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This supplementary document contains elaborate discussions on modeling techniques for com-

plete ordinal responses and existing methods for handling missing ordinal observations. Reg-

ularity conditions, proof of Theorem 3.2, justification of the bootstrap variance estimator and

additional plots of the power functions of tests are also presented.

S1 Odds Ratios and Regression Models for Ordinal

Responses

Our paper considers scenarios where one or both ordinal responses contain

missing observations and explore strategies for valid and efficient inferences

on the joint and marginal probabilities, association measures and regression

analysis. A popular example on association measures is a set of different

types of ordinal odds ratios, including the local (θLrj), the cumulative (θCrj)
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and the global (θGrj) odds ratios, defined respectively as

θLrj =
πrjπr+1,j+1

πr,j+1πr+1,j

,

θCrj =

(∑
b≤j πrb

)(∑
b>j πr+1,b

)(∑
b>j πrb

)(∑
b≤j πr+1,b

) ,
and

θGrj =

(∑
a≤r
∑

b≤j πab
)(∑

a>r

∑
b>j πab

)(∑
a≤r
∑

b>j πab
)(∑

a>r

∑
b≤j πab

) .
Note that both θCrj and θGrj have incorporated the ordinality of the responses

in the definition.

In the absence of missing observations, Dale (1986) considered a bivari-

ate case where each ordinal response was assumed to follow a cumulative

link model. He modelled the global cross-ratios with a set of log-linear mod-

els and estimated parameters by maximizing the full-likelihood. Ekholm et

al. (2013) chose to model the dependence ratios because of the computa-

tional advantage for full-likelihood inference. Other examples of analyzing

ordinal responses with GEE include Lipsitz et al. (1994) and Heagerty and

Zeger (1996). Agresti (2010) presented a comprehensive review on other

related regression models for ordinal responses.
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S2 Existing Methods for Handling Incomplete Ordi-

nal Responses

The PSA re-weighting method usually requires stronger assumptions on

the missing data mechanism such as the “covariate-dependent missingness”

(CDM) (Little (1995)): (δ ⊥ y) | x, which is a stronger version of MAR.

Under the CDM assumption, let ats(x) = Pr(δ1 = t, δ2 = s | x), t, s = 0, 1

be the “joint” propensity scores. This leads to the “marginal” propensity

scores P (δ1 = t | x) = at0 +at1 for t = 0, 1 and P (δ2 = s | x) = a0s+a1s for

s = 0, 1. Logistic regression models are commonly used for the “marginal”

and “joint” propensity scores:

logit
[
a10(x) + a11(x)

]
= h1(x;φ1), logit

[
a01(x) + a11(x)

]
= h2(x;φ2),

logit
[
a11(x)

]
= h3(x;φ3), (S2.1)

where h1, h2 and h3 are known functions with unknown parameters φ1, φ2

and φ3. Alternatively, we can consider ats(x) as probability mass functions

of a multinomial response with four categories and impose a multinomial

GLM through the baseline-category logit model:

log
[
a00(x)/a11(x)

]
= h1(x;φ1), log

[
a01(x)/a11(x)

]
= h2(x;φ2),

log
[
a10(x)/a11(x)

]
= h3(x;φ3), (S2.2)
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where we used the same notation h1, h2, h3 and φ1, φ2, φ3 as in (S2.1)

but they may have different forms under model (S2.2). Let âi,ts be ats(xi)

evaluated at the estimated parameters φ̂k, k = 1, 2, 3 from a chosen model.

The PSA estimators for the cell probabilities πrj are given by π̂psarj =

n−1
∑n

i=1 δi1δi2 â
−1
i,11I(yi1 = r, yi2 = j) and those for the marginal probabil-

ities πr+ are given by π̂psar+ = n−1
∑n

i=1 δi1(âi,10 + âi,11)
−1I(yi1 = r). The

association parameter γ can be estimated by

γ̂psa =
(
Cpsa −Dpsa

)
/
(
Cpsa +Dpsa

)
, (S2.3)

where Cpsa = 2
∑

r<k

∑
j<l π̂

psa
rj π̂

psa
kl and Dpsa = 2

∑
r<k

∑
j>l π̂

psa
rj π̂

psa
kl .

