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Abstract: In ultrahigh dimensional setting, independence screening has been both

theoretically and empirically proved a useful variable selection framework with low

computation cost. In this work, we propose a two-step framework using marginal

information in a different fashion than independence screening. In particular, we

retain significant variables rather than screening out irrelevant ones. The method

is shown to be model selection consistent in the ultrahigh dimensional linear re-

gression model. To improve the finite sample performance, we then introduce a

three-step version and characterize its asymptotic behavior. Simulations and data

analysis show advantages of our method over independence screening and its iter-

ative variants in certain regimes.
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1. Introduction

High-dimensional statistical learning has become increasingly important in

many scientific areas. It mainly deals with statistical estimation and prediction in

the setting where the dimensionality p is substantially larger than the sample size

n. An active philosophy of research imposes sparsity constraints on the model.

Under this framework, variable selection plays a crucial role in three aspects:

statistical accuracy, model interpretability, and computational complexity.

Various penalized maximum likelihood methods have been proposed in recent

years. Compared to traditional variable selection methods such as Akaike’s in-

formation criterion (Akaike (1974)) and Bayesian information criterion (Schwarz

(1978)), these regularization techniques in general aim to improve stability and

reduce computational cost. Examples include bridge regression (Frank and Fried-

man (1993)), Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)), the elas-

tic net (Zou and Hastie (2005)), adaptive Lasso (Zou (2006)), MC+ (Zhang

(2010)), among others. Theoretical results on parameter estimation (Knight and

Fu (2000)), model selection (Zhao and Yu (2006); Wainwright (2009)), predic-

tion (Greenshtein and Ritov (2004)) and oracle properties (Fan and Li (2001))

https://doi.org/10.5705/ss.202015.0413


388 WENG, FENG AND QIAO

have been developed under different model contexts. However, in the ultrahigh

dimensional setting, where log p = O(nξ) (ξ > 0), the conditions for model

selection/parameter estimation consistency associated with these techniques can

easily fail due to high correlations between important and unimportant variables.

Motivated by these concerns, Fan and Lv (2008) proposed a sure independence

screening (SIS) method in the linear regression setting. The SIS method has

been further extended to generalized linear models (Fan and Song (2010)), ad-

ditive models (Fan, Feng and Song (2011)), and model-free scenarios (Zhu et

al. (2011); Li et al. (2012); Li, Zhong and Zhu (2012)). The main idea of in-

dependence screening methods is to utilize marginal information to screen out

irrelevant variables. Fast computation and desirable statistical properties make

them more attractive in large scale problems. After independence screening,

other variable selection methods can be further applied to improve finite sample

performances.

Besides using independence screening, there is a rich literature on multi-step

variable selection methods. Examples include screen and clean (Wasserman and

Roeder (2009)), LOL (Kerkyacharian et al. (2009)), thresholded Lasso (Zhou

(2010)), stepwise regression method using orthogonal greedy algorithm (Ing and

Lai (2011)), sequential Lasso (Luo and Chen (2014)), UPS (Ji and Jin (2012))

and tilted correlation screening (Cho and Fryzlewicz (2012)).

In this paper, we consider variable selection consistency in the ultrahigh-

dimensional linear regression model and focus on the situations where there exist

signals with weak marginal correlations. Under these scenarios, independence

screening tends to either miss such signals or include many unimportant variables,

which undermines the variable selection performance. We propose a general two-

step framework in a different direction, in terms of how the marginal information

is used. The motivation for our method is that, instead of screening out noises, it

may be relatively easy to identify a subset of signals. Therefore, we use marginal

regression coefficient estimates to retain a set of important predictors in the first

step (called retention). In the second step (called regularization), we use penal-

ized least square by imposing regularization only on the variables not retained

in the retention step. In the theoretical development, we replace the assumption

on the lower bound of marginal information for important variables (Fan and Lv

(2008)) by an assumption on the upper bound of marginal information for irrel-

evant variables. From the practical point of view, a permutation-based method

is introduced to choose the threshold in the retention step. To enhance the finite

sample performance, we also introduce a three-step version to eliminate unim-
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portant variables falsely selected during the retention step. We further derive its

selection consistency result as a generalization from the two-step method. Our

main contribution is to provide an alternative way to conduct high dimensional

variable selection, especially in the cases where independence screening tends to

fail. We characterize our method by asymptotic analysis. As a by-product, we

also give theoretical comparison between Lasso and our method, to demonstrate

its improvement over Lasso, under certain regularity conditions.

The rest of the paper is organized as follows. We introduce the model setup

and review the techniques of Lasso and independence screening in Section 2. In

Section 3, after introducing the two-step framework with its asymptotic prop-

erties delineated, we also propose a three-step version along with its associated

theory. Simulation examples and data analysis are presented in Section 4. We

conclude the paper with a short discussion in Section 5. All proofs and some

additional simulation results are collected in the online supplementary materials.

2. Model Setup and Relevant Variable Selection Techniques

In this section, the model setup is introduced and two related model selection

methods, Lasso and independence screening, are reviewed.

2.1. Model setup and notations

Let V1, . . . , Vn be independently and identically distributed random vectors,

where Vi = (XT
i , Yi)

T , following the linear regression model

Yi = XT
i β + εi, i = 1, . . . , n,

where Xi = (X1
i , . . . , X

p
i )T is a p-dimensional vector distributed as N(0,Σ),

β = (β1, . . . , βp)
T is the true coefficient vector, ε1, . . . , εn are independently and

identically distributed as N(0, σ2), and {Xi}ni=1 are independent of {εi}ni=1. De-

note the support index set of β by S = {j : βj 6= 0} and the cardinality of S by s.

