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S1. Proofs of Theorems

Proof of Theorem 1. Suppose A(z) is Schur-Stable. Then

A(B−1)BkXt = Zt

defines a Causal V AR(k) process. If we let Uk = Γk then A = ξ′kU
−1
k−1 holds

by the Yule-Walker equations for causal V AR(k) (see e.g., Brockwell and

Davis, 1987, eq. 11.5.7, p 419) and we have the assertion of the if part of

the theorem. Conversely, suppose there is a positive definite block Toeplitz
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matrix Uk of the form (3.2) such that the coefficients of the polynomial A =

[A1, · · · , Ak] satisfy A = ξ′kU
−1
k−1. The determinantal equation det(A(z) = 0

has the same roots as the eigenvalues of Ã (Ã is the Companion matrix of

the monic polynomial A(z) and has the same characteristic polynomial as

A(z); see Horn and Johnson (1985)) where Ã is defined in (3.9). We can

see that Ã satisfies the system of equations

Uk−1 = ÃUk−1Ã
′ + Σ̃ (S1.1)

where Σ̃ =

Ck 0

0 0

 . Because Uk is positive definite, so is Ck. We then

obtain stability of Ã, modifying the argument of Stein (1952) slightly to

show that as long as Ck is positive definite, the eigenvalues of Ã are strictly

smaller than one in absolute value. Let w∗ = (w∗1, · · · , w∗p)′ be any left

eigenvector of Ã corresponding to an eigenvalue λ. Here q∗ denotes the

complex conjugate transpose of the matrix q. First we show that w∗1 6= 0.

From the structure of Ã we have w∗1Ai−1 + w∗i = λw∗i−1 for 1 < i < k and

w∗1Ak = λw∗k. Thus, if w∗1 is zero then the entire eigenvector is zero, leading

to a contradiction. Pre and post multiplying equation (S1.1) by w∗

(1− |λ|2)w∗Uk−1w = w∗Σ̃w = w∗1Ckw1 > 0.

From the positive definiteness of Uk−1 it follows that |λ| < 1. Thus, since

the eigenvalues of Ã are less than one in absolute value, we have the required
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Schur-stability of A(z).

Proof of Theorem 2. Let Uk be a positive definite block Toeplitz matrix.

Then Ck >L 0. For 2 ≤ t ≤ k,

Ct = U(0)− ξ′t U−1
t−1 ξt

= U(0)− [ξ′t−1, U(t)′]

U t−2 κt−1

κ′t−1 U(0)


−1  ξt−1

U(t)


= U(0)− ξ′t−1U

−1
t−2 ξt−1

−
(
U(t)− ξ′t−1U

−1
t−2κt−1

)
D−1
t−1

(
U(t)− ξ′t−1U

−1
t−2κt−1

)′
= Ct−1 −

(
U(t)− ξ′t−1U

−1
t−2 κt−1

)
D−1
t−1

(
U(t)− ξ′t−1U

−1
t−2 κt−1

)′
.

Here terms involving ξ0, κ0 for the t = 1 case are assumed to be zero.

The second term on the right side is a nonnegative definite term. Since

Uk >L 0, any principal diagonal block is positive definite and hence the

Schur- complements Dt >L 0 for t ≤ k. Thus,

Ct−1 − Ct =
(
U(t)− ξ′t−1U

−1
t−2 κt−1

)
D−1
t−1

(
U(t)− ξ′t−1U

−1
t−2 κt−1

)′ ≥L 0.

(S1.2)

Based on the assumption that Uk >L 0 we have Ck >L 0. Hence C0 ≥L

C1 ≥L · · · ≥L Ck >L 0.
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For the converse, let Ck >L 0. Hence C0 ≥L C1 ≥L · · · ≥L Ck >L 0 be

defined as in (15). Then C0 = U(0) >L 0 and Ck = U(0)− ξ′kU−1
k−1ξk >L 0

which implies

Uk =

U(0) ξ′k

ξk Uk−1

 ,

is positive definite.

Proof of Theorem 3. If A(z) is Schur-Stable construct a causal VAR(k) pro-

cess {Xt} with innovation variance as the identity matrix Im and A as the

coefficient matrix. Then Uk−1 = Γk−1 is the required positive definite block

Toeplitz matrix where Γk is the variance Var{X ′t, X ′t−1, . . . , X
′
t−k}.

