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In this note, we provide the the results of two additional simulation experiments and proofs of

the main results in the paper.

S1 Additional Simulation Experiments

FExperiment 3

This experiment is conducted in response to a query by a referee about the dif-
ference in computational time between the proposed smooth approach and the dis-
continuous rank approach. This experiment is based on the same setup as in Exper-
iment 1, except that we confine our attention to Z; following a UJ[0,1] distribution,

¢; following a N(0,0.5?) distribution, and the missing data mechanism of r(W;) =
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exp(T; — Z;)/{1 + exp(T; — Z;)}. Thus, on average, 42% of failures are due to the
cause of interest, 28% of failures are due to the other cause, and the data missing per-
centage is approximately 70%. We only report results based on the IPW missing data
handling method. Results based on other missing data handling methods are similar
and we omit them for brevity. For the non-smooth approach, estimates of the unknown

parameters are obtained as solutions to the estimating equation:

WIS I = 02— 2 > e =0,

i=1 j=1

where e? = log(f}) — ZIB,i=1,2,--- ,n. Note that the Lh.s. of above equation is the

gradient of the following convex function

L) =Y T = el - )

where a= = |a|I{a < 0}. We use the package “fminsearch” in Matlab to minimise L(3)
with respect to 3 and obtain the estimates of 5. As discussed previously, for estimating
the asymptotic covariance of the estimator, we have to resort to resampling (Jin, Lin,

Wei and Ying, 2003). Specifically, we first construct the perturbed objective function

L(8) = n~/ Y 3 s I = 20l — ) e

i=1 j=1

where &; follows the exponential distribution with mean 1. Given the data (QF, R;, J;)T,
we repeat the resampling process 50 times, and use the standard deviation (SD) of the

50 re-sampled estimates to compute the standard errors of the estimate (SE). Table 4
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below reports the results for n = 400 observations based on 1000 replications. It can
be seen that in addition to delivering more accurate estimates, the smoothed approach
has a significant advantage over the non-smoothed approach in terms of computational

time.

Table 4: Simulation results of Experiment 3

METHOD BIAS SE SD CP  computational time
Smoothed 0.001  0.058 0.058 94.7% 314.051s
Non-smoothed  0.020 0.067  0.068  93.9% 21166.368s

FExperiment 4

This experiment provides insights on the impact of bandwidth choices on the results.
This experiment is conducted in response to a question by a referee. Related studies by
Ma and Huang (2007), Song et al. (2007), Lin and Peng (2013) and Qiu, Qin and
Zhou (2016) have shown that bandwidth choices do not impact the results significantly.
Here, we conduct a simple simulation experiment to examine the sensitivity of results
to bandwidth choices. We consider the same setup as in Experiment 2, except that we
restrict our attention to €; ~ N(0,0.25) and Scenario 1 of the missing data mechanism.

We set the smoothing parameter o, to 0.1 x n7%26,0.3 x n=0:26 0.5 x n=0:26 0.7 x n~0:26

and 0.9 x n~0:26,

The results presented in Table 5 show that for a given estimation
method, the results across the different bandwidths are very similar. The assignment of

bandwidth o, is thus straightforward and does not involve any search.
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Table 5: Simulation results of Experiment 4

Bor =1 Boz =1

on BIAS SE SD CP BIAS SE SD CP
FULL -0.001 0.111 0.112 94.7% Z0.002 0.064 0.064 94.2%

cc 0.041 0.136 0.133  94.0% -0.003  0.076  0.075  93.8%

0.1xn"926 1PW -0.026  0.133  0.134  94.5% 0.001 0.074 0.075  95.1%
EEI -0.003  0.117  0.128  96.2% -0.002  0.070  0.072  95.4%

AIPW  -0.006 0.132  0.127  94.5% -0.004  0.075 0.074  95.4%

FULL -0.001 0.112 0.112 94.6% -0.003 0.066 0.064 94.0%

cc 0.040 0.137 0.133  93.3% -0.004  0.079 0.075 94.1%

0.3xn" 926  IPW -0.025 0.133  0.133  94.0% -0.001  0.077  0.075  94.4%
EEI -0.002  0.121  0.131  96.0% -0.003  0.072 0.074  95.3%

