1/2. For any subset T ⊂ {1, 2, · · · , q−1} and ν ∈ Rq−1 with |T | = o
(√

np
logmax(q,np)

)
and |νTc |1 ≤ c|νT |1 for some c > 0, by Lemma 1 and the conditions in Proposition 4, we have

ν
′
D
−1/2
j Ψ̂−j,−jD

−1/2
j ν ≥ λmin(Λ−j,−j)|ν|22 −OP

(√ log max(q, np)

np

)
|ν|21 ≥ |ν|22/C, (22)

for some constant C > 0, where the first inequality follows from the fact

|ν
′
(D
−1/2
j Ψ̂−j,−jD

−1/2
j −Λ−j,−j)ν| ≤ |D−1/2

j Ψ̂−j,−jD
−1/2
j −Λ−j,−j |∞|ν|21

and the second inequality follows from the fact |ν|21 ≤ (1 + c)2|νT |21 ≤ (1 + c)2|T ||ν|22.

Now let T be the support of βj , αj = D
1/2
j βj and ν = D

1/2
j (β̂j − βj) = α̂j − αj . We first show that

|νTc |1 ≤ 3|νT |1 uniformly in 1 ≤ j ≤ q with probability tending to one. Define

Q(αj) =
1

2(n− 1)p

n∑
k=1

p∑
l=1

(X
(k)
lj − X̄lj − (X

(k)
l,−j − X̄l,−j)D

−1/2
j αj)

2,

S(αj) = D
−1/2
j âj −D

−1/2
j Ψ̂−j,−jβj .

Note that S(αj) is the gradient of Q(αj). By the definition of α̂j , we have

Q(α̂j)−Q(αj) ≤ θnj(δ)|αj |1 − θnj |α̂j |1 ≤ θnj(|νT |1 − |νTc |1),
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and by (20), with probability tending to one,

Q(α̂j)−Q(αj) ≥ S
′
(αj)ν ≥ −

1

2
θnj |ν|1 = −1

2
θnj(|νT |1 + |νTc |1)

uniformly in 1 ≤ j ≤ q. It follows from the above two inequalities that |νTc |1 ≤ 3|νT |1. So by (21) and (22) we have

|ν|22 ≤ Cν
′
D
−1/2
j Ψ̂−j,−jD

−1/2
j ν

≤ C|D−1/2
j Ψ̂−j,−jD

−1/2
j ν|∞|ν|1

≤ 3

2
Cθnj(|νT |1 + |νTc |1)

≤ 6Cθnj |νT |1

≤ 6Cθnj

√
|βj |0|νT |2

uniformly in 1 ≤ j ≤ q with probability tending to one. By noting that c−1 ≤ min1≤j≤q−1 Dj ≤ max1≤j≤q−1 Dj ≤ c

with probability tending to one, we have |β̂j − βj |2 ≤ c|ν|2. Hence, by the conditions in Proposition 4, we have

an2 = oP
(

(np log q)−1/4
)

. Note that |ν|1 ≤ 4|νT |1 ≤ 4
√
|βj |0|νT |2 = o((log max(q, np))−1) uniformly in 1 ≤ j ≤ q−1

with probability tending to one. This proves Proposition 4 holds.

E Additional Experiments

In this section, we present some additional simulation studies and real data analysis. We first note that for the choice

of tuning parameters, our theoretical results will hold for any large enough constants λ in (3.15) for estimating Âp

(see Proposition 3) and δ > 0 in (3.19) for β̂j(δ) (see Proposition 4). In our experiment, we will adopt a data-driven

parameter-tuning strategy from Liu (2013). In particular, λ and δ are selected by

(λ̂, δ̂) = arg min
λ,δ

9∑
k=3

(∑
1≤i 6=j≤q I{|T̂ij(λ, δ)| ≥ Φ−1(1− k

20
)}

k(q2 − q)/10
− 1

)2

, (23)

where T̂ij(λ, δ) is the test statistic in (3.14) with an initial estimator β̂j(δ) and Âp (depending on the threshold λ). The

choice of (λ, δ) in (23) makes the distributions of T̂ij , on average, close to the standard normal distribution. We note

that although the parameter searching is conducted on a two-dimensional grid on λ and δ, the main computational

cost is the construction of β̂j(δ), which is irrelevant of λ. Therefore, the computational cost of the parameter searching

is moderate.

