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Abstract: This paper examines the accelerated failure time competing risks model

with missing cause of failure using the monotone class rank-based estimating equa-

tions approach. We handle the non-smoothness of the rank-based estimating equa-

tions using a kernel smoothed estimation method, and estimate the unknown se-

lection probability and the conditional expectation by non-parametric techniques.

Under this setup, we propose three methods for estimating the unknown regression

parameters: inverse probability weighting, estimating equations imputation, and

augmented inverse probability weighting. We also obtain the associated asymptotic

theories of the proposed estimators and investigate their small sample behaviour

in a simulation study. A direct plug-in method is suggested for estimating the

asymptotic variances of the proposed estimators. A data application based on a

HIV vaccine efficacy trial study is considered.
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1. Introduction

In many areas of research, investigators are interested in studying the effects

of different factors on the hazards or failures from a specific cause when failures

can result from multiple causes. This leads to the problem of competing risks.

This problem arises most frequently in clinical trials where patients may fail

from causes other than the disease under investigation. Studies on competing

risks that focus on the covariate effects on the cause-specific hazard function for

the failure type of interest include Cheng, Fine and Wei (1998), Shen and Cheng

(1999), and Scheike and Zhang (2003). Some authors have also considered direct

modeling of the sub-distribution of a competing risk (Fine and Gray (1999); Sun

et al. (2006)).
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The majority of studies on competing risks to-date assume that the cause

of failure is known and observed when the cause of failure may be unknown.

For example, in the “Mashi trial” study concerning HIV-related death of infants

born to HIV-infected mothers in Botswana considered by Sun, Wang and Gilbert

(2012), the causes of death of live-born infants were known for 50 and missing

for 61 of the 111 observations in the study sample. In another study concerning

survival times of HIV patients, Bakoyannis, Siannis and Touloumi (2010) also

reported missing causes of death for some sample observations. In our exam-

ple in Section 6 based on the HVTN 502 ‘Step’ Phase IIb HIV vaccine efficacy

trial study, HIV sequences were missing for 23 out of 88 infected participants

(Buchbinder et al. (2008)). Methods that account for the missing failure causes

to-date assume that the causes of failure are missing at random (MAR), the

probability of missingness is only related to the fully observed variables and not

to the partially unobserved cause of failure. Studies that focus on the covariate

effects on the cause-specific hazard function assuming multiplicative effects when

failure causes may be missing include Goetghebeur and Ryan (1995), Lu and

Tsiatis (2001), and Gao and Tsiatis (2005). The former two use data imputation

methods to compute fitted values for the missing failure causes, while the latter

addresses the missing data issue by an augmented inverse probability weighting

approach within the framework of a linear transformation model. Lu and Liang

(2008) considered an additive hazards model and developed inverse probability

weighting and doubly robust methods for estimating the regression coefficients.

Other studies on competing risks with missing failure causes that focus on as-

pects other than the cause-specific hazard function include Bakoyannis, Siannis

and Touloumi (2010), who concentrated on the modelling of the cumulative in-

cidence function, and Sun, Wang and Gilbert (2012), who considered quantile

regression modeling of the survival time.

Recently, Zheng, Lin and Yu (2016) analysed the competing risks data with

missing causes of failure under the accelerated failure time (AFT) model. The

AFT model permits a direct measurement of the effects of the covariates on

the survival time instead of the hazard function. This facilitates interpretation

of results and is considered to be a major advantage of the AFT model over

hazards models. One common approach for fitting AFT models is rank-based

estimation developed from the weighted log-rank test (Prentice (1978)). This

is also the approach taken by Zheng, Lin and Yu (2016) in their study. When

the data are right-censored, the rank-based approach leads to estimators that

are consistent and asymptotically normal (Tsiatis (1990); Ying (1993)). In a
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recent paper, Lee and Lewbel (2013) provided general identification conditions

and developed a sieve maximum likelihood estimation procedure for the AFT

model with competing risks data. A shortcoming of the rank-based approach is

that rank estimating functions are discontinuous. This feature poses formidable

challenges to the computation of the regression coefficient estimates and subse-

quent inference. Jin et al. (2003) proposed a method that goes some way towards

resolving this difficulty. They suggested a monotone approximation to the rank

estimating function and a relatively straightforward linear programming-based

procedure for estimating the regression coefficients. As the inference procedure of

Jin et al.’s (2003) method involves re-sampling, their method can be demanding

on computation time, especially with large datasets and for models with many

covariates.

Another approach is to apply smoothing methods to the non-smooth es-

timating functions. The objective of this approach is to construct a smooth

surrogate estimating function that is asymptotically equivalent to the original

non-smooth function. The continuous differentiability of the surrogate equation

ensures that solutions can be obtained by standard numerical algorithms. Brown

and Wang (2005) proposed an induced smoothing method whereby the smoothed

estimating functions are obtained by taking expectations with respect to an ar-

tificial Gaussian continuous noise variable added to the regression coefficients.

Heller (2007) employed a direct approximation of the non-smooth function by a

local distribution function. As noted by Johnson and Strawderman (2009), when

applying Heller’s method, if one uses the standard Gaussian cumulative distri-

bution function as the local distribution function, this method will yield the

same smoothed estimating functions as Brown and Wang’s method that replaces

the covariate-dependent bandwidth by a fixed bandwidth. Brown and Wang’s

(2005) induced smoothing method has been generalised to estimating functions

with general weight (Chiou, Kang and Yan (2014)), and extended to AFT models

with censored data (Brown and Wang (2007); Zhao, Brown and Wang (2014)),

clusterd data (Johnson and Strawderman (2009)), censored and clustered data

(Wang and Fu (2011)), and quantile regression (Pang, Lu and Wang (2012)). To

the best of our knowledge, neither Brown and Wang’s nor Heller’s methods have

been applied to AFT models with missing failure causes, and the purpose of this

paper is to take steps in this direction.

In this paper, we consider the AFT competing risk model with MAR causes

of failure using the monotone rank estimating equations approach. We overcome

the difficulty with regard to the discontinuity of the rank estimating equations
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using a local distribution function smoothing approach in the spirit of Heller

(2007). In this setup, we consider three procedures for estimating the unknown

regression coefficients. The first is based on a non-parametric inverted proba-

bility weighting (IPW) approach, similar to that developed by Qi, Wang and

Prentice (2005) for the proportional hazards model. This approach uses non-

parametric smoothers in estimating the selection probabilities, thus overcoming

the difficulty with the mis-specification of propensity score frequently encoun-

tered with parametric methods. The second method is based on the estimating

equation imputation (EEI) approach proposed under a general setup by Zhou,

Wan and Wang (2008). The EEI approach is closely related to the missing infor-

mation principle; in the context of interest here, studies that apply the missing

information principle for the handling of censored data trace back to the work of

Buckley and James (1979). The third is an augmented IPW (AIPW) approach

in the spirits of Robins, Rotnitzky and Zhao (1994) who considered a general

setup. An important appeal of this approach is that it leads to estimators that

are doubly robust. The AIPW approach was considered by Wang and Chen

(2001) for the proportional hazards model.