The SRMI method can be carried out through the following five steps:

(1) Specify a regression model for the ordinal response variable with smaller

rate of missing values (assuming it is y1) involving y1 and the fully ob-

served covariates x and a prior distribution for regression coefficients.

Draw imputed values of y1 from the posterior predictive distribution

for missing observations of y1.

(2) Specify a regression model for y2 with both x and y1 as covariates along

with a prior distribution for the regression coefficients. The imputed

values of y1 obtained from the previous step are treated as if they are

observed, and we generate imputed values for the missing observations
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of y2 based on the posterior predictive distribution. Steps (1) and (2)

generate an initial imputed data set.

(3) Specify a regression model for y1 with both x and y2 as covariates

along with a prior distribution for the regression coefficients. Update

the imputed values for y1 with draws from the posterior predictive

distribution based on the assumed model and the “complete” data set

obtained in the previous step, treating the imputed values for y2 as if

they are observed.

(4) Repeat Steps (2) and (3) for a pre-specified number of times or until

certain stability criterion is met to obtain the first imputed data set.

(5) Repeat Steps (1)-(4) to obtain multiple imputed data sets.

The SRMI method attempts to take into account of the correlation structure

of the multivariate responses through a sequence of conditional models. Sta-

tistical analysis of the multiple imputed data sets follows from the general

framework proposed by Rubin (1987), with standard methods applied to

each of the imputed data sets separately and final results obtained through

Rubin’s combining rule. The general procedure resembles the Markov Chain

Monte Carlo technique but the explicit relationship between the two and

theoretical properties of the method have yet to be developed (Kenward
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and Carpenter (2007)).

When one of the ordinal responses y1 and y2 serves as a predictor in

the regression model required for the SRMI method and also the proposed

method, there are two possible approaches: the first is to ignore the ordi-

nality and use dummy variables; the second is to assign proper scores to

each level and treat it as a regular discrete numeric variable. For most

applications, the dummy variable approach is preferable (Royston (2009)).

S3 Regularity Conditions and Proof of Theorem 3.2

We first present major results and regularity conditions on consistency and

asymptotic normality of the m-estimators. Theorem S.1 follows directly

from Theorem 2.1 and Lemma 2.4 in Newey and McFadden (1994). The-

orem S.2 is adapted from Theorem 5.41 in van der Vaart (2000).

Theorem S.1. Let (X1, ..., Xn) be an independent sample from some

distribution P and G(x;η) be a fixed vector-valued function with parameter

η taking values in the parameter space Θ. Denote

Ψ(η) = E
[
G(X;η)

]
and Ψn(η) =

1

n

n∑
i=1

G(Xi;η) .

Suppose that the following regularity conditions hold:

A1. Ψ(η) = 0 has a unique root at η0;
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A2. Θ is compact;

A3. G(X;η) is continuous at each η ∈ Θ with probability one;

A4. There exists H(x) such that |G(x;η)| ≤ H(x) for all η, and E[H(X)]

<∞.

Then the sequence of estimators η̂n satisfying Ψn(η̂n) = 0 converges to η0

in probability.

Theorem S.2. Suppose that, in addition to conditions A1-A4, the follow-

ing conditions also hold:

A5. η0 is an interior point of Θ;

A6. G(x;η) is twice continuously differentiable for every x;

A7. The second-order partial derivatives of G(x;η) satisfy∣∣∣∣∂2G(x;η)

∂ηi∂ηj

∣∣∣∣ ≤ G0(x)

for some integrable function G0(x) for every η in a neighbourhood of

η0;

A8. Ψ̇(η0) = E
[
∂G(X;η0)/∂η

]
exists and is non-singular.

Then

η̂n − η0 = −
[
Ψ̇(η0)

]−1 1

n

n∑
i=1

G(Xi;η0) + op
(
n−1/2

)
.
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We have shown that π̂firj is the solution to (3.16) and (θ̂1, θ̂2) is the

solution to (3.18). It follows that (π̂firj , θ̂1, θ̂2) can be viewed as the solution

to the joint estimating equations

0 =
n∑
i=1

Urj(yi, δi,xi; πrj,θ1,θ2) and 0 =
n∑
i=1

Sobs(yi, δi,xi;θ1,θ2).

