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Proof of Lemma 1. For j being an integer with 2 < j < p, let 8; and Sy,
be the jth components of 3 and fy, respectively. Note that the element S,
is assumed to be non-zero. Assume it is positive. Taking the derivative of
R(f) with respect to 3;, we have

0

9B,
0 )
— T@ng—%?jg(ﬁgx)f(x)der 8_ﬁj/x>_(ﬂ;_>j{1 — g(BT2)} f(z)da

E{(YB"X)}

-
J

_ /g ((B()Tx)_j 3 (BTIK;jjﬁOJ) f <x_j’ _(52)3’) (ﬂ;?j dr_

S A ) S

where T_; = (Tg,..., Tj_1,Tj11, ., 2p) and (BTx)_; = B + foxy + -+ +

Bj—1%j—1 + Bjr12j41 + -+ - + Bprp. The first equation follows from the fact
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that § appears in the limits of integrals only. Then,
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which is 0 because g(0) = 1 — ¢(0). This proves Lemma 1. O

Proof of Lemma 2. Note that
R,(8) = E{p(YB'X)} = E [E{p(YB" X)|X}]
= E [g(B X)p(8"X) + {1 — g(B X) }o(=5" X)]
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and, hence, by the Dominated Convergence Theorem, we have
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aagg’ﬁT |p=p, 1s positive definite. Hence, /3y is the unique minimizer of R,(3).
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Proof of Theorem 2. (i) Define
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We first show that
E{L(g'(0)B0)} = *. (S0.1)
Consider the surrogate ¢ in (5) and let U = {¢'(0)3¢ X} /h. Then
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where ¢ is between 0 and hU/¢'(0). Consider the transformation

+ Doa®e + - - - + .
u:g'(O)ﬁ01 fos 2h ﬁ()pxp, and z;=x;, j=2,..,p— 1.

Let dv_, = dxy---dxp—y. For j = 2,...,p — 1, the jth component of
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Combining these results, we obtain that each component of the first term
on the right hand side of (S0.2) =< h%. The jth component of the second
term on the right hand side of (S0.2) is bounded by
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Replacing u?z; by |ux;| in the previous proof we obtain that each compo-

nent of the second term on the right hand side of (S0.2) =< h3. Hence,
1
each component of £ [{Yg’(O)ﬁOTX — 5} YXKh(g'(O)BgX)} = h?.

To prove (i), we also need to calculat OL(B)

0)50 and find the asymp-

totic distribution of L(g’(0)5y). Note that
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On the other hand,
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for the D defined in (16). By the law of large numbers,
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in probability. We further calculate the covariance matrix of L(g'(0)5o).

From (S0.1), we have E{L(g'(0)53)} < h* Then
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Using the same argument as before, we obtain that
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This shows that
Cov{L(g'(0)f)} =< 1/(nh),
since E{L(g'(0)30)L(¢'(0)B0)T} < h*. By the central limit theorem,
Vnh[L(g'(0)50) — E{L(g'(0)5)}] = N,(0, ViD)
in distribution. Since E{L(¢'(0)3)} = h?, we have
VnhL(g'(0)f) = N,(0,ViD) (S0.3)

in distribution, under the assumed condition that nh® — 0.
Based on the minimum distance theory (Newey and Mcfadden, 1994),

let Q(B) = L(B)TL(B) and define

~

B = argmin Q(5).
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The local identification can be verified since 8L(/B ) } B=g'( is positive defi-

0)Bo
nite. Next, to show 3 — ¢’ (0)B in probability, the proof is similar to that
of Lemma 1 of Qin and Lawless (1994). Denote 8 = ¢'(0)8y + u(nh)~'/3
for B € {B ] 18— ¢(0)5] = (nh)~/3}, where ||u|| = 1 and || - || denotes
Euclidean norm.

First, we give a lower bound for Q(5) when § belongs to the ball ||5 —

g'(0)B]| < (nh)~'/3. By Taylor expansion and (S0.3), we have (uniformly

for )

Q(8) = {L(¢'(0)Bo) + L'(g'(0)Bo)u(nh)~*}T{L(g'(0) o)
+ L' (g(0)Bo)u(nh) ™/} + ol (nh) %)
= {O((nh)™/?) + L'(¢/(0)Bo)u(nh) " *}T{O((nh) /%)
+ L (g(0)Bo)u(nh) ™/} + of (nh) %)

> (nh)?,

with C' > 0. Similarly, we have Q(¢'(0)3y) = O((nh)™'). Since Q(8) is
a continuous function about g as  belongs to the ball |5 — ¢'(0)5| <
(nh)~'/3_ with probability tending to 1, Q(8) has a minimum J in the
interior of the ball, and this B satisfies

aQ( OL(B

o |B ] By =0,
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which holds only when L(B) = 0. That is with probability tending to 1,
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L(B) = 0 has a root in the interior of the ball ||3 — ¢'(0)5|| < (nh)~*/3.
To prove (ii), by Taylors expansion, there exists a 1 between B and

g'(0)Bo such that

_ 9L(p)

L(B) = L(g 0)5) = =557 |, (B = 9 (0)B0):

which implies that

243 = g O =~ {222 ag 0350,

Using the fact that § — ¢/'(0)8 in probability, we have ag_ga)l 6:77}_1 —

(2D)~! in probability, which also implies that

(nh)"{5 — ¢/ (0)B0} = —(nh)"*(2D) " L(g'(0) o).

That is the asymptotic distribution of (nh)Y/2{3 — ¢'(0)5,} is the same as

the asymptotic distribution of —(nh)!/2(2D) ™ L(¢/(0) ). Therefore,
Vnh{B3 — ¢'(0)Bo} = N, (0,ViD'/4)

in distribution. This proves the results in (i)-(ii).

From the proofs of (i)-(ii), the bias of 3 as an estimator of ¢’(0)S,
is of the order h? and the covariance matrix of § is of the order (nh)~.
Hence, the asymptotic mean squared error of B is of the order (nh)™! +
h*. Therefore, the best rate of convergence to 0 in mean squared error is

achieved when h =< n~/%. This proves part (iii) of the theorem.
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Forj=1...,p—land k=1,...p—1,
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It is clear that

0’R(B)

—aﬁ(?ﬁT =2D

B=g'(0)Bo

Since, 3 — ¢'(0)By = O, ((nh)~/?) and

R(9)~R(g 08 = 5 (5= 4 0)) gﬂg(ﬁ? L 8

. (8- 908) {(1+0,(1)},

we have

R(B) — R(¢'(0)B) = O, ((nh) ™).
This proves part (iv) of the theorem. O
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