Although Zheng, Lin and Yu (2016) also considered the modeling of compet-

ing risk data with missing failure causes by a rank-based estimating equations

procedure, there are significant differences between their approach and ours. To

overcome the difficulty with respect to solving the discontinuous rank estimating

equations, Zheng, Lin and Yu (2016) transformed the problem into an optimi-

sation problem, and the subsequent inference procedure involves re-sampling,

which can be demanding on computation time. For the proposed method, as the

estimating equations are differentiable with respect to the unknown parameters,

estimates of the parameters can be computed by the Newton-Raphson algorithm,

and the associated asymptotic variances can be estimated by a plug-in method.

We consider the IPW, EEI, and AIPW methods for handling missing data while

Zheng, Lin and Yu (2016) only discussed the IPW and doubly robust methods

based on a Martingale with zero mean. In particular, the EEI method we intro-

duce does not require the estimation of the missing probability. We consider the

latter a significant advantage. All three missing data handling methods being

considered have identical asymptotic properties and comparable finite sample

properties.

The remainder of the paper is organised as follows. Section 2 describes

the model setup and the smoothed rank estimating equations approach. The

three proposed methods for handling missing failure causes and their properties
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are discussed and examined in Section 3. Section 4 explores the selection of

kernel functions and bandwidth parameters, along with a discussion on dimension

reduction. Section 5 focuses on the finite sample properties of estimators, while

Section 6 considers applications of the proposed methods based on a data set.

Some concluding remarks are placed in Section 7. Proofs are contained in the

online supplementary file.

2. Notations, Model Descriptions and A Smoothed Rank Estimating

Equations Approach

Let the population contain n independent subjects. For simplicity and with-

out loss of generality, we assume that there are only two mutually exclusive causes

of failure, denoted by Ji = 1, 2. For the ith (i = 1, 2, . . . , n) subject, let Ti1 and

Ti2 be the latent failure times associated with Ji = 1 and Ji = 2 respectively,

Ti = min(Ti1, Ti2) be the uncensored failure time, Ci the right-censoring time,

δi = I(Ti ≤ Ci) the censoring indicator such that δi = 1 if Ti is observed and

δi = 0 otherwise, and Zi be the p× 1 vector of covariates. The observable failure

time is thus T̃i = min(Ti, Ci). We assume that Ci, Ti1 and Ti2 are mutually

independent given Zi.

Suppose that we are only interested in assessing the covariate effect on the

failure time of the second type. The AFT model postulates a linear relationship

between the natural log of the failure time and the covariates (Kalbfleisch and

Prentice (2002)):

log(T2) = ZTβ + ε, (2.1)

where β is an unknown p × 1 regression coefficient vector, and the error term ε

has a mean of zero with an unspecified continuous distribution independent of Z.

When there is no missing cause of failure, the right-censored competing risks data

set comprises i.i.d. observations of (T̃i, δi, δiJi,Zi), i = 1, . . . , n. Let the counting

process be Ni(t) = I(log T̃i − ZT
i β ≤ t, δiJi = 2), Yi(t) = I(log T̃i − ZT

i β ≥ t),

and λ(t) be the unknown hazard function of ε in (1). It can be shown using

counting process theory (Fleming and Harrington (1991)) that

Mi(t) = Ni(t)−
∫ t

−∞
Yi(u)λ(u)du, i = 1, 2, . . . , n,

are mean zero martingale processes. By applying arguments as in Tsiatis (1990),

we obtain estimating equations for the joint estimation of β and λ(t):
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n∑
i=1

dMi(t) =

n∑
i=1

{
dNi(t)− Yi(t)λ(t)dt

}
= 0, (2.2)

n∑
i=1

∫ τ

−∞
ZidMi(t) =

n∑
i=1

∫ τ

−∞
Zi
{
dNi(t)− Yi(t)λ(t)dt

}
= 0, (2.3)

where τ is a constant representing the end time of the study. Hence (2.3) yields

λ(t)dt =

∑n
i=1 dNi(t)∑n
i=1 Yi(t)

. (2.4)

Substituting (2.4) into (2.3) leads to an estimating equation for β in model (2.1):
n∑
i=1

δiI(Ji = 2)

{
Zi −

∑n
j=1ZjI(log T̃j −ZT

j β ≥ log T̃i −ZT
i β)∑n

j=1 I(log T̃j −ZT
j β ≥ log T̃i −ZT

i β)

}
= 0. (2.5)

The l.h.s. of (2.5) is not monotone in β, and this can produce multiple solu-

tions of β. To reconcile this difficulty, we consider a monotone rank estimating

equation analogous to that proposed by Fygenson and Ritov (1994) for censored

data:

Ũn(β) ≡ (2.6)

n−3/2
n∑
i=1

n∑
j=1

δiI(Ji = 2)(Zi −Zj)I
{

log(T̃j)−ZT
j β ≥ log(T̃i)−ZT

i β
}

= 0.

The l.h.s. of (2.6) is monotone in β, but it is still discontinuous with re-

spect to β due to the presence of an indicator (jump) function in it. A range

of well-developed algorithms including the brutal search method, Nelder-Mead

method, and linear programming method developed by Jin et al. (2003) can be

used for computing β̂. However, as the asymptotic covariance matrix of the esti-

mators involves the hazards function of an unspecified error distribution, direct

estimation of the covariance matrix requires an estimate of the hazards func-

tion. Recognising that this estimate can be highly unstable, Jin et al. (2003)

proposed a resampling method to estimate the covariance matrix that eliminates

the estimation of the hazards function but the computation efforts involved for

the resampling method can be immense, especially with large data-sets. We de-

velop a differentiable estimating equation to approximate (2.6). Specifically, with

rβi = log(T̃i) − ZT
i β, i = 1, 2, . . . , n, along the lines of Heller (2007) we consider

an approximation to the indicator function I(rβj ≥ rβi ) by a local distribution

function S((rβj − r
β
i )/σn), where S(u) is non-decreasing, limu→∞ S(u) = 1, and

limu→−∞ S(u) = 0, where σn is a sequence of strictly positive and decreasing

numbers satisfying limn→∞ σn = 0. Clearly, when rβj > rβi , S((rβj − r
β
i )/σn)→ 1
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as n → ∞, and when rβj < rβi , S((rβj − r
β
i )/σn) → 0 as n → ∞. A smoothed

version of (2.6) is thus given by

n−3/2
n∑
i=1

n∑
j=1

δiI(Ji = 2)(Zi −Zj)S

(
rβj − r

β
i

σn

)
= 0. (2.7)