For the converse suppose Uk−1 ∈ Tm,k−1
++ exists with S̃k(A,Uk−1) ∈ S mk

+

and Sk(A,Uk−1) ∈ S m
++. Because of the block Toeplitz structure,

S̃k(A,U) =

Sk(A,U) ?

? 0

 .

Positive definiteness of S̃k(A,Uk−1) would then imply

S̃k(A,U) =

Sk(A,U) 0

0 0

 .

Let w∗ = (w∗1, · · · , w∗p)′ be any left eigenvector of Ã corresponding to an

eigenvalue λ. Because Sk(A,Uk−1) ∈ S m
++, following the arguments given

in the proof of Theorem 1, we have |λ| < 1.
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Proof of Theorem 4. The fact that the map τ is a bijection is straightfor-

ward and follows from known properties of the Cholesky and Cayley trans-

formations and the algorithm given in Gaillier (2013). We focus on showing

that for each M , the maps φM and ψM are bijections. Let φ−1
M be the inverse

map of φM where φ−1 is defined by Theorem 1, i.e, for each Uk ∈ Tm,k++ (M)

φ−1
M (Uk) = ξ′kU

−1
k−1.

Let ψ−1
M denote the inverse map of ψM that is given by Algorithm [VQ]. We

will show

φM ◦ φ−1
M = φ−1

M ◦ φM = id = ψM ◦ ψ−1
M = ψ−1

M ◦ ψM ,

where id is the identity map of appropriate dimensions.

First consider any A ∈ Sm
k . By definition, the VAR(k) coefficients are

the solutions to the Yule-Walker equation involving the variance matrix Uk.

Hence

A = (U(1)′, . . . , U(k − 1)′)U−1
k−1 = φ−1(Uk) = φ−1

M (φM(A)),

which implies φ−1
M ◦ φM = id. Next consider an arbitary element Uk of

Tm,k++ (M). Let A = φ−1
M (Uk). Then Uk satisfies the discrete algebraic Riccati

equations

Uk = ÃUkÃ
′ + Σ̃,
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where Ã is defined in (3.9) and Σ̃ =

M 0

0 0

 . The Riccati equations are

unique and the variance matrix of Y ′ = (Y ′1 , . . . , Y
′
k), where Yt is a VAR(k)

process with coefficient matrices given by A and innovation variance M ,

also satisfies the Riccati equations. Therefore φM ◦ φ−1
M = id. Also for Uk

let

ψM(Uk) = (V1, . . . , Vk, Q1, . . . , Qk).

To apply the inverse map to ψM(Uk) we apply Algorithm [VQ]. To distin-

guish the the quantities under the inverse map from the original quantities,

we will use a ← accent on top of the inverse images. Since Vj are defined

as the difference of the Schur complement sequence Cj, from the first step

in the algorithm we have
←
U(0) = M +

∑k
j=1 Vj = Ck +

∑k
j=1(Cj−1 −Cj) =

C0 = U(0). Since
←
U(j) are defined iteratively, we proceed by induction. Let

←
U(i) = U(i) for i = 0, 1, . . . , (j − 1). Then at stage j, we have

←
U(j) =

←
κ
′
j−1

←
U
−1

j−2

←
ξ j−1 + V

1/2
j Qj

←
D

1/2

j−1

= κ′j−1U
−1
j−2ξj−1 + V

1/2
j QjD

1/2
j−1

Since Vj, Qj are obtained under the map ψM , from (3.6) and (3.8) we have

V
1/2
j QjD

1/2
j−1 = U(j)′− κ′j−1U

−1
j−2ξj−1. Thus

←
Uk = Uk and hence ψ−1

M ◦ψM =

id. For the converse, let (V1, . . . , Vk, Q1, . . . , Qk) ∈ (S m
++)k × O(m)k be
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given. Then Uk = ψ−1(V1, . . . , Vk, Q1, . . . , Qk) is constructed using Algo-

rithm [VQ]. The inverse images (
←
V 1, . . . ,

←
V k,

←
Q1, . . . ,

←
Qk) are defined us-

ing equations (3.6) and (3.8). Following similar arguments as before, it is

straightforward to show by induction that the iterative scheme of defining

←
V j,

←
Qj yields (

←
V j,

←
Qj) = (Vj, Qj), for j = 1, . . . , k.Hence, ψM◦ψ−1

M = id.