For any set A, let Ac be its complement set. For any k-dimensional vector w and

any subset K ⊆ {1, . . . , k}, wK denotes the subvector of w indexed by K, and let

‖w‖1 =
∑k

i=1 |wi|, ‖w‖2 = (
∑k

i=1w
2
i )

1/2, ‖w‖∞ = maxi=1,...,k |wi|. For any k1×k2
matrix M , and any subsets K1 ⊆ {1, . . . , k1} and K2 ⊆ {1, . . . , k2},MK1K2

repre-

sents the submatrix of M consisting of entries indexed by the Cartesian product

K1×K2. Let MK2
be the columns of M indexed by K2 and M j be the jth column

of M . Let ‖M‖2 = {Λmax(MTM)}1/2 and ‖M‖∞ = maxi=1,...,k1

∑k2
j=1 |Mij |.

When k1 = k2 = k, let ρ(M) = maxi=1,...,k Mii, Λmin(M) and Λmax(M) be

the minimum and maximum eigenvalues of M respectively, and ΣSc|S = ΣScSc−
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ΣScS(ΣSS)−1ΣSSc .

In the ultrahigh-dimensional scenario, assuming β is sparse, we are inter-

ested in recovering the sparsity pattern S of β. For technical convenience, we

consider a stronger result called sign consistency (Zhao and Yu (2006)), namely

pr(sign(β̂) = sign(β))→ 1, as n→∞, where sign(·) maps positive numbers to 1,

negative numbers to −1 and zero to zero. In asymptotic analysis, we denote the

sparsity level by sn and dimension by pn to allow them to grow with the number

of observations. For conciseness, we sometimes use signals and noises to rep-

resent relevant predictors S and irrelevant predictors Sc or their corresponding

coefficients, respectively.

2.2. Lasso in random design

The least absolute shrinkage and selection operator (aka Lasso) (Tibshirani

(1996)) solves

β̂ = arg min
β

{
(2n)−1

n∑
i=1

(Yi −XT
i β)2 + λn

p∑
j=1

|βj |

}
.

For fixed design, model selection consistency has been well studied in Zhao and

Yu (2006) and Wainwright (2009). They characterized the dependency between

relevant and irrelevant predictors by an irrepresentable condition, which proved

to be both sufficient and (almost) necessary for sign consistency. For random

design, Wainwright (2009) established precise sufficient and necessary conditions

on (n, pn, sn) for sparse recovery. We state a corollary from his general results

with a particular scaling of the triplet for further use in the sequel. Here are

some key conditions.

Condition 0. log pn = O(na1), sn = O(na2), a1 > 0, a2 > 0, a1 + 2a2 < 1.

Condition 1. Λmin(ΣSS) ≥ Cmin > 0.

Condition 2. ‖ΣScS(ΣSS)−1‖∞ ≤ 1− γ, γ ∈ (0, 1].

Condition 3. ρ(ΣSc|S) = o(nδ), 0 < δ < 1− a1 − 2a2.

Condition 4. minj∈S |βj | ≥ Cn(δ+a1+2a2−1)/2 for a sufficient large C, where

δ is the same as in Condition 3.

Condition 2 is the population analog of the irrepresentable condition in Zhao

and Yu (2006), in which (ΣSS)−1ΣSSc is the regression coefficient matrix by re-

gressing noises on signals. Hence, ‖ΣScS(ΣSS)−1‖∞ can be viewed as a reasonable

measurement of the dependency between signals and noises. In the ultrahigh di-

mensional scenario, noises are likely to be highly correlated with signals, which

could make this condition fail. To relax this condition, the corresponding matrix
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in the regularization step for our method (to be formally defined in Section 3) is

a submatrix of ΣScS(ΣSS)−1 with a fewer number of columns. As a result, the

corresponding quantity in Condition 2 is reduced. In Condition 3, ΣSc|S is the

conditional covariance matrix of XSc given XS . This condition imposes another

kind of eigenvalue-type dependency constraint. In addition to the dependency

conditions between signals and noises, the signals should be linearly independent

and the minimum signal cannot decay too fast, as shown by Conditions 1 and 4,

respectively.

Proposition 1. Under the scaling specified in Condition 0, if the covariance

matrix Σ and the true parameter β satisfy Conditions 1-4, and sn →∞, pn−sn →
∞, λn � n(δ+a1−1)/2, we have the sign consistency

pr(β̂ is unique, and sign(β̂) = sign(β))→ 1 as n→∞.

2.3. Independence screening

Sure independence screening was proposed by Fan and Lv (2008) in the

linear regression model framework. It conducts variable selection according to

magnitude of marginal correlations. Specifically, assume that the columns in the

design matrix X = (X1, . . . , Xpn) have been standardized with mean zero and

variance one. Denote the response vector Y = (Y1, . . . , Yn)T and the rescaled

sample correlation between each predictor Xj and Y by β̂Mj = Y TXj (1 ≤ j ≤
pn). Then the selected submodel by sure independence screening is

M̂dn = {1 ≤ j ≤ pn : |β̂Mj | belongs to the dn largest values} ,

where dn is a positive integer smaller than n. This simple procedure turns

out to enjoy the sure screening property as reviewed below. Consider log pn =

O(na), a ∈ (0, 1− 2κ), where 0 < κ < 1/2. Under the conditions

var(Yi) = O(1), Λmax(Σ) = O(nτ ), minj∈S |βj | ≥ cn−κ, τ ≥ 0,

minj∈S |cov(β−1j Y1, X
j
1)| ≥ c > 0, (2.1)

Fan and Lv (2008) showed that if 2κ+τ < 1, then there exists some θ ∈ (2κ+τ, 1)

such that for dn � nθ, we have for some C > 0,

pr(S ⊆ M̂dn) = 1−O
(
pn exp

(
−Cn1−2κ

log n

))
.