3. Methods for Handling Missing Causes of Failure

When the causes of failure are only partially available, (2.7) cannot be ap-

plied because the Ji are not observed for all i. Let Ri be the complete-case

indicator equal to 1 when either δi = 0, or δi = 1 and Ji is observed, and 0

otherwise. Thus, when the causes of failure are not completely observed, the

right-censored competing risks data set comprises i.i.d. observations of {(T̃i, δi,
Zi, Ai, Ri, RiδiJi), i = 1, . . . , n}, where Ai’s are some auxiliary covariates that

may be useful for predicting the missing failure type.

We assume that the cause of failure is MAR (Rubin (1976)): given δi = 1

and Wi = (T̃i,Z
T
i , Ai)

T , the probability that the failure cause of the ith subject

is missing depends only on the observed Wi, but not on the unobserved Ji. We

assume that the failure cause missing probability is given by

r(Wi) = P (Ri = 1|Ji, δi = 1,Wi) = P (Ri = 1|δi = 1,Wi). (3.1)

Although the MAR assumption is more restrictive than nonignorable missingness,

MAR is justified in many practical situations, and there is a large collection of

literature that uses the MAR assumption as the baseline for analysis. Recent

examples include Aerts et al. (2002), Wang and Rao (2002), Chen, Ibrahim and

Shao (2004), Qi, Wang and Prentice (2005), Lu and Copas (2005), Zhou, Wan

and Wang (2008), among others. In the remainder of this section, we develop

three methods for dealing with missing data in the context of competing risks

data.

3.1. Inverse probability weighting

Write Qi = (W T
i , δi)

T . From Horvitz and Thompson (1952),

M
(1)
i (t) ≡ Ri

π(Qi)
Ni(t)−

∫ t

−∞
Yi(u)λ(u)du, i = 1, 2, . . . , n,

are mean zero processes, where π(Qi) = P (Ri = 1|δi,Wi) = δir(Wi) + (1− δi).
This leads to an inverse probability weighted (IPW) estimating equation for β:
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n−3/2
n∑
i=1

n∑
j=1

Ri
π(Qi)

δiI(Ji = 2)(Zi −Zj)S

(
rβj − r

β
i

σn

)
= 0. (3.2)

As r(Wi) is often unknown, we can estimate r(Wi) parametrically as in Gao and

Tsiatis (2005), Lu and Liang (2008), and Sun, Wang and Gilbert (2012), or non-

parametrically as in Qi, Wang and Prentice (2005), Zhou, Wan and Wang (2008),

and Song et al. (2010). Here, we adopt the non-parametric approach that has the

advantage over its parametric counterpart of being less prone to biases arising

from model mis-specification. We use a kernel method and assume that d is the

size of the continuous elements in Wi and k(u) is a rth-order (r > d) kernel

function with compact support that satisfies
∫
k(u)du = 1,

∫
umk(u)du = 0

for m = 1, 2, . . . , r − 1,
∫
urk(u)du 6= 0, and

∫
k2(u)du < ∞. As well, for

any u = (u1, u2, . . . , ud) ∈ Rd, let Kh(u) = (1/hd)
∏d
i=1 k(ui/h), where h is a

bandwidth sequence that satisties nh2r → 0 and nh2d →∞ as n→∞.

The Nadaraya-Watson estimator (Nadaraya (1964); Watson (1964)) of r(w)

is then given by

r̂(w) = Ĝ−1n (w)
1

n

n∑
i=1

RiδiKh(w1 −W1i)I(W2i = w2), (3.3)

where Ĝn(w) = (1/n)
∑n

i=1 δiKh(w1 −W1i)I(W2i = w2), w = (w1,w2), and

W1i and W2i are matrices that contain the continuous and discrete elements of

Wi, respectively. Substituting the estimator r̂(Wi) into (3.2) leads to an IPW

estimating equation for β,

U1(β) ≡ n−3/2
n∑
i=1

n∑
j=1

Ri
π̂(Qi)

δiI(Ji = 2)(Zi −Zj)S

(
rβj − r

β
i

σn

)
= 0, (3.4)

where π̂(Qi) = δir̂(Wi) + (1− δi).
Denote the solution of (3.4) as β̂IPW . The development of an asymptotic

theory for β̂IPW requires conditions

(C1) The covariate vector, Z1, is bounded, and there exists a constant M such

that, ‖E(Z1−Z2)(Z1−Z2)
T ‖ < M <∞, and the parameter β lies in a compact

set B.

(C2) The sequence σn satisfies the conditions: nσn →∞ and nσ4n → 0 as n→∞.

(C3) The local distribution function S(u) is continuous with respect to u, and

its first derivative s(u) satisfies the condition
∫
u2s(u)du <∞ and is symmetric

about zero.

(C4) The bandwidth h satisfies the conditions: nh2r → 0 and nh2d → ∞ as

n→∞.
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(C5) The matrix A = ∇Ũ0(β0) exists and is nonsingular, where Ũ0(β) =

limn→∞(1/
√
n)Ũn(β).

(C6) If f01(·) and f02(·) are the density functions of log(T11)−ZT
1 β0 and log(T12)−

ZT
1 β0, respectively, then f01(·), f ′01(·), f02(·) and f ′02(·) are bounded functions

on R with ∫ ∞
−∞

{
f ′01(t)

f01(t)

}2

f01(t)dt <∞,∫ ∞
−∞

{
f ′02(t)

f02(t)

}2

f02(t)dt <∞.

(C7) The distribution of log(C1) − ZT
1 β0 is absolutely continuous and has a

bounded density function h(·) on R.

(C8) The function g(w) = P (W1 = w, δ1 = 1) is bounded away from zero, and

has r continuous and bounded partial derivatives with respect to the continuous

components of W1, almost surely.

(C9) The conditional probabilities r(w) = P (R1 = 1
∣∣δ1 = 1,W1 = w) and

ρ(w) = P (J1 = 2
∣∣δ1 = 1,W1 = w) are bounded away from zero, and have

r continuous and bounded partial derivatives with respect to the continuous

components of W1, almost surely.