S2. Var(1) model

A simpler look at the proposed method using first order VAR

The vector autoregression of order one is the simplest model in terms of

parameter estimation and inference in the class of VARMA(p, q) models. To

illustrate the pitfalls of the existing likelihood based methods, we analyze

the VAR(1) model in the context of reparameterization under causality

constraints.

Reparameterization of VAR(1)

Consider an m-dimensional VAR(1) process {Xt}:

Xt = Φ1Xt−1 + Zt. (S2.1)

For the purpose of writing a likelihood we assume the innovations are nor-

mally distributed. The parameters of interest are the m × m coefficient
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matrix Φ1 and the m×m covariance matrix Σ.

The VAR(1) system is causal iff the roots of Φ̃(z) = z−Φ1 are all within

the unit disk D, or equivalently if all the eigenvalues λ1(Φ1), . . . , λm(Φ1) of

the matrix Φ1 are less than one in absolute value. Thus, for the VAR(1),

with a slight abuse of notation, we define the parameter space associated

with a causal polynomial to be

Sm
1 = {Φ1 ∈ Rm×m : |λj(Φ1)| < 1, j = 1, . . . ,m}.

The space Sm
1 forms a submanifold of Rm×m and is complicated in nature.

The space is defined via the eigenvalue restrictions. The eigenvalues are

highly nonlinear functions of the elements of Φ1 and often are not available

in explicit form. This description is generally cumbersome to use in any

optimization procedure; nor is it easily generalized to cases with p > 1.

The key quantity that motivates our reparameterization in the VAR(1)

is the observation that (Γ(0),Σ,Φ1) satisfy the discrete algebraic Riccati

system,

Γ(0) = Φ1Γ(0)Φ
′

1 + Σ. (S2.2)

It can be shown that any solution of the system for given positive-definite

matrices Γ(0) ≥L Σ >L 0 will be Schur-Stable. The equation is satisfied by

the Yule-Walker solution in the VAR(1) process, Φ̂1 = Γ(1)Γ(0)−1, which is
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known to be Schur-Stable. More generally, the result can be cast in terms

of general transformations of symmetric matrices and their relationship to

matrix stability analyzed using the Stein transformation, S(·, ·), defined in

the main text. Thus, for the VAR(1) with stationary variance Γ(0) and

innovation variance Σ, S(Φ1,Γ(0)) = Σ.

Recall that Stein’s (1952) result implies that one could characterize Sm
1

in terms of matrices in S m
++. For any M ∈ S m

++, the pre-image AM(U) =

{A : S(A,U) = M} is non-empty iff U ≥L M but it need not be a singleton

set. In fact, for any M ∈ S m
++ the entire Schur-Stable class can be generated

by the pre-images as U varies over the class of positive definite matrices,

i.e., Sm
1 =

⋃
U∈S m

++
AM(U). This is immediate since given M ∈ S m

++ and

A ∈ Sm
1 , one can solve for U as

V ec(U) = (Im2 − A⊗ A)−1V ec(M),

where ⊗ is the kronecker product. Since the pre-images are non-empty iff

U ≥L M , we have

Sm
1 =

⋃
U∈S m

++, U≥LM

AM(U). (S2.3)

For any fixed M ∈ S m
++, the relation (S2.3) allows us to parameterize the

entire Schur-Stable class Sm
1 in terms of elements of S m

++. However, since

the pre-images AM(U) are not necessarily singletons, we need to introduce
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additional parameters that can characterize the pre-images uniquely. Before

we state our result, we introduce further notation. For r ≤ m, let νr,m

denote the Stiefel manifold of r×m semi-orthogonal matrices. In the special

case when r equals m, the set is the orthogonal group O(m) of m × m

orthogonal matrices. Then we have the following result that characterizes

the set of Schur-Stable matrices.

Proposition 1. Let M ∈ S m
++ be given. Then there exists A ∈ Sm

1 and

U ∈ S m
++ such that S(A,U) = M iff there exists A ∈ Sm

1 and U ∈ S m
++

such that U ≥L M and A = (U −M)1/2QU−1/2 for some r × m matrix

Q ∈ νr,m where r = rank(U −M), (U −M)1/2 is a full column rank square

root of (U −M) and U−1/2 is a square root of U−1.

Proof of Proposition 1. The “if” part follows immediately from substitu-

tion. For the converse note that

(U −M)1/2((U −M)1/2)′ = (AU1/2)(AU1/2)′.