AIPW  -0.006 0.138 0.129  93.4% -0.007  0.080 0.073  93.8%

FULL -0.004 0.116 0.111 _ 94.0% -0.001 _0.066 0.064 94.2%

cc 0.039  0.141  0.133  92.0% -0.004 0.080 0.075  93.7%

0.5%xn" 926  IPW -0.032  0.139  0.129  92.0% -0.001  0.076  0.073  94.8%
EEI -0.008  0.125 0.126  95.7% -0.004  0.070  0.072  95.7%

AIPW  -0.009 0.137 0.126  93.2% -0.005 0.073  0.073  95.1%

FULL 0.002 0.111 _ 0.113  95.6% 0.002 0.064 0.064 95.4%

cc 0.050 0.130 0.134  94.2% 0.002  0.076  0.075 94.1%

0.7%n" %26  IPW -0.019  0.132  0.137  95.4% 0.006 0.075 0.076  94.8%
EEI 0.004 0.121 0.134  97.1% 0.002  0.071 0.077  96.3%

AIPW  0.002 0.131  0.129  94.0% 0.001  0.074 0.076  95.4%

FULL 0.006 0.120 0.114 94.4% 0.001  0.063 0.065 95.9%

cc 0.054 0.141 0.136  93.0% 0.000 0.077 0.077  95.4%

0.9%n" %2  IPW -0.018 0.144 0.135  93.6% 0.003 0.074 0.075  95.8%
EEI 0.005 0.130 0.131  96.0% -0.001  0.067 0.075  96.9%

AIPW  0.003 0.146  0.129  93.3% -0.003  0.072  0.073  95.6%

S2 Appendix: Proof of theorems

In our proof of theorems, for convenience purposes we assume that all elements of W;

are continuous. This assumption does not lead to any loss of generality.
Proof of Theorem 1. We divide the proof into two parts.
Part Al. We can write

1

ﬁvm(ﬂo) = %Z

where s(-) is the standard normal density function. By some tedious calculations and
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recognising the fact that sup|7(q) — m(q)| = (h7 + (nh)~ ) we obtain
q
n n ﬁD ,80
1 1 0 —r 1 i, .
2 ZZ Ql))R 36l (Ji = 2)(Z; — Zj)®2s(JT)U—n = 0p(h" + (nh)~2).

For the first item on the r.h.s. of (8Z), note that

1 3t R; 7"60—7‘,@0 1
I(J; = 1)(Z; — Z;) (u -
"2 i
n i=1 j— 17T(Qz On On
Bo Bo
1 z T _Ti ].
= = —N(Zi— Z,; (17>7
n2 ,QL; 2{ ) ) on On
Bo Bo
Rj T, — T 1
Y50 = 2)(Z; — Z)®? (7 J )7}
+7T(Qj) i1 (J] NZ; i)%7s on on

By using the strong law of large numbers for U-statistics, we can obtain

%VUl(ﬂo) &5 E{(Zl — Z,)®? [/_0; F(U)Fm(u)fm(u)f(u)du}
ot (5 [ emrad)

where 7(w) = %, F(u)Fo1 (u) foa (u) {€(u + w) — €(u)}du, £(5) = for (5)Foa () F(s) +
fo2(8)Fo1(s)H(s) + Fo1(s)Foz2(s)h(s), my = n/(202), Fo1(-) is the survival function of
log(Th1) — Z™ By, Foa(-) is the survival function of log(T12) — Z7 By, and H(-) is the
survival function of log(C;) — Z7By. Under conditions (C1)-(C9), the function 7(-) is
integrable, continuous and bounded on R with 7(0) = 0. Thus, the second term on the

r.h.s. of (B21) vanishes (Kanwal, 1998, p.11). Therefore, we have

%VUl (Bo) =55 A = E{(z1 — Z,)®? [ /_ O; H () Fox(u) fog(u)g(u)du} }
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Part A2. By the similar proof as Heller (2007), we note that

§:I(J; = 2)(Zi — Z)T{r >}

Ul(/BO) = nig ;z_:l W(Qi)
—ié n En: WR@I(JZ- =2)(Z; — Z;)I{r™ > P}
nz 1541 &
n n ~ 2
(7(Q) — (@) R0 I(Ji = 2)(Zi — Z;) I{r® > 2} 1 0,(1)
(S2.2)

T(Qi)m*(Q:)
U11(Bo) — Ui2(Bo) + Urs(Bo) + op(1).