The condition in (2.1) imposes a lower bound for magnitudes of the marginal

correlations between response and signals. If, as in some cases, signals are

marginally uncorrelated with the response, then this condition is not satisfied.

Although Fan and Lv (2008) introduced an iterative version to overcome this
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issue, the associated theoretical property is not known. We drop this assumption

and focus instead on the situation where the marginal correlations between noises

and the response are not large.

3. Method and Theory

3.1. The new two-step estimator

In this section, we propose a two-step method named regularization after

retention (RAR). In the first step, we use marginal information to retain impor-

tant signals, and, in the second step, we conduct a penalized least square with

penalty imposed only on the variables not retained in the first step.

Step 1. (Retention) Calculate the marginal regression coefficient estimate

for each predictor,

β̂Mj =

∑n
i=1(X

j
i − X̄j)Yi∑n

i=1(X
j
i − X̄j)2

(1 ≤ j ≤ p),

where X̄j = n−1
∑n

i=1X
j
i . Then define a retention set by R̂ = {1 ≤ j ≤ p :

|β̂Mj | ≥ γn}, for a positive constant γn.

Step 2. (Regularization) The final estimator is

β̌ = arg min
β

(2n)−1
n∑
i=1

(Yi −XT
i β)2 + λn

∑
j∈R̂c

|βj |

 .

The difference between the retention step and independence screening is

that independence screening aims at screening out as many noises as possible,

while the retention step tries to detect and retain as many signals as possible.

The threshold γn needs to be chosen carefully so that no noise is retained. In

the desired situation when R̂ ⊆ S, meaning all the variables in R̂ are signals,

one only needs to impose sparsity on R̂c to recover the entire sparsity pattern.

The advantage is that the estimation accuracy of βR̂ is not compromised due to

regularization.

Moreover, it turns out that this well-learned information can relax the consis-

tency conditions of Lasso. On the other hand, we need extra regularity conditions

to guarantee R̂ ⊆ S with high probability. We will show that, under the scaling

log pn = O(nξ) (ξ > 0), our estimator β̌ achieves sign consistency. The two steps

will be studied separately in Section 3.2 and Section 3.3.

3.2. Asymptotics in the retention step

Let the marginal regression coefficients βMj = cov(Xj
1 , Y1). For simplicity,
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we assume the covariance matrix Σ for X1 has unit diagonal elements and the

variance of random error is σ2 = 1.

Condition 5. ‖Σβ‖∞ = O(n(1−2κ)/8), where 0 < κ < 1/2 is a constant.

Condition 6. βTSΣSSβS = O(1).

Proposition 2. Under Conditions 5 and 6, we have for any c∗ > 0, there exists

c2 > 0, with

pr

(
max

1≤j≤pn
|β̂Mj − βMj | > c∗n

−κ
)

= O
(
pn exp(−c2n(1−2κ)/4)

)
. (3.1)

The essential part of the proof for Proposition 2 follows the exponential

inequality for the quasi-maximum likelihood estimator in Fan and Song (2010).

Condition 5 puts an upper bound on the maximum marginal correlation between

covariates and the response, and is a technical condition required to achieve

the convergence rate in (3.1). Condition 6 bounds var(Y1) as in Fan and Lv

(2008) and Fan and Song (2010). The rationale for this condition is as follows.

Imagine that we would like to study the relationship between blood pressure

(Y1, Y2, . . . , Yn) of n patients using gene expression data Xn×p. As n increases,

we are measuring more gene expression predictors (p increases) and the number

of important predictors sn also increases. However, the distribution of blood

pressure remains unchanged, which actually puts an implicit restriction on the

overall contribution of the sn important predictors (βTSΣSSβS), asymptotically.

Proposition 2 provides a uniform concentration result for the marginal coefficient

estimates and it leads to a desirable property of R̂ when the retention threshold

is chosen properly.

Corollary 1. Let ζn = ‖ΣScSβS‖∞ and c1 be a positive constant. Under Condi-

tions 5-6, and when the threshold γn = ζn + c1n
−κ, there exists a constant c3 > 0

so that

pr(R̂ ⊆ S) = 1−O
(
pn exp(−c3n(1−2κ)/4)

)
. (3.2)

Here, ζn is the maximum magnitude of the covariances between noises and

the response, which may change as sn increases. The choice of the threshold γn
is essential for sure retention.

Equation (3.2) may not be informative if the threshold γn is set too high so

that R̂ is an empty set. Before quantifying how large R̂ is, define the marginal

strong signal set R = {j ∈ S : |βMj | > ζn+2c1n
−κ}. On the set {max1≤j≤pn |β̂Mj −

βMj | ≤ c1n
−κ}, we have {|βMj | > ζn + 2c1n

−κ} ⊆ {|β̂Mj | > ζn + c1n
−κ} holds for

any j. Thus,

pr(R ⊆ R̂) ≥ 1−O
(
pn exp(−c3n(1−2κ)/4)

)
. (3.3)
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Equation (3.3) indicates that our retention set R̂ contains the marginal strong

signal set R with high probability when the dimensionality pn satisfies log pn =

o(n(1−2κ)/4). It will be clear from the conditions in the next subsection that the

size of R plays an important role in achieving sign consistency for β̌.

3.3. Sign consistency in the regularization step

In the retention step, we can detect part of signals with high probability,

including the marginally strong signal set R. Incorporating this information into

the regularization step, not penalizing the retained signals, we can show that the

sign consistency of `1 regularized least square holds under weaker conditions.