Therefore we can find Q1 ∈ νr,m such that (U −M)1/2 = AU1/2Q′1.

To see how Proposition 1 provides a characterization of Sm
1 , we fix M ∈

S m
++ and define V := V (U) = U −M for any U >L M (for the illustration

we only consider the full rank case, i.e. U >L M but parametrization in

the case of U ≥L M will be immediate from the description.)
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Then from Proposition 1, we obtain the alternative parametrization of

A ∈ Sm
1 in terms of (V,Q) where V is any positive definite matrix and

Q is any orthogonal matrix. Note that the number of free parameters

in this parameterization is
(
m+1

2

)
for V and

(
m
2

)
for Q. Thus, the total

number of free parameters is
(
m+1

2

)
+
(
m
2

)
= m2, the same as that in A.

More importantly, the transformation ϕ taking A to its pre-parameters

(V (A), Q(A)) is a bijection between S m
++ ×O(m) and Sm

1 .

Consider the map ϕ and its inverse ϑ (the mappings depend on the

choice of M , but we will assume that M is fixed throughout and suppress

the dependence for notational simplicity) defined as

A
ϕ−→ (V,Q), (S2.4)

(V,Q)
ϑ−→ A. (S2.5)

The formulas for ϕ and ϑ are

V (A) =
∑
j≥1

AjMA′j,

Q(A) =

(∑
j≥1

AjMA′j

)−1/2

A

(∑
j≥0

AjMA′j

)1/2

,

A(V,Q) = V 1/2Q(V +M)−1/2. (S2.6)

Proposition 2. Let ϕ and ϑ be as defined in (S2.6). Then ϕ◦ϑ = id = ϑ◦ϕ,

so that the map is a bijection.
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To establish Proposition 2, we first prove a lemma.

Lemma 1. If M ∈ S+, then V =
∑

j≥1A
jMA′j satisfies V = A(V +M)A′.

Moreover, if A ∈ Sm
1 , this V is the unique solution to the Riccati equation.

Proof. The first assertion is trivial algebra. Now suppose there are two

solutions, V and Ṽ . Then

A(V −Ṽ )A′ = A([V +M ]−[Ṽ +M ])A′ = A[V +M ]A′−A[Ṽ +M ]A′ = V −Ṽ ,

and by taking vec we obtain

(Im2 − A⊗ A) vec(V − Ṽ ) = 0.

Because A ∈ Sm
1 , the matrix Im2 − A ⊗ A is invertible, implying that

vec(V − Ṽ ) = 0, i.e., V = Ṽ .

Proof of Proposition 2. First consider any A in the domain of ϕ, which

maps to ∑
j≥1

AjMA′j,

(∑
j≥1

AjMA′j

)−1/2

A

(∑
j≥0

AjMA′j

)1/2
 .

Applying ϑ to this yields(∑
j≥1

AjMA′j

)1/2(∑
j≥1

AjMA′j

)−1/2

Φ1

(∑
j≥0

AjMA′j

)1/2(∑
j≥0

AjMA′j

)−1/2

,

which equals A; therefore ϑ ◦ ϕ = id. The converse follows from Lemma 1.
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Consider any (V,Q) in the domain of ϑ, which is mapped to V 1/2Q

(V +M)−1/2 and we use the abbreviation Ã1 = V 1/2Q(V +M)−1/2 for

convenience. Note that Ã(V +M)Ã′ = V by algebra. Letting U = V +M ,

it then follows that U = ÃUÃ′1 + M. Thus by Stein’s result we must have

Ã1 ∈ Sm
1 . Then by Lemma 1 we know that V must be a unique solution

to Ã(V +M)Ã′ = V . Applying ϕ we obtain (Ṽ , Q̃), where

Ṽ =
∑
j≥1

ÃjMÃj′

Q̃ = Ṽ −1/2Ã(Ṽ +M)
1/2
.

Noting that Ṽ also solves Ã(Ṽ +M)Ã′ = Ṽ by algebraic verification, Lemma

1 tells us that Ṽ = V . Plugging this result back into the formula for Q̃

yields

Q̃ = V −1/2V 1/2Q(V +M)−1/2(V +M)1/2 = Q.

Therefore ϕ ◦ ϑ = id as well.