Let Si = (QT
i , Ri, Ji)

T , i = 1, 2, . . . , n, h(Si,Sj) = δiI(Ji = 2)(Zi−Zj)I
(
rβ0

j

≥ rβ0

i

)
, and H(Si,Sj) = h(Si,Sj) + h(Sj ,Si).

Theorem 1. If (C1)-(C9) hold, then β̂IPW
p−→ β0 and

√
n(β̂IPW − β0)

d−→ N
(
0,A−1(β0)Σ(β0){A−1(β0)}T

)
,

where “
p−→” and “

d−→” denote convergence in probability and in distribution,

Σ(β0) = Γ1(β0) + Γ2(β0),Γ1(β0) = E{H1(S1)}⊗2,H1(S1) = E
{
H(S1,S2)

∣∣S1

}
,

Γ2(β0) = E
[{

1− r(Wi)
}
r−1(Wi)ρ(Wi)

{
1− ρ(Wi)

}
δiϕ
⊗2(Wi)

]
, and

ϕ(w) = E
{

(Z1 −Z2)I
{
rβ0

2 ≥ r
β0

1

}∣∣∣W1 = w, δ1 = 1
}
.

Proof: See the Online Supplementary Material.

Now, for i, j = 1, 2, . . . , n, take

e
(1)β
ij =

Ri
π̂(Qi)

δiI(Ji = 2)I(rβj ≥ r
β
i ),

and d
(1)β
ij =

{
Ri

r̂(Wi)
− 1

}
δiρ̂(Wi)I(rβj ≥ r

β
i ),

where ρ̂(Wi) is defined in (3.6). Then from the proof of Theorem 1 and the
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theory of U-statistic ((van der Vaart, 2000, Chap. 12)), we can show that the

asymptotic variance of β̂IPW can be consistently estimated by n−1Â−11n (β̂IPW )

Σ̂1n(β̂IPW ) {Â−11n (β̂IPW )}T , where

Â1n(β) =
1

n2

n∑
i=1

n∑
j=1

Ri
π̂(Qi)

σ−1n δiI(Ji = 2)
(
Zi −Zj

)⊗2
s

(
rβj − r

β
i

σn

)
, and

Σ̂1n(β) =
1

n3

∑
i

∑
j

∑
k 6=j

(Zi −Zj)(Zi −Zk)T
(
e
(1)β
ij − e(1)βji − d(1)βij

)
(
e
(1)β
ik − e(1)βki − d

(1)β
ik

)
.

3.2. Estimating equations imputation

We consider the estimating equations imputation (EEI) approach of Zhou,

Wan and Wang (2008). Let ρ(Wi) = P (Ji = 2|δi = 1,Wi) = P (Ji = 2|Ri =

1, δi = 1,Wi). As E
[
RiNi(t) + (1 − Ri)E

{
Ni(t)

∣∣Qi

}]
= E

{
Ni(t)

}
, it can be

shown that

M
(2)
i (t) ≡ RiNi(t) + (1−Ri)E

{
Ni(t)|Qi

}
−
∫ t

−∞
Yi(u)λ(u)du

= RiNi(t) + (1−Ri)δiρ(Wi)N
∗
i (t)−

∫ t

−∞
Yi(u)λ(u)du, i = 1, 2, . . . , n,

are mean zero processes, where N∗i (t) = I
{

log(Ti2) − ZT
i β ≤ t

}
. We can then

obtain an estimating equation as

n−3/2
n∑
i=1

n∑
j=1

δi
{
RiI(Ji = 2)+(1−Ri)ρ(Wi)

}
(Zi−Zj)S

(
rβj − r

β
i

σn

)
= 0. (3.5)

In practice, ρ(Wi) may be unknown. Analogous to the kernel estimator of r(w)

in Section 3.1, the estimator of ρ(w) is

ρ̂(w) = M̂−1n (Wi)
1

n

n∑
i=1

I(Ji = 2)RiδiKh(w1 −W1i)I(W2i = w2), (3.6)

where M̂n(w) = (1/n)
∑n

i=1RiδiKh(w1 −W1i)I(W2i = w2). Thus, the EEI

estimator β̂EEI is the solution of the estimating equation

U2(β) ≡ n−3/2
n∑
i=1

n∑
j=1

δi
{
RiI(Ji = 2)+(1−Ri)ρ̂(Wi)

}
(Zi−Zj)S

(
rβj − r

β
i

σn

)
= 0.

(3.7)

Theorem 2. If (C1)-(C9) hold, then β̂EEI
p−→ β0 and
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√
n(β̂EEI − β0)

d−→ N
(
0,A−1(β0)Σ(β0){A−1(β0)}T

)
,

where Σ(β0) is defined in Theorem 1.

Proof: See the Online Supplementary Material.

It is straightforward to show, from the proof of Theorem 2, that the asymp-

totic variance of β̂EEI can be consistently estimated by n−1Â−12n (β̂EEI)Σ̂2n(β̂EEI)

(Â−12n (β̂EEI))
T , where

Â2n(β) =
1

n2

n∑
i=1

n∑
j=1

δi
{
RiI(Ji = 2) + (1−Ri)ρ̂(Wi)

}
σ−1n

(
Zi −Zj

)⊗2
s

(
rβj − r

β
i

σn

)
,

Σ̂2n(β) =
1

n3

∑
i

∑
j

∑
k 6=j

(Zi −Zj)(Zi −Zk)T
(
e
(2)β
ij − e(2)βji + d

(2)β
ij

)
(
e
(2)β
ik − e(2)βki + d

(2)β
ik

)
,

e
(2)β
ij = δi

{
RiI(Ji = 2) + (1−Ri)ρ̂(Wi)

}
I
(
rβj ≥ r

β
i

)
, i, j = 1, 2, . . . , n, and

d
(2)β
ij =

{
I(Ji = 2)− ρ(Wi)

}
Riδi

1− r̂(Wi)

r̂(Wi)
I
(
rβj ≥ r

β
i

)
, i, j = 1, 2, . . . , n.

3.3. Augmented inverse probability weighted estimator

Another common approach for handling data with missing values is the aug-

mented inverse probability weighted (AIPW) method. The AIPW estimator has

the double robustness property that the estimator is consistent provided that

either ρ(Wi) or r(Wi) is specified correctly (Robins, Rotnitzky and Zhao (1994);

Wang and Chen (2001)).