Condition 7. log pn = O(na1), sn = O(na2), where 0 < a1 < (1− 2κ)/4 with

κ the same as in Condition 5, a2 > 0, and max(a1, a2) + a2 < 1.

Condition 8. Λmin(ΣSS) ≥ Cmin > 0.

Condition 9. ‖{ΣScS(ΣSS)−1}S∩Rc‖∞ ≤ 1− γ, γ ∈ (0, 1].

Condition 10. minj∈S |βj | ≥ Cn−δ+a2/2 for a sufficient large C, where 0 <

δ < {1−max(a1, a2)}/2.

Theorem 1. Under Conditions 5-10, if sn → ∞ and λn � n−δ, our two-step

estimator β̌ achieves sign consistency,

pr(β̌ is unique and, sign(β̌) = sign(β))→ 1, as n→∞.

As can be seen in the supplement, our proof uses the techniques of the proof

in Wainwright (2009). Conditions 8-10 are similar to Conditions 1-4. The key

difference is to prove that with high probability, the estimator in the second step

recovers the signs when S1 is not penalized, uniformly for all sets S1 satisfying

R ⊆ S1 ⊆ S. Since the retention set R̂ in the first step satisfies R ⊆ R̂ ⊆ S with

high probability from Corollary 1 and (3.3), the final two-step estimator achieves

sign consistency.

Condition 9 is a weaker version of Condition 2. Each row of ΣScSΣ−1SS can

be regarded as the regression coefficients (population version) by regressing the

corresponding noise on signals. Thus, Condition 2 requires that for each noise,

the sum of the absolute values of its regression coefficients is less than 1− γ. In

contrast, the corresponding sum in Condition 9 excludes coefficients correspond-

ing to the retained signals. As a result, we allow larger regression coefficients for

the retained signals. As regression coefficients measure the dependency between

response and regressors, our method allows stronger dependency between noises

and the retained signals. How much we gain by conducting the first step largely

depends on the size of the strong signal set R. The larger R is, the greater
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improvement our method can make over Lasso.

3.4. The redemption in the third step

The success of RAR depends heavily on the quality of retained variables in

the retention step. If the retention set contains noise variables, those variables

remain in the final model selected by RAR since they are not penalized in the

second step. This could happen if the threshold for retention is chosen too small.

To improve the robustness towards the choice of the threshold and the finite

sample performance of our procedure, we propose to add one extra step, the

redemption step, aiming to remove these falsely retained variables. In addition,

we study the theoretical property of the three-step procedure.

Denote by Q the additional signals detected in the regularization step, Q =

{j ∈ R̂c : β̌j 6= 0}.
Step 3. (Redemption) Calculate the penalized least square problem

β̃ = arg min
β(R̂∪Q)c=0

(2n)−1
n∑
i=1

(
Yi −

∑
j∈R̂

Xijβj −
∑
k∈Q

Xikβk

)2

+ λ∗n
∑
j∈R̂

|βj |

 ,

where λ∗n is the penalty parameter, which is in general different from λn in the

second step.

The idea is to regularize only the coefficients in the retained set R̂ while keeping

the signals identified in Q. Note that variables not selected in the regularization

step are no longer considered (that is, β̃(R̂∪Q)c = 0). Therefore, the redemption

step has a much lower effective parameter dimension than the regularization

step, and has little extra computational cost. The three-step estimator β̃ is

called regularization after retention plus (RAR+).

Under certain regularity conditions, the three-step estimator β̃ achieves sign

consistency. To this end, we define a strong noise set Z = {j ∈ Sc : |βMj | ≥
γn− c1n−κ} with its cardinality zn. The strong signal set is R = {j ∈ S : |βMj | ≥
γn + c1n

−κ}.
Condition 11. Λmin(ΣS∪Z,S∪Z) ≥ Cmin > 0.

Condition 12. maxS⊂Q⊂S∪Z‖{ΣQcQ(ΣQQ)−1}S∩Rc‖∞ ≤ 1− γ, where γ > 0.

Condition 13. ‖ΣZSΣ−1SS‖∞ ≤ 1− α, where α > 0.

Theorem 2. Under Conditions 5-7 and 10-13, if zn/sn → 0, sn → ∞ and

λn � n−δ, λ∗n � n−δ, the three-step estimator β̃ achieves sign consistency,

pr(β̃ is unique and sign(β̃) = sign(β))→ 1, as n→∞.

Compared with Theorem 1, the strong noise set Z appears in Conditions 11-
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13. Theorem 2 is a generalization of Theorem 1 in the sense that if Z is empty,

Theorem 2 reduces to Theorem 1. It provides a justification for RAR+ under a

flexible choice of the threshold for retention; different choices of the threshold can

lead to different Z’s. RAR+ is able to tolerate false retention at a level quantified

by Conditions 11-13, which essentially require the possible noises selected in the

retention step cannot be highly correlated with the signals. We demonstrate the

improvement of RAR+ over RAR, regarding the robustness towards the choice

of the threshold, using simulation studies in Section 4.1.

3.5. Connections to SIS-Lasso and adaptive Lasso

In this section, we highlight the connections of RAR with sure independence

screening followed by Lasso (SIS-lasso) and the adaptive Lasso method (Ada-

lasso). In the first step, both RAR and SIS-lasso calculate and rank the marginal

regression coefficient estimates. In the second step, the estimator for RAR can

be written as

β̌ = arg min
β

(2n)−1
n∑
i=1

(Yi −XT
i β)2 + 0

∑
j∈R̂

|βj |+ λn
∑
j∈R̂c

|βj |

 , (3.4)

while the estimator for SIS-lasso is

arg min
β

(2n)−1
n∑
i=1

(Yi −XT
i β)2 + λn

∑
j∈Ŝ

|βj |+∞
∑
j∈Ŝc

|βj |

 , (3.5)

where Ŝc is the set of the screened-out variables in Step 1 of SIS-lasso.