We end this appendix with an illustration of the advantage of the pa-

rameterization in terms of prior specification and by contrasting the ap-

proach with common prior specification approaches that disregard the con-

straints of Schur-stability.
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Advantages of constrained prior based on pre-parameterization

Consider a two-dimensional Gaussian VAR(1) process Xt defined by (S2.1)

with m = 2, and parameters

Φ = Φ0 :=

λ 0

2 λ

 Σ = Σ0 :=

1 0

0 1

 . (S2.7)

we will take the roots of the process to be near the causal boundary, λ = 1−

n−1 to illustrate the effect of unrestricted prior specification. Let (X1, . . . ,

X100) be a sample of size n = 100 from the process. Let π(Φ,Σ) be a

prior on the parameters. We will assume a priori Vec(Φ) ∼ N(Φ0, 12)

and independently Σ ∼ IW (Σ0, 5 + κ), where IW denotes the probability

density of the inverse-Wishart distribution. The parameterization with κ =

0.5 produces a reasonably flat prior on Σ with finite prior variance. We

center the prior for the coefficient at the true value. The prior belongs

to the class of the standard normal-inverse-Wishart (NIW) specification

for Bayesian VAR, which includes the popular Minnesota prior (Litterman

1980) as a special case. The Bayes estimator of Φ is then obtained by

standard Bayesian computation using the prior and the Gaussian likelihood

obtained by conditioning on the initial value. Let λ̂1,U denote the largest

eigenvalue (in absolute value) of the Bayes estimator of Φ obtained using

the NIW type unrestricted prior. For the proposed Bayesian procedure
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with constrained priors, we induce priors on parameters via priors on the

(l, d, s, δ) parameters corresponding to (V,Q,Σ). The exact formulation is

given in the general VARMA section, and thus we omit the details here. Let

λ̂1,C denote the largest eigenvalue (in absolute value) of the Bayes estimator

of Φ obtained using the proposed method.

Figure 1 shows the density histogram of the maximum eigenvalues,

λ̂1,U and λ̂1,C based on 400 Monte Carlo replications. The density for the

posterior obtained from the unconstrained prior has about 30% posterior

mass outside the causal region while the proposed method is concentrated

in the causal region. The left tails of distributions for the two estimators

are reasonably close, but the unrestricted estimator has posteior eigenvalues

with magnitude bigger than one.

S3. Additional Simulation

3.1 Modified Cayley Form

The procedure for recovering skew symmetric S from an orthogonal Q and

the corresponding δ value is given below. Derivations of the procedure

follow Gallier (2013). Recall R = [(Im − S)(Im + S)−1]2 for some skew-

symmetric matrix S and Q = EδR = Eδ[(Im − S)(Im + S)−1]2, where

Eδ = Im − 2δe1e
′
1, δ ∈ {0, 1}, and e1 = (1, 0, . . . , 0)′.
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Figure 1: Distribution of the estimated maximum eigen-value (in absolute

value) of the coefficient matrix in a VAR(1) model with true values given

in (S2.7) and sample size equal to 100. The lighter histogram corresponds

to the Bayesian estimator λ̂1,C based on the proposed parameterization

that constrains the eigenvalue, while the darker histogram is for λ̂1,U with

standard unconstrained NIW priors on the parameters. The overlapping

region between the histograms is shown with an intermediate shade.
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1. Recover R from Q as R = EδQ. Note that R cannot have an odd

number of negative one eigenvalues.

2. Calculate the Schur decomposition of R. R = PTP ′ where P is

orthogonal and T is upper block-triangular with 1× 1 or 2× 2 blocks

along the diagonal. The diagonal 2× 2 blocks correspond to complex

eigenvalues. The eigenvalues of T are the same as that of R. Because

the negative one eigenvalues appear in pairs, we can compute a real

square root R or that of T (since R1/2 = PT 1/2P ′) as follows:

3. Set T
1
2 = Im.

4. If diagonal value i and i−1 of T are−1, set

 T
1
2
i,i T

1
2
i,i+1

T
1
2
i+1,i T

1
2
i+1,i+1

 =

0 −1

1 0

.

5. If diagonal value i and i − 1 of T are < 1 in absolute value. Let

θ = arctan(Ti,i+1/Ti,i). Set

 T
1
2
i,i T

1
2
i,i+1

T
1
2
i+1,i T

1
2
i+1,i+1

 =

 cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

.