Using Robins, Rotnitzky and Zhao (1994), and noting that E[Ri/{π(Qi)}Ni(t)+

[1−Ri/{π(Qi)}]E{Ni(t)|Qi}] = E{Ni(t)}, it follows that

M
(3)
i (t) ≡ Ri

π(Qi)
Ni(t) +

{
1− Ri

π(Qi)

}
E
{
Ni(t)|Qi

}
−
∫ t

−∞
Yi(u)λ(u)du,

i = 1, 2, . . . , n,

are mean zero processes. We have the AIPW estimating equations for β as:

U3(β) ≡ n−3/2
n∑
i=1

n∑
j=1

δi

[
Ri

π̂(Qi)
I(Ji = 2)

+

{
1− Ri

π̂(Qi)

}
ρ̂(Wi)

]
(Zi −Zj)S

(
rβj − r

β
i

σn

)
= 0, (3.8)
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where π̂(Qi) = δir̂(Wi) + (1 − δi) and ρ̂(Wi) are defined in (3.3) and (3.6),

respectively.

Let the solution of (3.8) be β̂AIPW .

Theorem 3. If (C1)-(C9) hold, then β̂AIPW
p−→ β0 and

√
n(β̂AIPW − β0)

d−→ N
(
0,A−1(β0)Σ(β0){A−1(β0)}T

)
,

where Σ(β0) is specified in Theorem 1.

Proof: See the Online Supplementary Material.

From the proof of Theorem 3, a consistent estimator of the asymptotic vari-

ance of β̂AIPW is given by n−1Â−13n (β̂AIPW )Σ̂3n(β̂AIPW ){Â−13n (β̂AIPW )}T , where

Â3n(β) =
1

n2

n∑
i=1

n∑
j=1

δi

[
Ri

π̂(Qi)
I(Ji = 2) +

{
1− Ri

π̂(Qi)

}
ρ̂(Wi)

]

σ−1n
(
Zi −Zj

)⊗2
s

(
rβj − r

β
i

σn

)
,

Σ̂3n(β) =
1

n3

∑
i

∑
j

∑
k 6=j

(Zi −Zj)(Zi −Zk)T
(
e
(3)β
ij − e(3)βji

)(
e
(3)β
ik − e(3)βki

)
, and

e
(3)β
ij = δi

[
Ri

π̂(Qi)
I(Ji = 2)+

{
1− Ri

π̂(Qi)

}
ρ̂(Wi)

]
I(rβj ≥ r

β
i ), i, j = 1, 2, . . . , n.

Remark 1. The estimators β̂IPW , β̂EEI , and β̂AIPW are asymptotically equiva-

lent, surprising because we would expect the AIPW method, combining the IPW

and EEI approaches, to have improved efficiency.

Remark 2. The implementation of the IPW and AIPW methods requires the

estimation of the missing probability π(Qi). Unless one wants to estimate the

asymptotic variance directly, the EEI procedure does not involve the estimation

of π(Qi). If we resort to a re-sampling method for estimating the asymptotic

variance, then the estimation of π(Qi) is not required for the EEI method. Thus,

from a computational point of the view, the EEI method has an advantage over

the IPW and AIPW methods.

4. Selection of Kernel Functions and Smoothing Parameters, and Di-

mension Reduction

4.1. Selection of kernel functions and smoothing parameters

In this section, we discuss the selection of the kernel functions S(·) and

k(·) and the smoothing parameters σn and h. In our numerical studies and
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the data example, we use the standard Gaussian cumulative distribution func-

tion as S(u), the local distribution function. A recent study on the AFT model

under length-biased sampling by Qiu, Qin and Zhou (2016) shows that the fi-

nite sample properties of estimators are generally insensitive to the choice of

the local distribution function. As for the choice of σn, there exist many stud-

ies, including Song et al. (2010), Ma and Huang (2007), Lin and Peng (2013),

and Qiu, Qin and Zhou (2016), that show that smoothing approximation tech-

niques similar to ours are applicable under a wide range of choices of σn. Here,

we use the “rule of thumb” approach along the lines of Heller (2007), to se-

lect this smoothing parameter. Specifically, we take σn = ĉn−0.26, where ĉ =[∑n
i=1RiI(Jiδi = 2)

(
rβ̂I

i − rβ̂I

)2
/{
∑n

i=1RiI(Jiδi = 2)− 1}
]1/2

, rβ̂I

i = log T̃i −

ZT
i β̂I , β̂I is the initial estimator obtained by solving the estimating equation

n−3/2
n∑
i=1

n∑
j=1

RiδiI(Ji = 2)(Zi −Zj)I(rβj ≥ r
β
i ) = 0,

and rβ̂I =
∑n

i=1RiI(Jiδi = 2)rβ̂I

i /
∑n

i=1RiI(Jiδi = 2); the purpose of imposing

the power constant −0.26 for n in σn is to satisfy condition (C2).

The generalised cross-validation method can be used for choosing the band-

width h when estimating r(Wi) and ρ(Wi). Here, following Wang and Wang

(2001) and Qi, Wang and Prentice (2005), we set h = O(n−1/q) with q > 2d

and the smallest even integer for r such that r ≥ q − d. More specifically, when

the number of continuous elements in Wi is equal to 1, we use the univariate

second-order Epanechnikov kernel k(u) = (3/4
√

5){1 − (1/5)u2}I(u2 < 5) and

the bandwidth h = 4σT̃n
−1/3, where σT̃ is the sample standard deviation of the

observed survival times. When d = 2, we use the fourth-order Epanechnikov ker-

nel k(u) = (3/4
√

5){15/8− (7/8)u2}{1− (1/5)u2}I(u2 < 5) and the bandwidth

(h1, h2)
T = (4σT̃n

−1/5, 4σZn
−1/5)T , where σZ is the sample standard deviation

of Zi. We use this method to select the kernel function k(u) and the smoothing

parameters h in the simulation studies and the data example.

4.2. Dimension reduction

The three proposed methods are based on non-parametric regression. Such

methods suffer from the curse of dimensionality, and this limits their usefulness.

An alternative is estimate π(Wi) and ρ(Wi) parametrically, along the lines of

Gao and Tsiatis (2005), Lu and Liang (2008), Sun, Wang and Gilbert (2012),

Zheng, Lin and Yu (2016), and others. These methods can result in substantially
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biased estimators when the correctness of the parametric specifications is called

into question (Han (2014)).

Dimension reduction is one way to circumvent the problem. The objective

is to seek low dimensional variables U1 and U2 in the observed data such that

E(R|U1) = E(R|δ,W ) = E(R|Q) and P (J = 2|U2) = P (J = 2|δ,W ) = P (J =

2|Q). If we replace E(R|Q) and P (J = 2|Q) in the estimating equations per-

taining to our methods by E(R|U1) and P (J = 2|U2), the estimating equations

remain unbiased.