Both methods relax the consistency condition of Lasso ‖ΣScSΣ−1SS‖∞ ≤ 1−γ:

SIS-lasso reduces ‖ΣScSΣ−1SS‖∞ by removing rows of ΣScSΣ−1SS corresponding to

the screened-out noises; RAR reduces ‖ΣScSΣ−1SS‖∞ by removing columns of

ΣScSΣ−1SS corresponding to the retained signals. Although the number of re-

moved rows by SIS is typically larger than that of removed columns by RAR, it

does not necessarily mean that the amount of reduction by SIS is greater than

that by RAR. For example, if there exist signals highly correlated to noises (sce-

nario 1(A) in Section 4.1), retaining signals with the largest marginal correlations

substantially decreases ‖ΣScSΣ−1SS‖∞, while removing noises with small marginal

correlations does not change ‖ΣScSΣ−1SS‖∞ at all.

(3.4) and (3.5) lead to a natural comparison with the adaptive Lasso (Zou

(2006)) estimator:
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arg min
β

(2n)−1
n∑
i=1

(Yi −XT
i β)2 + λn

p∑
j=1

wj |βj |

 , (3.6)

where the weight wj is usually chosen as 1/|βj,init|γ for some γ > 0 using an

initial estimator βj,init. For fixed design, Zou (2006) proved that the adaptive

Lasso estimator achieves variable selection consistency under very mild condi-

tions when p is fixed. In the high-dimensional regime, Huang, Ma and Zhang

(2008) showed variable selection consistency with wj = 1/|β̂Mj | under the par-

tial orthogonality condition, signals weakly correlated to noises. A more general

theoretical treatment is given in Zhou, Van de geer and Buhlmann (2009) under

the restricted eigenvalue conditions (Bickel, Ritov and Tsybakov (2009)) for both

fixed and random designs.

All of (3.4), (3.5) and (3.6) aim at improving Lasso by adaptively adjusting

the penalty level for each predictor. The major difference between (3.4)-(3.5) and

(3.6) is that (3.6) uses “soft” weights while both (3.4) and (3.5) use “thresholded”

weights. For (3.6), it is possible that there exists βj,init ≈ 0 for some signal j

with small marginal correlation, leading to a very large weight for that variable,

which makes the consistent selection difficult. Due to the specific thresholding

choices, a similar observation can be found for (3.5). In contrast, (3.4) can still

succeed in sparse recovery for such a difficult case. Extensive simulation studies

for comparing RAR, SIS-lasso, and adaptive Lasso are conducted in Section 4.1.

3.6. A permutation method for choosing the retention threshold

Theorems 1 and 2 provide a theoretical guideline for choosing the retention

threshold γn, which depends on some unknown parameters. In practice, we pro-

pose to select γn by a permutation-based method. Denote m randomly permuted

response vectors by Y (1), . . . , Y (m), and let the marginal regression coefficients

from the permuted data be

Dj
k =

∑n
i=1(X

j
i − X̄j)Y

(k)
i∑n

i=1(X
j
i − X̄j)2

, 1 ≤ j ≤ p, 1 ≤ k ≤ m.

We set the tentative threshold γn = maxk,j |Dj
k|. Intuitively, if noises are not

strongly correlated with response, the maximum absolute value of marginal re-

gression coefficients from permutation should be a reasonable threshold. If this

tentative threshold leads to a retention set with size larger than dn1/2e, we then

retain only the top dn1/2e variables with the largest magnitudes of the marginal

coefficients |β̂Mj |. This ensures that there are at most dn1/2e variables not penal-
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ized in the second step. It is necessary to impose an upper bound on the retention

set size since the predictors in the retention set are not regularized during the

second step. We will show in the next section that the permutation method with

the size upper bound dn1/2e works well in a range of simulation settings.

4. Numerical Studies

In this section, we compare the performance of RAR and RAR+ with some

popular variable selection methods on an array of simulated examples and a

data set. To demonstrate the flexibility of our proposed framework, we also

investigate modified versions of RAR and RAR+, denoted by RAR(MC+) and

RAR+(MC+), in the way of replacing the `1 penalty by the nonconvex penalty

MC+.

4.1. Simulations

We compared the variable selection performances of Lasso, SCAD, MC+,

Ada-lasso, SIS-lasso, SIS-MC+, iterative sure independence screening (ISIS-lasso,

ISIS-MC+), screen and clean (SC-lasso, SC-forward, SC-marginal), RAR, RAR+,

RAR(MC+) and RAR+(MC+) in the ultrahigh-dimensional linear regression

setting. We set n = 100, 200, 300, 400, 500 and pn = b100 exp(n0.2)c, where bkc
is the largest integer not exceeding k. The number of repetitions was 200 for

each triplet (n, sn, pn). We calculated the proportion of exact sign recovery. All

the Lasso procedures were implemented using the R package glmnet (Friedman,

Hastie and Tibshirani (2010)). SCAD and MC+ were implemented using the R

package ncvreg (Breheny and Huang (2011)).