6. Let R1 = PT 1P ′.

7. Calculate S = 2(Im +R1)−1 − Im.
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3.2 MLE and Bayesian computation

For MLE we use the BFGS method in R-optim with bounding boxes given in

the paper. The initial value is chosen according to the SHIRNK algorithm

described below. For Bayesian estimation perform a Metropolis-random

walk algorithm with the following recommended priors and jump distribu-

tion:

Priors:

π
(
s1, . . . , s(m

2 )(p+q)

)
∝ N(0, 1)

π
(
l1, . . . , l(m

2 )(p+q+1)

)
∝ N(0, 1)

π
(
d1, . . . , dm(p+q+1)

)
∝ N(0, 1)

π (z1, . . . , zp+q) ∝ N(0, 1)

where δi = I[zi ≥ 0]− I[zi < 0]

Jump Distribution:

For a generic parameter at ith iteration η(i) ∼ N(η(i−1), ψ)

Most transformation methods suffer from lack of interpretability in

terms of the transformed parameters. For example, a prior on the original

parameters invoked via an informative prior on the transformed parameters

under a complicated transformation is hardly ever interpretable as a prior
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on the original parameters. For some intuition about the invoked prior with

respect to the original VARMA parameters under the proposed scheme we

examine the VAR(1) case. To study the induced distribution on Φ in a

VAR(1), set η = (l, d, s). Denote the transformation from Φ to η with g, so

that g(a) = fM(a). The recommended prior on η is a multivariate normal

N(η̃, Σ̃) where η̃ = (0, . . . , 0) and Σ̃ = I. However, one could specify a

general multivariate normal prior, N(η̃, Σ̃), on η without adding too much

complexity to the MCMC steps but matching it roughly to some informative

normal prior on elements of Φ. For example, if the proposed prior on entries

of Φ is a multivariate normal with mean vector µΦ and covariance ΣΦ, then

using local linearization, the prior on η for the reflection δ corresponding

to µΦ should be normal with η̃ = g(µΦ) and Σ̃ = ∇g(µΦ)′Σ̃Φ∇g(µΦ). For

the other value of δ the proposed independent normal prior on η could be

used. Thus, the prior will locally concentrate on µΦ.

3.3 Algorithm SHRINK for initial estimation

For implementation of the proposed algorithm we need an initial value that

is within the constrained space. For any monic matrix polynomial A(z),

define the spectrum of A(z) by

σ(A) = {|z| : |A(z)| = |Imzk − A1z
k−1 − · · · − Ak| = 0} (S3.1)
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and define radius(σ(A)) = sup{|z| : z ∈ σ(A)}. Let A be unconstrained

estimator, so that possibly radius{σ(A)} ≥ 1. Then we convert A to a

Schur-stable polynomial using a simple shrinkage technique. Note that

Ã(c)(z) = Imz
k − cA1z

k−1 − · · · − ckAk ⇒ σ(Ã(c)) = cσ(A).

Then for any c−1 > radius{σ(A)} we have Ã(c)(z) ∈ Sk. For our implemen-

tation we use the Hannan-Rissanen estimator (Hannan and Rissanen, 1982)

to estimate A, chosen because the procedure is computationally fast and

known to be consistent. The shrunk version of the Hannan-Rissanen estima-

tor (autoregressive and/or moving average polynomials are independently

shrunk when needed) is used as an initial estimator, which is computation-

ally fast and Schur-stable.

3.4 Additional Simulation results

To evaluate the performance of estimators based on the proposed pre-

parameterization we conducted a limited simulation. The models explored

are vector autoregression models. In the VARMA setting there are no avail-

able causal invertible estimators that can be compared with the proposed

estimator. We compared the performance of the proposed estimator with

that of the Yule-Walker estimator in VAR(2) in two dimensions (m = 2)

and VAR(1) in three dimensions (m = 3.) We summarize the performance
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of the estimators using the Monte Carlo root mean squared error based on

N = 500 Monte Carlo replications of samples of size n = 100.

3.5 Three-dimensional VAR(1)

The second setting we consider is a first order three dimensional vector

autoregression process. Specifically, we consider the model
Xt,1

Xt,2

Xt,3

 =


Φ11 0 0

0.1 0.5 0

Φ31 0.4 0.8




Xt−1,1

Xt−1,2

Xt−1,3

+


Zt,1

Zt,2

Zt,3

 (S3.2)

where the errors Zt are independent and identically distributed as N(0, I3).