Here Sobs(y, δ,x;θ1,θ2) is the score function derived from the observed

likelihood and hence can be easily shown to be unbiased estimating func-

tions. To show that Urj is also unbiased, we evaluate the expectation of Urj

at the true parameter values (πrj0,θ10,θ20), which leads to

E
[
Urj(y, δ,x; πrj0,θ10,θ20)

]
= E

{
E
[
Urj(y, δ,x; πrj0,θ10,θ20) | x

]}
= E

{
P (δ1 = 1, δ2 = 1 | y1 = r, y2 = j,x)P (y1 = r, y2 = j | x)

+P (δ1 = 1, δ2 = 0 | y1 = r,x)P (y2 = j | y1 = r,x)P (y1 = r | x)

+P (δ1 = 0, δ2 = 1 | y2 = j,x)P (y1 = r | y2 = j,x)P (y2 = j | x)

+P (δ1 = 0, δ2 = 0 | x)P (y1 = r, y2 = j | x)
}
− πrj0

= E
{
P (y1 = r, y2 = j | x)

}
− πrj0

= 0 .

Let θ = (θ′1,θ
′
2)
′, η = (πrj,θ

′)′ and G(y, δ,x;η) = (Urj(y, δ,x; πrj,θ),

S′obs(y, δ,x;θ))′. By Theorem S.1, the estimator π̂firj is consistent under
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regularity conditions A1-A4. If conditions A5-A8 also hold, by Theorem

S.2, we further conclude that

π̂firj − πrj0
θ̂ − θ0

 = −
[
Ψ̇(πrj0,θ0)

]−1n−1
∑n

i=1 Ui,rj(πrj0,θ0)

n−1
∑n

i=1 Si,obs(θ0)

+ op
(
n−1/2

)
,

(S3.1)

where θ0 = (θ′10,θ
′
20)
′, Ui,rj, Si,obs are functions Urj, Sobs evaluated at the

ith observation and

Ψ̇(πrj0,θ0) =

E[∂Urj/∂πrj] E[∂Urj/∂θ]

0 E[∂Sobs/∂θ]


πrj0,θ0

.

It is easy to see that E
[
∂Urj/∂πrj

]
= −1 and E[∂Sobs/∂θ]θ0

= −Iobs. To

find the expression for E[∂Urj/∂θ], we note that Urj given in (3.15) depends

on θ through W defined in (3.5). For the second term of Urj, we have

∂W ((y1, j), (1, 0),x;θ1,θ2)/∂θ = (0, ∂P (y2 = j | y1,x;θ2)/∂θ2)

= (0,S2(j, y1,x;θ2)P (y2 = j | y1,x;θ2)) .
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For the third term of Urj, we have

∂W ((r, y2), (0, 1),x;θ1,θ2)/∂θ

= ∂P (y1 = r | y2,x;θ)/∂θ

= P (y1 = r | y2,x;θ)
{
∂ log

[
P (y1 = r | y2,x;θ)

]
/∂θ

}

= P (y1 = r | y2,x;θ)

 S1(r,x;θ1)− E[S1(y1,x;θ1) | y2,x;θ1,θ2]

S2(y2, r,x;θ2)− E[S2(y2, y1,x;θ2) | y2,x;θ1,θ2]


′

,

where the last equation uses the conditional probability mass function of

y1 given y2 in (3.12). Similarly, for the fourth term of Urj, we have

∂W ((r, j), (0, 0),x;θ1,θ2)/∂θ = ∂P (y1 = r, y2 = j | x;θ)/∂θ

= P (y1 = r, y2 = j | x;θ)(S′1(r,x;θ1),S
′
2(j, r,x;θ1,θ2)).

After some tedious but straightforward algebra, it can be shown that

E
[
∂Urj/∂θ

]
θ0

= E
{
P (y1 = r, y2 = j | x;θ0)

[
S((r, j),x;θ0)− Sobs((r, j), δ,x;θ0)

]′}
= E

{
I(y1 = r, y2 = j)

[
S((r, j),x;θ0)− Sobs((r, j), δ,x;θ0)

]′}
= κrj ,

where S and Sobs are defined in Theorem 3.2. By the inverse formula for

block matrix, we have

−
[
Ψ̇(πrj0,θ0)

]−1
=

1 κrjI
−1
obs

0 I−1obs

 .
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The asymptotic variance of π̂firj follows from (S3.1) and the central limit

theorem. Extending the results to the vector parameters π̂fi is straightfor-

ward.