Since data-driven methods for tuning parameter selection introduce extra

randomness into the entire variable selection process, we report the oracle per-

formance of each method for fair comparison. Specifically, for Lasso, SCAD,

MC+, Ada-lasso, the regularization steps of SIS-lasso, SIS-MC+, RAR, RAR+,

RAR(MC+) and RAR+(MC+), the cleaning stage of SC-lasso, SC-forward and

SC-marginal (with significance level as a tuning parameter), we checked if there

was at least one estimator with exact sign recovery on the solution path. For

SIS-lasso, SIS-MC+, ISIS-lasso and ISIS-MC+, we selected the top bn/ log nc
variables with the largest absolute marginal correlation in the first step. For Ada-

lasso, following Huang, Ma and Zhang (2008), we chose the weights wj = 1/|β̂Mj |.
For RAR(MC+) and RAR+(MC+), we fixed the concavity parameter γ = 1.5

and computed the solution path by only varying the penalty parameter λ. We

considered different simulation settings.
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Table 1. Sign recovery proportion over 200 simulation rounds.

Scenario 1 (A) (100, 1,232) (200, 1,791) (300, 2,285) (400, 2,750) (500, 3,199)
Lasso 0.000 0.000 0.050 0.205 0.545
SCAD 0.000 0.010 0.120 0.495 0.815
MC+ 0.000 0.235 0.640 0.895 0.990
SIS-lasso 0.000 0.000 0.000 0.030 0.010
ISIS-lasso 0.000 0.000 0.040 0.185 0.500
Ada-lasso 0.000 0.000 0.000 0.025 0.030
SIS-MC+ 0.000 0.000 0.000 0.045 0.015
ISIS-MC+ 0.000 0.040 0.305 0.610 0.875
SC-lasso 0.000 0.000 0.005 0.040 0.150
SC-forward 0.000 0.000 0.010 0.120 0.390
SC-marginal 0.000 0.000 0.000 0.000 0.000
RAR1 0.010 0.170 0.395 0.395 0.295
RAR5 0.000 0.315 0.630 0.700 0.600
RAR30 0.005 0.255 0.750 0.875 0.835
RAR(MC+)30 0.000 0.280 0.750 0.880 0.840
RAR+1 0.020 0.460 0.925 0.990 1.000
RAR+5 0.000 0.415 0.880 0.975 0.995
RAR+30 0.005 0.280 0.780 0.965 0.990
RAR+(MC+)30 0.000 0.290 0.770 0.965 0.995
Scenario 1 (B) (100, 1,232) (200, 1,791) (300, 2,285) (400, 2,750) (500, 3,199)
Lasso 0.000 0.000 0.135 0.580 0.855
SCAD 0.000 0.140 0.815 0.990 0.995
MC+ 0.055 0.805 1.000 1.000 1.000
SIS-lasso 0.000 0.000 0.010 0.140 0.270
ISIS-lasso 0.000 0.000 0.110 0.575 0.850
Ada-lasso 0.000 0.015 0.190 0.370 0.455
SIS-MC+ 0.000 0.050 0.165 0.235 0.350
ISIS-MC+ 0.025 0.585 0.960 1.000 1.000
SC-lasso 0.000 0.000 0.020 0.275 0.680
SC-forward 0.000 0.005 0.125 0.650 0.910
SC-marginal 0.000 0.010 0.010 0.020 0.020
RAR1 0.130 0.025 0.010 0.000 0.000
RAR5 0.190 0.105 0.030 0.000 0.000
RAR30 0.160 0.250 0.055 0.005 0.000
RAR(MC+)30 0.195 0.250 0.055 0.005 0.000
RAR+1 0.195 0.855 0.980 0.980 0.985
RAR+5 0.255 0.885 0.995 1.000 0.995
RAR+30 0.205 0.925 0.995 1.000 1.000
RAR+(MC+)30 0.290 0.965 1.000 1.000 1.000
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Table 2. Sign recovery proportion over 200 simulation rounds.

Scenario 2 (C) (100, 1,232) (200, 1,791) (300, 2,285) (400, 2,750) (500, 3,199)
Lasso 0.000 0.000 0.000 0.000 0.025
SCAD 0.000 0.020 0.110 0.355 0.615
MC+ 0.025 0.325 0.775 0.955 1.000
SIS-lasso 0.000 0.000 0.000 0.000 0.005
ISIS-lasso 0.000 0.000 0.000 0.005 0.020
Ada-lasso 0.000 0.000 0.000 0.000 0.005
SIS-MC+ 0.000 0.000 0.005 0.000 0.035
ISIS-MC+ 0.000 0.020 0.145 0.410 0.740
SC-lasso 0.000 0.000 0.000 0.000 0.015
SC-forward 0.005 0.025 0.175 0.495 0.730
SC-marginal 0.005 0.000 0.005 0.000 0.000
RAR1 0.000 0.120 0.335 0.340 0.245
RAR5 0.000 0.195 0.550 0.585 0.490
RAR30 0.000 0.175 0.635 0.720 0.775
RAR(MC+)30 0.025 0.340 0.745 0.760 0.785
RAR+1 0.000 0.275 0.770 0.905 0.960
RAR+5 0.000 0.245 0.785 0.920 0.980
RAR+30 0.000 0.180 0.675 0.905 0.975
RAR+(MC+)30 0.025 0.355 0.805 0.965 1.000
Scenario 2 (D) (100, 1,232) (200, 1,791) (300, 2,285) (400, 2,750) (500, 3,199)
Lasso 0.000 0.000 0.000 0.000 0.000
SCAD 0.000 0.040 0.205 0.470 0.680
MC+ 0.055 0.470 0.725 0.885 0.975
SIS-lasso 0.000 0.000 0.000 0.000 0.000
ISIS-lasso 0.000 0.000 0.005 0.035 0.055
Ada-lasso 0.000 0.000 0.000 0.000 0.000
SIS-MC+ 0.000 0.000 0.025 0.020 0.085
ISIS-MC+ 0.010 0.115 0.415 0.655 0.830
SC-lasso 0.000 0.000 0.000 0.015 0.045
SC-forward 0.000 0.090 0.370 0.570 0.690
SC-marginal 0.000 0.000 0.005 0.010 0.000
RAR1 0.025 0.110 0.050 0.005 0.000
RAR5 0.015 0.195 0.095 0.020 0.010
RAR30 0.000 0.230 0.190 0.060 0.010
RAR(MC+)30 0.045 0.345 0.205 0.060 0.010
RAR+1 0.035 0.270 0.620 0.830 0.930
RAR+5 0.015 0.290 0.625 0.830 0.935
RAR+30 0.000 0.265 0.595 0.820 0.935
RAR+(MC+)30 0.050 0.505 0.880 0.960 1.000
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Scenario 1. The covariance matrix Σ is