Many methods have been developed for the selection of U1 and U2. For

example, one could assume E(R|Q) = g1(Q
T θ1), and P (J = 2|Q) = g2(Q

T θ2),

where g1(·) and g2(·) are unknown functions and θ1 and θ2 are parameters that

can be estimated, for example, by sliced inverse regression (Li (1991)); then g1(·)
and g2(·) can be estimated by univariate kernel smoothing techniques. Other

flexible parametric models, such as the generalised additive and the partially

linear models, can be used to model the conditional probabilities E(R|Q) and

P (J = 2|Q). The asymptotic properties of the estimators resulting from these

procedures differ from those developed in Section 3. An interesting topic for

future research is to develop the asymptotic properties of estimators under this

alternative approach.

5. A Simulation Study

In this section, we focus on finite sample properties and identify, in the con-

text of simulations, estimation and inference properties of the methods developed

here. We also draw comparisons of our methods with the complete-case analysis

that uses only observations that have the failure cause observed.

Experiment 1

Consider a model containing only one covariate,

log(Ti2) = Zi + εi, i = 1, . . . , n,

where Ti2 is the failure time associated with the cause of interest, Zi is a covariate

that has a Bernoulli(0.5) or U [0, 1] distribution, and εi, the error term, is one

of the N(0, 0.52), U [−0.5, 0.5], and Generalised Extreme Value GEV (0, 0.5, 0)

distributions. All observations of εi were converted into mean deviation form in

our simulations. Given Zi, we let Φ(log t − γZi) be the conditional distribution

function of the failure time of the other cause Ti1, where Φ(·) is the standard

normal cumulative distribution function with γ chosen such that the failure of

interest arose approximately 60% of the time. The censoring time Ci was gener-



MISSING CAUSE OF FAILURE 37

ated from U [0, c], c being a constant that controls the censoring percentage. In

all cases, we chose c such that the censoring percentage was about 30%. Depend-

ing on the distributional settings of Zi and εi, the percentages of failures due

to the cause of interest and the other cause varied between 40% and 42%, and

between 28% and 30%, respectively. We set n = 200 when Zi was Bernoulli(0.5),

and n = 400 when Zi was U [0, 1]. We considered two missing data scenarios:

r(Wi) = exp(T̃i−Zi)/{1 + exp(T̃i−Zi)}, and r(Wi) = 0.5. In the first case, the

missing percentage varied between 70% and 72% depending on the setting of εi,

and under the second, the missing percentage was approximately 50%.

Our simulation results based on 1,000 replications are reported in Table 1,

where FULL, CC, IPW, EEI, and AIPW refer to results based on the full data set

with no missing failure cause, complete-case study, inverse probability weighting,

estimating equations imputation, and augmented inverse probability weighting,

respectively, and BIAS, SE, SD, and CP denote the empirical bias, the mean of

estimated standard error, the empirical standard deviation and the proximity of

empirical coverage probability of confidence interval (C.I.) corresponding to the

nominal 95% level.

Our results show that, by and large, the CC method results in the largest bias

and smallest C.I. coverage probability. Of the three proposed methods, the IPW

method frequently exhibits the largest bias, but it also yields C.I. coverage prob-

ability that is as accurate as those produced by the EEI and AIPW approaches.

The biases resulting from the EEI and AIPW approaches are usually quite small

and the two approaches also achieve very accurate C.I. coverages. Our results do

not suggest any clear preference between the EEI and AIPW approaches; gener-

ally speaking, there is little to choose between them. In all cases, the SE’s and

their corresponding SD’s are close, indicating that the various non-parametric

procedures we use at different stages perform well. As expected, the benchmark

estimator based on the full set of data with no missing cause of failure performs

best under all performance dimensions being considered. There are no obvious

differences between the three types of error distributions, ceteris paribus.

Experiment 2

We considered a model with two covariates:

log(Ti2) = β01Zi1 + β02Zi2 + εi,

where Zi1 ∼ U [0, 1], Zi2 ∼Bernoulli(0.5) and εi was an error term as in Experi-

ment 1. The distribution function of Ti1, given Zi1 and Zi2, was Φ(log t−γTZi),
where Zi = (Zi1, Zi2)

T . The censoring time Ci was generated from U [0, c], c
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Table 1. Simulation results of Experiment 1.

Zi ∼ Bernoulli(0.5) Zi ∼ U [0, 1]
BIAS SE SD CP BIAS SE SD CP

Scenario 1
FULL −0.008 0.094 0.091 93.5% 0.001 0.112 0.111 95.1%

CC 0.043 0.110 0.104 92.0% 0.061 0.130 0.129 92.2%
εi ∼ N(0,0.25) IPW −0.000 0.104 0.097 93.7% 0.016 0.125 0.119 93.4%

EEI −0.002 0.102 0.097 94.4% 0.017 0.118 0.119 94.9%
AIPW −0.006 0.104 0.097 93.9% 0.004 0.125 0.119 94.0%
FULL −0.001 0.055 0.055 94.9% −0.001 0.070 0.067 94.2%

CC 0.017 0.069 0.065 92.9% 0.020 0.086 0.081 91.9%
εi ∼ U[−0.5,0.5] IPW 0.001 0.063 0.062 94.7% 0.003 0.080 0.077 94.1%

EEI 0.012 0.064 0.062 94.1% 0.013 0.078 0.078 94.2%
AIPW 0.002 0.065 0.062 93.8% 0.001 0.081 0.076 93.1%
FULL −0.005 0.132 0.129 94.0% 0.000 0.159 0.156 95.1%

CC 0.097 0.143 0.139 88.1% 0.110 0.176 0.171 88.7%
εi ∼ GEV(0,0.5,0) IPW 0.012 0.141 0.133 93.0% 0.021 0.174 0.166 93.8%

EEI −0.010 0.138 0.134 93.3% 0.004 0.166 0.166 95.6%
AIPW −0.009 0.143 0.135 92.2% −0.004 0.175 0.166 94.0%

Scenario 2
FULL −0.002 0.090 0.091 95.2% 0.005 0.113 0.111 94.4%

CC 0.069 0.129 0.127 90.6% 0.083 0.154 0.154 91.0%
εi ∼ N(0,0.25) IPW −0.004 0.111 0.106 95.0% 0.002 0.137 0.131 94.2%

EEI −0.000 0.102 0.107 95.7% 0.022 0.122 0.131 96.1%
AIPW −0.004 0.105 0.106 95.4% 0.002 0.134 0.131 94.6%
FULL −0.000 0.057 0.055 94.5% 0.003 0.069 0.067 95.1%