E.1 Boxplots of FDPs

We present the boxplots of FDPs when n = 100 over 100 replications in Figure 1 for different p, q, and precision

matrix structures. As we can see from Figure 1, FDPs are well concentrated, which suggests that the performance

of the proposed estimator is quite stable.
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Figure 1: Boxplots for FDP when n = 100 and α = 0.1.
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Figure 2: The ratio Âp/Ap for different n and p = q when Ω and Γ are hub graphs.

E.2 Estimation of Âp

In Figure 2, we plot the ratio Âp/Ap for n = 20 (left figure) and n = 100 (right figure) as p = q increases from 50 to

400. Due to space constraints, we only show the case when both Ω and Γ are generated from hub graphs (the plots
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Table 1: Averaged empirical FDP and power using the penalized likelihood method with the SCAD penalty.

p q Ω Γ n = 20 n = 100

FDP Power FDP Power

100 100 hub hub 0.037 0.347 0.038 0.346
hub band 0.455 0.410 0.348 0.381
hub random 0.722 0.926 0.738 0.910

band band 0.341 0.206 0.332 0.167
band random 0.339 0.964 0.246 0.971

random random 0.703 0.962 0.622 0.943
200 200 hub hub 0.027 0.322 0.059 0.370

hub band 0.357 0.314 0.333 0.306
hub random 0.629 0.903 0.654 0.888

band band 0.333 0.187 0.333 0.167
band random 0.246 0.966 0.151 0.982

random random 0.481 0.828 0.326 0.863
200 50 hub hub 0.060 0.381 0.054 0.385

hub band 0.362 0.330 0.371 0.517
hub random 0.754 0.927 0.704 0.909

band band 0.340 0.205 0.334 0.174
band random 0.588 0.833 0.551 0.855

random random 0.784 0.961 0.607 0.947
400 400 hub hub 0.946 0.978 0.952 1.000

hub band 0.982 1.000 0.962 0.992
hub random 0.949 0.999 0.910 1.000

band band 0.338 0.179 0.336 0.175
band random 0.233 0.848 0.237 0.864

random random 0.141 0.610 0.099 0.644

when Ω and Γ are generated from other graphs structures are similar). As one can see from Figure 2, when either n

is fixed and p = q increases or p = q is fixed and n increases from 20 to 100, the mean ratio becomes closer to one

and the standard deviation of the ratios decreases. This study empirically verifies Proposition 3, which claims that

the ratio Âp/Ap converges to 1 in probability as nq →∞.

E.3 Comparison to the penalized likelihood approach

We compare our procedure with the penalized likelihood approach in Leng and Tang (2012). We adopt the same

(regularization) parameter-tuning procedure as Leng and Tang (2012), i.e., we generate an extra random test dataset

with the sample size equal to the training set and choose the parameter that maximizes the log-likelihood on the test

dataset. Due to space constraints, we only report the result using the SCAD penalty (Fan and Li, 2001) rather than

the L1 penalty since the SCAD penalty leads to slightly better performance (also observed in Leng and Tang (2012)).

The averaged empirical FDPs and powers for different settings of n, p, q,Ω,Γ are shown in Table 1. As one can see

from Table 1, each setting has either a large FDP or a small power. In fact, for those settings with small averaged

FDPs (e.g., n = 100, p = 200, q = 50 and Ω and Γ generated from hub graphs with the averaged FDP 0.054), the

corresponding powers are also small (e.g., 0.385 for the aforementioned case), which indicates that the estimated Ω̂

or Γ̂ is too sparse. On the other hand, for those settings with large averaged powers (e.g., n = 100, p = q = 400 and

Ω from hub and Γ from random with the averaged power equal to 1), the corresponding FDPs are also large (e.g.,

0.910 for the aforementioned case), which indicates that the estimated Ω̂ or Γ̂ is too dense. We also note that when
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Figure 3: Averaged empirical FDPs (y-axis) against different estimated FDP α′s (x-axis) for the de-
correlation approach. For the purpose of controlling FDP, the blue line should be close to or below the
dashed green line, which represents FDP=α′.

p, q are small as compared to n, the penalized likelihood approach still achieves good support recovery performance

(e.g., the case n = 100, p = q = 20 as reported in Leng and Tang (2012)). When p, q are comparable to or lager than

n, our testing based method achieves better support recovery performance.