Σ =

(
Σ11 0

0 I

)
, where Σ11 = (1− r)I + rJ ∈ R2sn×2sn ,

in which I is the identity matrix and J is the matrix of all 1s.

(A). r = 0.6, σ = 3.5, sn = 4, βS = (3,−2, 2,−2)T , β = (βTS , 0
T
p−4)

T . The abso-

lute correlations between response and predictors are (0.390, 0.043, 0.304,

0.043, 0.130, 0.130, 0.130, 0.130, 0, 0, . . . )T .

(B). r = 0.6, σ = 1.2, sn = 5, βS = (1, 1,−1, 1,−1)T , β = (βTS , 0
T
p−5)

T . The

absolute correlations between response and predictors are (0.498, 0.498,

0.100, 0.498, 0.100, 0.299, 0.299, 0.299, 0.299, 0.299, 0, 0, . . . )T .

Scenario 2. The covariance matrix Σ is

Σ =

(
Σ11 0

0 I

)
, where Σ11 =


1 r0 r1 r3
r0 1 r2 r4
r1 r2 1 0

r3 r4 0 1

 .

(C). r0 = 0.8, r1 = −r2 = r3 = −r4 = −0.1, σ = 2.5, sn = 2, βS = (2.5,−2)T , β =

(βTS , 0
T
p−2)

T . The absolute correlations between response and predictors are

(0.309, 0.000, 0.154, 0.154, 0, 0, . . . )T .

(D). r0 = 0.75, r1 = r2 = r3 = −r4 = 0.2, σ = 2.5, sn = 2, βS = (2.5,−2)T , β =

(βTS , 0
T
p−2)

T . The absolute correlations between response and predictors are

(0.333, 0.0417, 0.033, 0.300, 0, 0, . . . )T .

The simulation results are shown in Tables 1 and 2 in which the (n, pn) pair

sequence is listed on the top row of each scenario in the Tables. The subscript for

RAR, RAR+, RAR(MC+) and RAR+(MC+) in the tables denotes the number

of permutations in the retention step. For RAR(MC+) and RAR+(MC+), we

only show the results with 30 permutations while noting that their improvement

over RAR and RAR+, respectively, is insensitive to the permutation numbers.

For Scenario 1, SIS-lasso fails to recover the sparsity pattern in both 1(A) and

1(B), due to that some signals and noises have correlations in similar magnitude

with the response. ISIS-lasso substantially improves the performance of SIS-lasso

and has similar performance as Lasso. A possible reason why it does not show

clear advantage over Lasso is that the discrete stochastic process of the iterative

algorithm may induce too much randomness. Ada-lasso is outperformed by Lasso
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for both 1(A) and 1(B), with a possible reason being that the weights are close to

infinity for signals with small marginal correlation. Both RAR and RAR+ work

very well in 1(A). For 1(B), RAR fails, there are noises with very large marginal

correlation, while RAR+ still has competitive performance. It is clear from

Table 1 that the performance of RAR+ is more stable than that of RAR when

the number of permutations changes, agreeing with the results in Theorem 2. In

addition, RAR+ with any number of permutations provides better performance

than any non-RAR methods in both 1(A) and 1(B) across almost all (n, pn) pairs.

The non-convex methods (SCAD and MC+) outperform Lasso. Accordingly,

RAR(MC+) and RAR+(MC+) typically have better performance than RAR

and RAR+, respectively. Similar phenomena can be observed regarding the

comparison of SIS-lasso v.s. SIS-MC+ and ISIS-lasso v.s. ISIS-MC+. Moreover,

the performance of screen and clean is inferior to that of RAR+ for all three

versions considered. This is possibly because the approach splits the data into

three parts and uses different parts for screen and clean, hence the sample size

in each step is significantly reduced, leading to the loss of power for detecting

signals (see Wasserman and Roeder (2009) for the detailed implementation).

We designed Scenario 2 to be more challenging for Lasso to have sign con-

sistency. For both 2(C) and 2(D), Lasso, SIS-lasso, ISIS-lasso, and Ada-lasso

all perform poorly. In contrast, RAR and RAR+ have similar performances

as Scenario 1. An interesting observation is that MC+ outperforms the RAR+,

probably due to that the `1 penalized step, embedded in the procedure of RAR+,

could be harmed by the high correlation among covariates. As expected, by us-

ing the MC+ penalty in the regularization step, RAR+(MC+) further improves

both RAR+ and MC+. As in Scenario 1, RAR+ outperforms the screen and

clean approach.