Now, by (C1) and (C8), and recognising that sup‘%(q)—ﬂ'(q)‘ =0, (h’ + (nhd)_%>,
q

L ) 7 (52.3)

Vnh?

we have

| Ua() | Cvisup [7(@) ~ w(a)|* = 0, <\/ﬁh2T n

where C is an arbitrary constant. Thus, by condition (C4), U13(8Bo) = 0p(1)
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From the definition of 7(Q;), it follows that

Ui2(Bo)
1 s (F(W5) = r(W))) (Gn(W5) — g(W5)

x(Z; — Z;)I{r? >}

- L SIS (R — (W) 2(Qi)g™ (W) a1 Kn(W; — W) R I(J; = 2)

N2 =1 j=11=1
x(Z; — Z;)I{r* >}

1 o~ F(W) — r(W5)) (G (W5) — (W)
_ngzz(( )( 9 )

RiS:I(J; = 2)

i=1 j=1 7T2(Qi)g Wz)
(Zi — Z; I{rjﬁo 2 T?O}
= Ui21(Bo) + Ui22(Bo). (52.4)

Recognising that sup|F(w) — r(w)| = O, (hr + (nhd)_%) and sup‘é’n(w) - glw)| =

O, (hr + (nhd)_%), we obtain

U122(ﬂ0) = Op (\/ﬁh2r + ! > = OP(]')' (825)

Our next task is to prove

n

Ui21(Bo) = % 2 <7”(§[L/Z) — 1)6ip(WQ)go(Wi) +0p(1), (52.6)
where p(w) = E{(Zl — Z2)S(%) W, = 'w}.
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Note that
Uiai(Bo) = Ulsi(Bo) + Ui (Bo), (82.7)
where
w;mzzéfﬁgimwwzme%mwwm—m>
J X R;6;1(J; = 2)(Z; — Z;)I{r > v}
and
U (Bo) = 1% Z":Z":z": (W) = r(Wi)) = 2(Qi)g ™ (Wi) 6 K (W; — W)

i=1 j=1 [=1

XRi6;1(J; = 2)(Z; — ZJ’)I{T?O > Tiﬁo}'

To analyse U1[12]1 (Bo), similar to Zhou, Wan and Wang (2008), let us define

h(S;,8;,8) = (Ri—r(W))m 2(Qi)g " (W)6 Kp(W; — W))

XRi6,1(J; = 2)(Z; — Z;)[{r? > v}

and

H(S;,8;,8) = h(S;,S;,8)+h(S;,S,S;) +h(S;,S;,8)

+h(S;,S;,S;) + h(S;,8:,8;) + h(S1,8;,8:),
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where S; = (QT, R;, J;))T, i,5,1 =1,2,...,n. Thus,

Ugl(ﬁo) = n3 h(Si,Sj,Sz)wLn*% Z h(Si,Sj,Sl)+n7% Z h(S;,S;,S1)

i#g,l=1 i#j,l=] i#J,1#01#

= nt h(S;,8;,8)+n"% Y h(S.,S;,8)+n"F > H(S:,S;,8).

i#£j,l=1 i#g,l=] i<j<l

Let us consider each of the three terms on the r.h.s. of (§828). By the theory of U-

statistics (van der Vaart, 2000), it can be shown easily that

n=3 h(Si.8;,8) = 0p(n™!) and n™% Y h(S;,8;,8) =0y(n7"). (52.9)
i, l=i i), l=j

The third term on the r.h.s. of (823) is a U-statistic with symmetric kernel function
H(-,-,-). Note that E{H(S;,S;,8;)} = 0 and E{[R; — r(W})]|W;,0, = 1} = 0. Then,
by some manipulations, we can show that E{h(Si, S;, Sl)|Si} = E{h(Sh S, Sj)‘SZ-} =
E{h(Sj,Si,Sl)‘Si} = E{h(Sl,Si,Sj)‘Si} = 0. Also, by standard non-parametric

procedures, we can write

E{h(S;, 8, 8:)|S:}

(R = (W) E{ K (W, — Wi)n2(Q)g™ (W)

xR0, 1(J; = 2)(Zi — Z;) I{r® > 11}

s)

= (T(ﬁifi) - 1)5m(Wi)<p(Wi) + Op(h7).
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Similarly,

E{h(S,,S;,8))|8:} = <r($if,») - 1>5ip(Wi)90(Wi) + 0, ().