E.4 De-correlation method

In Remark 1, we illustrate why the de-correlation approach is not applicable in our problem setup from a theoretical

perspective. Here, we provide some empirical evidences. Due to space constraints, we only report the comparison

when n = 20, p = q = 100, and, in fact, the performance becomes even worse when p, q gets larger. Ideally, the

empirical FDP should be close to (or below) the FDP estimate α′ in (3.21). However, as one can see from Figure 3,

the empirical FDP is much larger than the corresponding α′ in many cases. Moreover, by setting the FDR level for

individual Γ and Ω to be α = 0.1, we present the corresponding empirical FDP and α′ in Table 2, where the FDP

can be twice as large as α′ in some cases. The experimental results from Table 2 and Figure 3 empirically verify that

the de-correlation approach does not control FDP well.
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Table 2: Averaged empirical FDP and the estimated FDP α′ for the de-correlation approach.
Ω Γ FDP (α′)

hub hub 0.376 (0.146)
hub band 0.272 (0.152)
hub random 0.323 (0.154)

band band 0.176 (0.161)
band random 0.199 (0.164)

random random 0.250 (0.164)

(a) Ω = band, Γ =random (b) Ω = hub, Γ = random

Figure 4: ROC curves for different perturbation levels of ν = 0, 0.2, 0.5, 2 and 5. The larger the ν is, the
more “red” color of the ROC curve is (from black to red).

E.5 Simulation study when the covariance is not a Kronecker product

In this section, we present simulation study when the covariance matrix does not follow the form of a Kronecker

product. More precisely, we generate the covariance matrix in the form of Σ⊗Ψ + νI, where I is the pq× pq identity

matrix and ν is the level of perturbation. Due to space constraints, we only present the case when n = 20, p = q = 30,

Ω is either a band or a hub graph, Γ is a random graph. The observation is similar for other settings. Figure 4 plots

the ROC curves for different perturbation parameters ν = 0, 0.2, 0.5, 2, and 5. As one can see, when the perturbation

level ν is small, the ROC curve is almost identical to the case when the covariance is a Kronecker product (i.e.,

ν = 0). However, when ν becomes larger, the support recovery performance becomes inferior.

E.6 Additional ROC curve comparisons

In Figure 5, we fix the factor f = 3 and consider different types of Ω and Γ. For most cases, our method achieves

better performance. The only exception is that, for hub/random and band/random graphs, the power of the penalized

likelihood approach outperforms our method when FDP is large. However, for support recovery in high-dimensional

settings, one is more interested in the scenario when FDP is very small. In such a case, our method consistently leads

to a larger power than the penalized likelihood approach.
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(a) Ω = hub, Γ = hub (b) Ω =hub, Γ = band (c) Ω = hub, Γ = random

(d) Ω = band, Γ = band (e) Ω = band, Γ = random (f) Ω = random, Γ = random

Figure 5: ROC curves for different types of the construction of Ω and Γ when f = 3.

Table 3: No. of edges for the export data. For 13 regions, there are 78 possible edges in total. For 36
products, there are 630 possible edges in total.

Region Product

α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3
No. of Edges 2 23 31 19 30 37

Density of the Graph 2.56% 29.49% 39.74% 3.01% 4.76% 5.87%

E.7 Real data analysis

In this section, we investigate the performance of the proposed method on two real datasets, the U.S. agricultural

export data from Leng and Tang (2012) and the climatological data from Lozano et al. (2009).

U.S. agricultural export data

We first apply our method to the U.S. agricultural export data studied in Leng and Tang (2012). The dataset contains

annual U.S. agriculture export data for 40 years, from 1970 to 2009. Each annual dataset contains the amount (in

thousands U.S. dollars) of exports for 36 products (e.g., pet foods, snack foods, breakfast cereals, soybean meal,

meats, eggs, dairy products, etc.) in 13 different regions (e.g., North America, Central America, South America,

South Asia, etc.). Thus, the dataset can be organized into 40 matrix-variate observations, where each observation is

a (p = 13)× (q = 36) matrix. We adopt the method proposed in Leng and Tang (2012) to remove the dependence in

this matrix-variate time series data. In particular, we take the logarithm of the original data plus one and then take

the lag-one difference for each matrix observation so that the number of observations becomes n = 39. Please refer
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Figure 6: Estimated graphs for the export data

to Leng and Tang (2012) for more details on the pre-processing of the data.