To provide a more comprehensive comparison between different methods, we

also calculated the oracle relative estimation error (the smallest relative estima-

tion error of all estimators on the solution path) ‖β̂ − β‖2/‖β‖2 for estimator

β̂ and its corresponding model size ‖β̂‖0 for all scenarios. We observe that

RAR+(MC+) has the smallest oracle estimation error with model size closest

to the true model size in most cases. For some settings when the sample size

is small, the one-step methods including SCAD and MC+ have smaller oracle

estimation error than RAR+(MC+), but they usually have a much larger model

size than the truth. The detailed results for all four scenarios can be found in

Tables 3-10 of the supplementary material.
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Table 3. Average prediction mean square error and the average model size over 200 rep-
etitions. The standard deviations of the error or model size are enclosed in parentheses.
“Usize” denotes the size of the union of the selected variables across the 200 repetitions.

Lasso Ada-lasso SCAD MC+
Error 0.72 (0.34) 0.70 (0.29) 0.73 (0.35) 0.75 (0.37)
Size 63.0 (19.18) 72.5 (37.58) 53.6 (11.61) 48.8 (12.57)
Usize 1,406 2,065 1,357 1,357

SIS-lasso ISIS-lasso SIS-MC+ ISIS-MC+
Error 0.83(0.41) 0.85(0.44) 0.95(0.51) 0.91(0.45)
Size 24.0 (6.98) 20.4 (5.95) 7.5 (4.27) 7.8 (4.55)
Usize 343 273 205 173

RAR RAR+ RAR+(MC+) SC-forward
Error 0.69 (0.24) 0.71 (0.27) 0.72 (0.29) 0.81 (3.51)
Size 47.36 (27.43) 6.5 (1.17) 4.6 (2.32) 1.29 (0.74)
Usize 1,496 56 75 212

4.2. Data application

We compared the performances of Lasso, SCAD, MC+, SIS-lasso, ISIS-lasso,

SIS-MC+, ISIS-MC+, Ada-lasso, SC-lasso, SC-forward, SC-marginal, RAR,

RAR+, and RAR+(MC+) on the data set reported by Scheetz et al. (2006). For

this data set, 120 twelve-week old male rats were selected for tissue harvesting

from the eyes. The microarrays used to analyze the RNA from the eyes of these

rats contain over 31,042 different probes (Affymetric GeneChip Rat Genome 230

2.0 Array). The intensity values were normalized using the robust multi-chip

averaging method (Irizarry et al. (2003)) to obtain summary expression values

for each probe. Gene expression levels were analyzed on a logarithmic scale.

Following Fan, Feng and Song (2011), we focused on the 18,975 probes that are

expressed in the eye tissue. We are interested in finding the genes that are related

to the gene TRIM32, which was found to cause Bardet-Biedl syndrome (Chiang

et al. (2006)), and is a genetically heterogeneous disease of multiple organ systems

including the retina.

The dataset includes n = 120 samples and p = 18,975 variables. We ran-

domly partitioned the data into a training set of 96 observations and a test set of

24 observations. We used 5-fold cross validation for tuning parameter selection

on the training set for the last regularization step of each method (cleaning step

in the screen and clean method) and calculated the prediction mean square error

on the test set. For the second step of RAR+ and RAR+(MC+), the generalized

information criterion was employed (Fan and Tang (2013)). The whole procedure
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was repeated 200 times. To evaluate the stability of different methods, we also

calculated the size of the union of the selected variables across the 200 repeti-

tions for each method. A summary of prediction error (Error), selected model

size (Size) and the size of the union of the selected variables (Usize) over 200

repetitions are reported in Table 3.

As shown there, RAR performs the best in terms of prediction error. It se-

lects fewer variables than does Lasso, but has larger variation in terms of model

selection (based on standard deviation of model size and Usize). On average,

RAR+ selects a more parsimonious model with slightly larger prediction error

than RAR and Ada-lasso. It is worth noting that RAR+ has the smallest Usize

among all considered methods. The independence screening-based methods lead

to sparser models than RAR, but they have larger prediction errors on aver-

age. For SIS-lasso, ISIS-lasso, SIS-MC+, and ISIS-MC+, we selected the top

60 variables in the screening step. We also tried other thresholds and they led

to similar results. The reason may be that there exist signals that are weakly

correlated with the response so that even ISIS-lasso misses them. In addition,

we observe that RAR+(MC+) selects fewer variables with a slightly larger pre-

diction error, when compared with RAR+, respectively. Similar observations

can be made when comparing the nonconvex penalties SCAD and MC+ with

Lasso, SIS-MC+ with SIS-lasso and ISIS-MC+ with ISIS-lasso. Note that SC-

forward has the smallest model size, but it has a much larger prediction error

than our methods. Moreover, the standard deviation of its prediction error is

very large, which might be due to large variation of selected variable set across

200 repetitions (implied by the large Usize). We omit the results for SC-Lasso

and SC-marginal as they have larger prediction errors than SC-forward.

5. Discussion

The proposed regularization after retention method is a general framework

for model selection and estimation. In the retention step, there exist alternatives

to obtain the retention set beyond those using marginal information. For ex-

ample, we can use forward regression with early stopping. In the regularization

step, it would be interesting to study the corresponding theoretical results when

penalty functions other than the `1 norm (e.g., SCAD (Fan and Li (2001)), MC+

(Zhang (2010))) are used.

The theoretical justification of the permutation approach for choosing the

threshold γn in the retention step is an open problem. Parameter estimation



REGULARIZATION AFTER RETENTION 405

consistency and persistency of the new framework could be an interesting future

work. Theoretical extension for sub-Gaussian distributions of X and ε is pos-

sible. It might be also worth considering extensions to other models including

generalized linear models, additive models, and semi-parametric models.

Supplementary Materials

The online supplementary material contains the proofs of all results and

additional simulation results.
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