Therefore, the projection of the kernel function H(S;, S;,S;) is given by

BUH(S..5,.50|S:} = 2( s = 1)bio(Wi)o (W) + O,(h").

Thus, by the theory of U-statistics (van der Vaart, 2000, Chap.12),

n i Y H(S:,5;,85)= % Z (T(ﬁz) - 1)5iP<Wi)‘P(VVi) + 0, (v/nh"). (S2.10)

i<j<l

Combining (§Z8), (§829) and (82Z10), it follows that

n

U3 (Bo) = % > (T(]é{',,) - 1>5iP(Wi)@(Wi) + O, (v/nh"). (S2.11)
i=1 ¢

On the other hand, by some complex calculations as in Zhou, Wan and Wang (2008),

we obtain

1 U (Bo) IS vl + 0,(1). (52.12)

Thus, by (8200), (8210), (8212) and condition (C4),

n

Ui21(Bo) = in (7“(};1/}) - 1)51-p(VV¢)<p(Wi) +0,(1), (S2.13)

i=1
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and this proves (82Z8). Further, by combining (824)-(E21), we have

Ui2(Bo) = 1n2":<

z:l

)i (Wi)p(Wi) + 0,(1). (52.14)

Analogous to the above derivation and by the theory of U-statistics, we can also

obtain

Un(Bo) — Jzn:zn:gl] W2Zi — Z)I{r > {0}
i=1 j=1
Vin i=1 r(Wi)

Therefore, by (§822), (8233), (8214) and (82T13), it follows that

n n

Ui(Bo) = n %Y. 6il(J; =2)(Z; — Z)1{r? >0}
1=1 j=1

n

=3 (r&) — 1)6i(1(Ji = 2) = p(W:)) @(Wi) + 0,(152.16)

i=1

Note that the first and second terms on the r.h.s. of (8218) are uncorrelated. Hence

U (Bo) & N (0,31 + %),

by the Central Limit Theorem. The proof of Theorem 1 can be completed by the Taylor
series expansion. We omit the details here for brevity.

Proof of Theorem 2. We divide the proof into two parts.
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Part B1. Note that

%VUz(ﬁo)
1 ™ B _ .Bo 1
- ﬁZZ{[RJ(Ji :2)+(1_Ri)p(Wi)]6i(zi_Zj)®25<7j p : );}
i=1 j=1 n n

+% > (1= R)(p(W:) = p(W))3:(Z; - Zﬂ')®28(%) on’

By some tedious calculations and the fact that sup|p(w) — p(w)| = O, (hr + (nhd)_%),

it follows that
L5 S0 mgow - swipaize- 2T L

Thus, recognising that E[R;I(J; = 2)+(1—R;)p(W;)] = E[I(J; = 2)] and by derivations

similar to those used in the proof of Theorem 1, we obtain

%VUQ(ﬂO) @S q E{(Z1 _ Z,)%? [/_O; ﬁ(u)ﬂl(u)foz(u)g(u)du} }

Part B2. First, note that

Uy(By) = n? ZZ [RiI(J; = 2) + (1 — Ry)p(W3)|0:(Z; — Z,)T{r > v}

(S2.17)

1l

5
®
N
_|_
S
/a)—‘
N
_|_

)
i)

=
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Now, we can write

Un(Bo) = 05> 3 (1 - R)(BW:) — p(W;)) M, (W;)

n

o xm ™ (W)8,(Zi — Z;) 1 {r% > v}
S E IS B EW) — o) (VW) — m(Wo)
o xm Y (Wi)8:(Z; — Z;) I{r > v}