CC 0.034 0.081 0.076 91.2% 0.042 0.096 0.093 92.3%
εi ∼ U[−0.5,0.5] IPW −0.001 0.072 0.070 93.9% 0.003 0.089 0.089 95.1%

EEI 0.014 0.073 0.071 93.7% 0.020 0.082 0.088 96.1%
AIPW −0.002 0.074 0.070 93.2% 0.002 0.088 0.085 94.8%
FULL −0.001 0.132 0.128 94.7% −0.004 0.158 0.156 94.8%

CC 0.118 0.190 0.181 88.7% 0.127 0.225 0.218 91.0%
εi ∼ GEV(0,0.5,0) IPW −0.001 0.160 0.146 92.5% −0.000 0.194 0.181 94.1%

EEI −0.013 0.146 0.145 95.0% 0.011 0.168 0.176 95.8%
AIPW −0.004 0.152 0.146 94.4% −0.002 0.182 0.178 94.6%

a constant parameter that controls the censoring percentage. As in Experi-

ment 1, we chose γ and c such that, on average, 40% of failures were due to

the cause of interest, 30% of failures were due to the other cause and the cen-

soring percentage is about 30%. We considered three missing data scenarios:

r(Wi) = exp(4Zi1 + 3Zi2 − T̃i)/{1 + exp(4Zi1 + 3Zi2 − T̃i)}; r(Wi) = 0.5; r(Wi)

= 1/{1 + exp(Z2
i1 − 2Zi2)}. For the first, the missing probability was approx-

imately 65.9% when εi ∼ N(0, 0.25) and 64.3% when εi ∼ GEV (0, 0.5, 0) and
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εi ∼ U [−0.5, 0.5]. For the other two settings, the missing probabilities were ap-

proximately 50% and 59%, respectively. In all cases, we set n = 400 and the

number of replications to 1,000.

The results are presented in Table 2. By and large, the comments made for

Experiment 1, where the model contains a single covariate, also apply to the two-

covariate case in broad terms. Specifically, the CC method results in estimates

with the largest bias in the majority of cases; the IPW, EEI, and AIPW methods

generally yield comparable results although the IPW method tends to result in

slightly larger estimator bias than the other two methods. Other things being

equal, the form of the error distributions does not appear to impact the results

significantly.

6. Application to the HVTN 502 Phase IIb ‘Step’ HIV Vaccine Effi-

cacy Trial

We applied our methods to the HVTN 502 ‘Step’ Phase IIb trial, a ran-

domised, placebo-controlled, preventive vaccine efficacy trial that enrolled HIV-1

uninfected men who had sex with men who were at high risk for acquiring HIV-

1 infection to assess whether the incidence of HIV-1 infection differed between

the two treatment groups [active vaccination with the Merck adenovirus type 5

(Ad5) vector vaccine (named MRKAd5) vs. placebo] (Buchbinder et al. (2008)).

The Step trial enrolled 1836 HIV-1 uninfected men, of whom 88 acquired the

primary study endpoint of HIV-1 infection (52 in the vaccine group and 36 in the

placebo group). The primary analysis assessed the vaccine effect on the time to

HIV-1 infection with a Cox model, yielding an estimated hazard ratio (vaccine

vs. placebo) of 1.50 (95% C.I.: 0.95–2.41, p-value = 0.06), suggesting that the

vaccine elevated the risk of HIV-1 infection.

HIV-1 is extraordinarily genetically diverse, with many genetic types of HIV-

1 exposing participants in the Step trial, and a secondary objective of the Step

trial was to assess the vaccine effect on the time to HIV-1 infection with specific

genetic types of HIV-1. Based on measurement of the HIV-1 sequences from

Step participants who had the HIV-1 infection endpoint, there are many ways

to define genetic types. Once a definition is specified– such that there are K

mutually exclusive and exhaustive genetic types– then the objective at hand is a

standard competing risks failure time problem, where T is the time to the first

HIV-1 infection and J is the genetic type of the HIV-1 infection, J ∈ {1, . . . ,K}.
However, HIV-1 sequences were successfully obtained only from 65 of the 88 HIV-
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Table 2. Simulation results of Experiment 2.

β01 = 1 β02 = 1
BIAS SE SD CP BIAS SE SD CP

Scenario 1
FULL −0.004 0.116 0.111 94.0% −0.001 0.066 0.064 94.2%

CC 0.039 0.141 0.133 92.0% −0.004 0.080 0.075 93.7%
εi ∼ N(0,0.25) IPW −0.032 0.139 0.129 92.0% −0.001 0.076 0.073 94.8%

EEI −0.008 0.125 0.126 95.7% −0.004 0.070 0.072 95.7%
AIPW −0.009 0.137 0.126 93.2% −0.005 0.073 0.073 95.1%
FULL 0.003 0.068 0.068 95.2% −0.001 0.038 0.039 95.1%

CC 0.018 0.080 0.078 93.7% −0.008 0.045 0.044 94.1%
εi ∼ U[−0.5,0.5] IPW −0.024 0.081 0.084 95.0% −0.010 0.044 0.046 95.4%

EEI 0.012 0.078 0.085 96.8% 0.005 0.045 0.047 96.6%
AIPW −0.006 0.088 0.082 95.3% −0.011 0.048 0.047 96.0%
FULL 0.005 0.161 0.158 94.4% 0.003 0.091 0.090 95.2%

CC 0.097 0.202 0.202 92.5% 0.002 0.114 0.113 95.0%
εi ∼ GEV(0,0.5,0) IPW −0.007 0.191 0.191 95.1% 0.022 0.104 0.106 94.8%

EEI −0.002 0.171 0.177 96.0% −0.001 0.096 0.100 96.1%
AIPW 0.008 0.189 0.177 94.2% 0.010 0.101 0.102 95.5%

Scenario 2
FULL 0.002 0.111 0.112 95.2% −0.000 0.066 0.065 95.2%

CC 0.061 0.158 0.155 92.9% 0.072 0.092 0.090 86.2%
εi ∼ N(0,0.25) IPW −0.002 0.141 0.134 94.0% 0.002 0.081 0.076 93.3%

EEI −0.003 0.124 0.133 96.9% 0.005 0.075 0.076 95.7%
AIPW −0.002 0.138 0.133 94.7% −0.000 0.080 0.076 94.0%
FULL 0.002 0.069 0.068 93.3% −0.002 0.037 0.039 96.4%

CC 0.041 0.098 0.094 90.8% 0.030 0.054 0.054 90.7%
εi ∼ U[−0.5,0.5] IPW 0.003 0.088 0.088 94.1% −0.004 0.048 0.049 95.6%