We apply the proposed FDR control procedure to estimate the support of the precision matrices for regions

and products under different α ∈ {0.1, 0.2, 0.3}. In Table 3, we report the number of edges/discoveries for different

α’s. We observe that for the product graphs, the number of discoveries is relatively small as compared to the

number of hypotheses, which indicates that many pairs of products are conditionally independent. In Figure 6, we

plot the graphs corresponding to the estimated supports of Ω (corresponding to Regions) and Γ (corresponding to

Products) for α = 0.2 and α = 0.3. Figures 6(a) and 6(c) show the estimated graphs for p = 13 regions. As we can

see, the regions in the following sets, {East Asia, Southeast Asia}, {European Union, Other Europe, Oceania} and

{Central America, North America, South America}, are always connected. Such an observation should be expected

since regions in the aforementioned sets are close geographically. This observation is consistent with the result
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Table 4: No. of edges for the climate data. For p = 17 meteorological factors, there are 136 edges in total.
For q = 125 locations, there are 7,750 possible edges in total.

Meteorological factors Locations

α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3
No. of Edges 30 40 42 1059 1539 2065

Density of the Graph 22.05% 29.41% 30.88% 13.66% 19.85% 26.65%

obtained by penalized likelihood approach in Leng and Tang (2012), which claims that “the magnitude between

Europe Union and Other Europe, and that between East Asia and Southeast Asia are the strongest.” The regions

South Asia, Sub-Saharan Africa, and North Africa connect to fewer regions. This observation is also consistent with

the result in Leng and Tang (2012), noting that “interestingly, none of the 11 largest edges corresponds to either

North Africa or Sub-Saharan Africa.” The estimated graphs for products shown in Figures 6(b) and 6(d) are quite

sparse, which indicates many pairs of products are conditionally independent given the information of the rest of the

products. The product graphs also lead to many interesting observations. For example, the products in the following

sets, {Pet foods, Snack foods, Other Intermediate Products},

{Dairy Products,Red Meats FR/CH/FR,Red Meats Prep/Pres,Poultry Meat,Wheat Flour}, are always connected

(not necessarily directly). Such observations also make sense since different kinds of meats and dairy products are

closely related products and thus should be highly correlated.

Climate data analysis

In this section, we study the climatological data from Lozano et al. (2009), which contains monthly data of p = 17

different meteorological factors during 144 months, from 1990 to 2002. The observations span q = 125 locations in

the U.S. The 17 meteorological factors measured for each month include CO2, CH4, H2, CO, average temperature

(TMP), diurnal temperature range (DTR), minimum temperate (TMN), maximum temperature (TMX), precipitation

(PRE), vapor (VAP), cloud cover (CLD), wet days (WET), frost days (FRS), global solar radiation (GLO), direct solar

radiation (DIR), extraterrestrial radiation (ETR) and extraterrestrial normal radiation (ETRN). We note that we

ignore the UV aerosol index factor in Lozano et al. (2009) since most measurements of this factor are missing. We

adopt the same procedure as described in Section E.7 to reduce the level of dependence in this matrix-variate time

series data.

We apply the proposed FDR control procedure to estimate the support of the precision matrices for meteorolog-

ical factors and locations under different α ∈ {0.1, 0.2, 0.3}. In Table 4, we report the number of edges/discoveries for

different α’s. From Table 4, the number of discoveries for meteorological factors is quite stable as α increases from 0.1

to 0.3. Moreover, the number of discoveries for locations is relatively large, which indicates many strong correlations

among pairs of locations. We plot the graphs corresponding to the estimated supports of the precision matrices for

meteorological factors in Figure 7 (the plots for locations are omitted since they are too dense to visualize). An

interesting observation is that the factors TMX, TMP, TMN and DTR form a clique. This pattern is reasonable

since the factors TMX, TMP, TMN and DTR are all related to temperature and thus should be highly correlated.

Other sparsity patterns might also provide insight for understanding dependency relationships among meteorological

factors.
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Figure 7: Estimated graphs for the climate data
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