= UGB + UL (Bo), (52.18)

where m(w) = 7(w)g(w). We can easily show by steps similar to those for proving

Theorem 1 that UQ%] (Bo) = 0,(1). Also, by the definition of Z/W\n(Wl), we have

ULy (Bo)

i=1 j=1 I=1
xm ™ (W;)8;(Z; — Zj)I{T}QO 2 7”;‘30}
+n~ Z an znj(l = Ri) (o(W1) — p(Wi)) Ridi K, (W — W)
i=1j=1i=1
j xm ™Y (W;)6:(Z; — Zj)f{rfo > T?D}
- I +L (52.19)

By arguments similar to those used for proving Theorem 1, we have

I, = o,(1), (S2.20)
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and

Uz (Bo)
= n?: z”: y I(J; = 2)6i(Z; — Z;)I{r?* > rf°}
—n B YD1 R)(I( = 2) — p(Wi))8:(Z; — Z)I{r* > r?}
+% Y (I =2) = p(Wi)) RiSi (1 — r(Wy))r ™ (Wi)p(Wi) + 0, (1)
= n? ) I(J; = 2)6i(Z; — Z;)I{r?* > rf°}
e Zn: (I(Ji =2) - ,o(W»))( LI 1)5-¢(W») +0p(1).
v i=1 ' Ar(Wh) ' ' P

The proof of Theorem 2 may be completed by using steps analogous to those used for
proving Theorem 1.

Proof of Theorem 3. We divide the proof into two parts.
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Part C1. Write

\}VU3(ﬁ0)
R; 7’? -\ 1
R; 7’? — r? 1
ZZ [ @»}(Z“Zj)s< - >an
A
+= ZZ@ )P~ o(W)(Z: - 2 ( J% ) L
n n A Qz — T Qz) A ]ﬁ T? 1
QZZ Q) (P(W;) — p(Wi))(Z; — Z;)6,Ris -
1 n n Ri Rz 7”@ _ 7”? 1
+r 0 (o5 may) WO Z - Zs L) - (s222)

By steps analogous to those used for proving Theorems 1 and 2, we can show that the

last four items of the r.h.s. of (S82249) are 0,(1). Furthermore, noting that F [W(Q )I(J =

2) + (1 — %Qii))p(wi)} = E[I(J; = 2)], we have

L YU (80) “ A = E{(z1 — Z,)®? [ [ O:O H(u)For(u) f02(u)£(u)du} }

NG
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Part C2. Note that

(ﬂo)
= 2)+ (1= )W) (2 = Z)T{rf? = i)
n Y i ;= — Z )P0 > o
-7 o U =0z - 2 2 )
—|—TL73/2 Z 26 A (Wl) — (1 — Rl )p(Wl)] (Z1 — Zj)I{T?U > Tiﬁn}
=1 j=1 7T ) Tr(QZ)
= Usi(Bo) + Us2(Bo) + Ussz(Bo). (52.23)
Similar to the proof of Theorem 1, we have
Usa(Bo) =~ = > (T(I;;‘,_) — 1)3p(Wi)e(W;) + 0, (1), (52.24)
Also, note that
Us3(Bo)
= o2 Z Za ) (A(W:) = p(Wi)) (2 — Z;)T{r > v}
%2 Z Z Q)l) (BWi) — p(W)))(Z: — Zj)Si RiI {1 > 1}
]Zzz))@p(W)(Z Z)I{r? >}

lljl

U3 (Bo) + UL (Bo) + UL (Bo). (52.25)
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It is clear that U?E? (Bo) = 0p(1), and similar to the proof of Theorem 2, it follows that

UR B = n IS (1 ) (1= 2) o (W) R

Il
Q
bS]
~—
B
>
3
S~—
+
)
bS]
—
N
\
Q
bS]
~—~~
—
S~—"

(S2.26)

Moreover, by arguments similar to those used for the proof of Theorem 1, we can write

n

1 R;
U (B0 = =3 (g — DIwWoeWi) +o,(1). (82.20)
1:1 i)

Thus, using (822H)-(8Z27) together,

Us3(Bo) 1)6;p(Wi)p(W;) + o0p(1). (S2.28)

Finally, by combining (8223), (8224) and (8ZZ8) and the theory of U-statistics,

we obtain
Us(Bo n %iil i(Zi — Z)I{r > v}
%Z 2) = o(Wi)) (57 = 1) oW + 0,1,

i=1

The proof of Theorem 3 may be completed by using arguments analogous to those used

for proving Theorem 1.
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