The different scenarios considered are Φ31 ∈ {0.1, 1} and Φ11 ∈ {−.99,−.95,

−0.5, 0.4, 0.9, 0.99}. Maximum likelihood estimation is initialized at the

Yule-Walker solution. For the MLE optimization box constraints are used

on the pre-parameters and the values of the bounds are same as those in the

VAR(1) case. We use N(0, 5) priors for the real valued pre-parameters and

a Bernoulli (0.5) prior for the reflection parameter δ. Since there are 15 pa-

rameters in the model, we only report the overall Monte Carlo average of the

estimation error for the coefficient matrix, given by N−1
∑N

j=1 ‖Φ̂(j) − Φ‖,

where Φ̂(j) is the estimator of Φ based on the jth Monte Carlo replication.

The overall RMSE is reported in Table 1. The results show large efficiency
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gain for the MLE and the Bayes estimator compared to the Yule-Walker

estimator, particularly for processes with roots near the boundary.

3.6 Second order VAR

Next we consider a second order two dimensional vector autoregression

process. Specifically, the model isXt,1

Xt,2

 =

Φ1,11 0

1 0.4


Xt−1,1

Xt−1,2

+

0 0

0 .45


Xt−2,1

Xt−2,2

+

Zt,1
Zt,2


(S3.3)

where the errors Zt are assumed to be i.i.d. N(0, I2). This particular param-

eterization provides a one-dimensional parameterization in terms of one of

the roots (Φ1,11) of the VAR(2) process and is convenient for illustrating the

performance of the estimators as a function of the stability of the process as

it changes from very stable to near unit root process. The scenarios consid-

ered are Φ11 ∈ {.99,−.95,−.9,−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, .9, .95, .99}.

Maximum likelihood estimation is initialized at the Yule-Walker solution.

The priors are again chosen in a default manner with N(0, 5) priors for

the real valued pre-parameters and Bernoulli(0.5) priors for the reflection

parameters. Bayesian computation is done using Metropolis random walk

for the real parameters and independent jumps for the reflection parame-
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Table 1: Overall RMSE, square-root of nN−1
∑N

j=1 ‖Φ̂− Φ‖2, for different

estimators of Φ for model (S3.2).

Φ11 Yule-Walker Bayes MLE

Φ31 = .1

-0.99 0.207 0.192 0.182

-0.95 0.204 0.201 0.190

-0.50 0.241 0.258 0.233

0.40 0.252 0.259 0.238

0.90 0.225 0.205 0.199

0.99 0.227 0.193 0.198

Φ31 = 1

-0.99 0.213 0.193 0.183

-0.95 0.207 0.200 0.190

-0.50 0.239 0.251 0.229

0.40 0.241 0.247 0.225

0.90 0.235 0.197 0.189

0.99 0.326 0.188 0.191
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ters. Due to large number of parameters we only report the Monte Carlo

average of the overall estimation error for the autoregressive coefficient ma-

trices N−1
∑N

j=1(‖Φ̂(j)
1 − Φ1‖ + ‖Φ̂(j)

2 − Φ2‖) where Φ̂
(j)
1 is the estimator of

Φ1 based on the jth Monte Carlo replication and Φ̂
(j)
2 is that for Φ2. The

likelihood based estimators continue to enjoy large efficiency gain over the

moment-based estimators in the second order process. The advantage of

the proposed parameterization is also seen in terms of the gain in numerical

stability of computation near the causal boundary.
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Table 2: Overall RMSE, square-root of nN−1
∑N

j=1(‖Φ̂(j)
1 − Φ1‖ + ‖Φ̂(j)

2 −

Φ2‖), for different estimators of Φ1 and Φ2 for model (S3.3).

Φ11 Yule-Walker Bayes MLE

-0.99 0.602 0.372 0.401

-0.95 0.421 0.368 0.394

-0.90 0.409 0.378 0.400

-0.80 0.387 0.370 0.385

-0.60 0.389 0.366 0.383

-0.40 0.384 0.356 0.374

-0.20 0.380 0.351 0.375

0.00 0.395 0.367 0.391

0.20 0.381 0.362 0.377

0.40 0.403 0.370 0.388

0.60 0.385 0.349 0.363

0.80 0.508 0.354 0.382

0.90 0.597 0.314 0.338

0.95 0.747 0.348 0.355

0.99 0.962 0.359 0.393
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