EEI 0.006 0.083 0.089 96.1% 0.011 0.048 0.050 96.1%
AIPW 0.002 0.094 0.087 93.4% −0.005 0.051 0.050 94.7%
FULL 0.001 0.164 0.158 94.1% 0.006 0.093 0.090 94.1%

CC 0.104 0.236 0.225 90.8% 0.128 0.137 0.128 83.0%
εi ∼ GEV(0,0.5,0) IPW 0.002 0.211 0.186 91.8% 0.009 0.118 0.104 91.5%

EEI −0.002 0.177 0.183 95.6% −0.003 0.107 0.103 94.2%
AIPW 0.005 0.183 0.117 94.0% 0.006 0.113 0.104 92.8%

Scenario 3
FULL 0.002 0.109 0.112 95.8% −0.001 0.065 0.064 95.7%

CC 0.060 0.139 0.142 93.0% −0.018 0.085 0.083 94.2%
εi ∼ N(0,0.25) IPW 0.035 0.137 0.134 93.7% −0.007 0.080 0.075 93.4%

EEI 0.003 0.120 0.132 97.4% −0.001 0.076 0.075 94.7%
AIPW 0.003 0.130 0.131 95.1% −0.004 0.078 0.075 94.2%
FULL 0.002 0.068 0.068 95.4% −0.001 0.040 0.039 94.9%

CC 0.033 0.089 0.087 92.1% −0.009 0.053 0.051 93.8%
εi ∼ U[−0.5,0.5] IPW 0.024 0.090 0.090 94.7% −0.005 0.049 0.050 96.2%

EEI −0.000 0.085 0.090 96.9% 0.021 0.049 0.050 93.1%
AIPW −0.003 0.097 0.086 93.4% −0.002 0.052 0.049 94.7%
FULL 0.007 0.159 0.159 94.6% 0.001 0.090 0.090 95.0%

CC 0.103 0.210 0.200 90.9% −0.024 0.124 0.117 93.5%
εi ∼ GEV(0,0.5,0) IPW 0.053 0.206 0.186 91.0% −0.008 0.113 0.105 93.4%

EEI 0.012 0.174 0.181 95.6% −0.022 0.103 0.104 95.0%
AIPW 0.012 0.196 0.183 93.6% −0.006 0.107 0.105 94.7%
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1 infected participants, with J missing for 23 participants. A method handling

missing failure causes is needed, fitting the purpose for which our methods were

designed. In addition to needing a method to handle the missing outcome type

J from 23 HIV-1 infected participants, a method was needed to account for the

fact that the vaccine effect on the incidence of HIV-1 infection appeared to wane

over time (Duerr et al. (2012)). This casts doubt about the suitability of the Cox

model and motivates use of the AFT model developed here. Because previous

analyses applied a Cox model to address the secondary objective (Rolland et al.

(2011)), our methods may yield a better fit to the application.

It is of particular interest to study the vaccine effect on infection with the

HIV-1 genetic type defined by high amino acid dissimilarity to a ‘hotspot’ span of

30 contiguous amino acids in the Gag HIV-1 protein sequence inside the vaccine

construct that was targeted by vaccine-induced T cell responses (Hertz et al.

(2013)). We took J = 2 where there were 2 or more mismatches of the HIV-1

infected participants hotspot sequence with the corresponding hotspot sequence

in the vaccine (based on a multiple sequence alignment). Then all HIV-1infections

with genetic types with 0 or 1 mismatches have J = 1. The distribution of J

across the 88 endpoints was 7 for J = 1, 32 for J = 2, and 14 missing for HIV-1

infected vaccine recipients, 5 for J = 1, 21 for J = 2, and 9 missing for HIV-1

infected placebo recipients.

We employed the AFT model to evaluate the effect of Treatment (Treatment

= 1, if the participant was assigned to receive the MRKAd5 vaccine, Treatment

= 0 placebo), on the failure time T , where T was the number of days from

randomisation to diagnosis of HIV-1 infection due to the genotype of interest,

J = 2. We also included in the model the demographic factors Age (in years at

study entry) and WhiteRace (indicator of reporting white race).

Table 3 reports the estimation results. By all methods, Treatment is statisti-

cally significant whereas WhiteRace is not. The results for Treatment show that

vaccine recipients have a shorter mean time to diagnosis with genotype J = 2

HIV-1 infection than placebo recipients, suggesting that vaccination increased

susceptibility to acquisition of J = 2 HIV-1 genotypes. In addition, the EEI

and AIPW methods found that Age was non-significant, but the CC and IPW

methods suggest that Age was significant at the 5% level. The EEI and AIPW

methods tended to produce estimates of similar magnitudes, and the same was

observed for the CC and IPW methods. For a given coefficient, there was no sign

difference in the estimates produced by any of the methods.

In conclusion, the analysis suggests that recipients of the MRKAd5 vaccine
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Table 3. Estimation of the effects of WhiteRace, Age and Treatment for the HVTN 502
Step HIV vaccine efficacy trial data.

WhiteRace Age Treatment

Method EST ŜE P-value EST ŜE P-value EST ŜE P-value

CC −0.460 0.403 0.254 0.040 0.013 0.002 −0.743 0.152 0.000
IPW −0.501 0.402 0.213 0.039 0.013 0.002 −0.681 0.167 0.000
EEI −0.321 0.428 0.453 0.022 0.013 0.084 −0.786 0.132 0.000
AIPW −0.296 0.426 0.488 0.024 0.013 0.064 −0.772 0.132 0.000

may have elevated risk of acquiring HIV-1 infection with HIV-1 genetic types

that have too many mismatches to the genetic type represented inside the vac-

cine construct when these mismatches occur in the HIV-1 Gag hotspot location

to which the vaccine predominantly directs T cell responses. This highlights

the importance of designing new HIV-1 vaccine regimens that direct immune

responses to many different genetic types of HIV-1, to maximize overall vaccine

efficacy of future HIV-1 vaccines.

7. Concluding Remarks

Competing risks are commonplace in clinical trial studies. We have examined

the AFT competing risk model with missing cause of failure using the monotone

rank estimating equations approach combined with local distribution function

smoothing, and developed three methods for estimating unknown regression co-

efficients. Our simulation study shows that the three methods work well, and the

methods have been applied to a data set on HIV vaccine efficacy. We have also

discussed methods of dimension reduction that can be undertaken in conjunc-

tion with the methods developed when the number of covariates is large. Our

proposed methods can be extended to other semi-parametric models, such as the

generalized transformation models and the mean residual lifetime model. These

remain for future work.

Supplementary Materials

Additional simulation results and proofs of the main theorems are contained

in the Online Supplementary Materials.
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