S4 Justification of the Bootstrap Variance Estimator

It suffices to show that the resulting estimator π̂(k) based on the kth boot-

strap sample is asymptotically equivalent to π̂fi. To see this, consider an in-

finite path of the response variables P =
{

(y1, δ1,x1), . . . , (yn, δn,xn), . . .
}

.

By the Strong Law of Large Numbers, the following two conditions hold for

almost all paths.

(i). n−1
n∑
i=1

◦
G(yi, δi,xi; η̂) −→ E

[ ◦
G(y, δ,x;η0)

]
,

(ii). n−1
n∑
i=1

G⊗2(yi, δi,xi; η̂) −→ E
[
G⊗2(y, δ,x;η0)

]
,

where
◦
G = ∂G/∂η, η̂ = (π̂rj, θ̂

′
1, θ̂

′
2) and η0 = (πrj0,θ

′
10,θ

′
20). Con-

ditional on one such path, the bootstrap samples form a triangular ar-

ray as shown in Table 1, where the nth row consists of n i.i.d. sam-

ples from the empirical distribution of the first n points in the path, i.e.,{
(y1, δ1,x1), . . . , (yn, δn,xn)

}
. It then follows that
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Table 1: The Triangular Array Formed by Bootstrap Samples

(ỹ
(k)
11 , δ̃

(k)
11 , x̃

(k)
11 )

(ỹ
(k)
21 , δ̃

(k)
21 , x̃

(k)
21 ) (ỹ

(k)
22 , δ̃

(k)
22 , x̃

(k)
22 )

...
...

(ỹ
(k)
n1 , δ̃

(k)
n1 , x̃

(k)
n1 ) (ỹ

(k)
n2 , δ̃

(k)
n2 , x̃

(k)
n2 ) · · · (ỹ

(k)
nn , δ̃

(k)
nn , x̃

(k)
nn )

...
...

...

E
{
G(ỹ

(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ; η̂) | P

}
= n−1

n∑
i=1

G(yi, δi,xi; η̂) = 0 ,

V ar
{
G(ỹ

(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ; η̂) | P

}
= n−1

n∑
i=1

G⊗2(yi, δi,xi; η̂) .

The bootstrap estimator η̂(k) = (π̂
(k)
rj , θ̂

(k)′

1 , θ̂
(k)′

2 ) solves the following esti-

mating equations

0 = n−1
n∑
i=1

G(ỹ
(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ;η) .

If we expand n−1
∑n

i=1G(ỹ
(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ; η̂(k)) around η̂, it is not difficult to

see that

η̂(k) − η̂ =

{
−n−1

n∑
i=1

◦
G(ỹ

(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ; η̂)

}−1{
n−1

n∑
i=1

G(ỹ
(k)
ni , δ̃

(k)
ni , x̃

(k)
ni ; η̂)

}

+ op(n
−1/2) .

By the Weak Law of Large Numbers and Central Limit Theorem for trian-

gular arrays and also condition (i) and (ii), following the same partitioning
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arguments as in Section S3, we show that

n1/2(π̂(k) − π̂fi) ∼N (0,Σfi) .

S5 Additional Plots of Power Functions of Tests

The power of a test is computed as the simulated rejection probability under

the given scenario. Plots of the power function for missing pattern 5221

are shown in Figures 1 and 2, corresponding to sample sizes at n = 200

and 500. Each plot shows the power functions of three different tests:

JFI_non, JFI_nul and SRMI. The first test uses the regular linearization

variance estimator without considering the null hypothesis; the second test

uses the linearization variance estimator under the null hypothesis (i.e.,

πrj = πr+π+j); the third test uses the regular point and variance estimators

for the SRMI method.
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Figure 1: Power Function with n = 200 and Pattern 5221
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Figure 2: Power Function with n = 500 and Pattern 5221


	Odds Ratios and Regression Models for Ordinal Responses
	Existing Methods for Handling Incomplete Ordinal Responses
	Regularity Conditions and Proof of Theorem 3.2
	Justification of the Bootstrap Variance Estimator
	Additional Plots of Power Functions of Tests

