Convex Surrogate Minimization in Classification

Cui Xiong ${ }^{1}$, Jun Shao ${ }^{1,2}$ and Lei Wang ${ }^{3}$
${ }^{1}$ East China Normal University, ${ }^{2}$ University of Wisconsin-Madison and ${ }^{3}$ Nankai University

Supplementary Material

Proof of Lemma 1. For j being an integer with $2 \leq j \leq p$, let β_{j} and $\beta_{0 j}$ be the j th components of β and β_{0}, respectively. Note that the element $\beta_{0 p}$ is assumed to be non-zero. Assume it is positive. Taking the derivative of $R(\beta)$ with respect to β_{j}, we have

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{j}} E\left\{\ell\left(Y \beta^{T} X\right)\right\} \\
& =\frac{\partial}{\partial \beta_{j}} \int_{x_{j} \leq-\frac{\left(\beta^{T} x\right)_{-j}}{\beta_{j}}} g\left(\beta_{0}^{T} x\right) f(x) d x+\frac{\partial}{\partial \beta_{j}} \int_{x_{j} \geq-\frac{\left(\beta^{T} x\right)_{-j}}{\beta_{j}}}\left\{1-g\left(\beta_{0}^{T} x\right)\right\} f(x) d x \\
& =\int g\left(\left(\beta_{0}^{T} x\right)_{-j}-\frac{\left(\beta^{T} x\right)_{-j} \beta_{0, j}}{\beta_{j}}\right) f\left(x_{-j},-\frac{\left(\beta^{T} x\right)_{-j}}{\beta_{j}}\right) \frac{\left(\beta^{T} x\right)_{-j}}{\beta_{j}^{2}} d x_{-j} \\
& +\int\left[1-g\left(\left(\beta_{0}^{T} x\right)_{-j}-\frac{\left(\beta^{T} x\right)_{-j} \beta_{0, j}}{\beta_{j}}\right)\right] f\left(x_{-j},-\frac{\left(\beta^{T} x\right)_{-j}}{\beta_{j}}\right) \frac{-\left(\beta^{T} x\right)_{-j}}{\beta_{j}^{2}} d x_{-j}
\end{aligned}
$$

where $x_{-j}=\left(x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{p}\right)$ and $\left(\beta^{T} x\right)_{-j}=\beta_{1}+\beta_{2} x_{2}+\cdots+$ $\beta_{j-1} x_{j-1}+\beta_{j+1} x_{j+1}+\cdots+\beta_{p} x_{p}$. The first equation follows from the fact
that β appears in the limits of integrals only. Then,

$$
\begin{aligned}
\left.\frac{\partial}{\partial \beta_{j}} E\left\{\ell\left(Y \beta^{T} X\right)\right\}\right|_{\beta=c \beta_{0}} & =\int g(0) f\left(x_{-j},-\frac{\left(\beta_{0}^{T} x\right)_{-j}}{\beta_{0 j}}\right) \frac{\left(\beta_{0}^{T} x\right)_{-j}}{c \beta_{0 j}^{2}} d x_{-j} \\
& +\int\{1-g(0)\} f\left(x_{-j},-\frac{\left(\beta_{0}^{T} x\right)_{-j}}{\beta_{0 j}}\right) \frac{-\left(\beta_{0}^{T} x\right)_{-j}}{c \beta_{0 j}^{2}} d x_{-j}
\end{aligned}
$$

which is 0 because $g(0)=1-g(0)$. Similarly, for the intercept β_{1},

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{1}} E\left\{\ell\left(Y \beta^{T} X\right)\right\} \\
& =\frac{\partial}{\partial \beta_{1}} \int_{x_{p} \leq-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}} g\left(\beta_{0}^{T} x\right) f(x) d x+\frac{\partial}{\partial \beta_{1}} \int_{x_{p} \geq-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}}\left\{1-g\left(\beta_{0}^{T} x\right)\right\} f(x) d x \\
& =\int g\left(\left(\beta_{0}^{T} x\right)_{-p}-\frac{\left(\beta^{T} x\right)_{-p} \beta_{0, p}}{\beta_{p}}\right) f\left(x_{-p},-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}\right) \frac{1}{\beta_{p}} d x_{-p} \\
& \quad-\int\left[1-g\left(\left(\beta_{0}^{T} x\right)_{-p}-\frac{\left(\beta^{T} x\right)_{-p} \beta_{0, p}}{\beta_{p}}\right)\right] f\left(x_{-p},-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}\right) \frac{1}{\beta_{p}} d x_{-p}
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\frac{\partial}{\partial \beta_{1}} E\left\{\ell\left(Y \beta^{T} X\right)\right\}\right|_{\beta=c \beta_{0}}= & \int g(0) f\left(x_{-p},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) \frac{1}{c \beta_{0 p}} d x_{-p} \\
& -\int\{1-g(0)\} f\left(x_{-p},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) \frac{1}{c \beta_{0 p}} d x_{-p}
\end{aligned}
$$

which is 0 because $g(0)=1-g(0)$. This proves Lemma 1 .

Proof of Lemma 2. Note that

$$
\begin{aligned}
R_{\varphi}(\beta) & =E\left\{\varphi\left(Y \beta^{T} X\right)\right\}=E\left[E\left\{\varphi\left(Y \beta^{T} X\right) \mid X\right\}\right] \\
& =E\left[g\left(\beta_{0}^{T} X\right) \varphi\left(\beta^{T} X\right)+\left\{1-g\left(\beta_{0}^{T} X\right)\right\} \varphi\left(-\beta^{T} X\right)\right] \\
& =\int\left[\varphi\left(\beta^{T} x\right) g\left(\beta_{0}^{T} x\right)+\varphi\left(-\beta^{T} x\right)\left\{1-g\left(\beta_{0}^{T} x\right)\right\}\right] d F(x)
\end{aligned}
$$

and, hence, by the Dominated Convergence Theorem, we have

$$
\frac{\partial R_{\varphi}(\beta)}{\partial \beta}=\int\left[\varphi^{\prime}\left(\beta^{T} x\right) g\left(\beta_{0}^{T} x\right)-\varphi^{\prime}\left(-\beta^{T} x\right)\left\{1-g\left(\beta_{0}^{T} x\right)\right\}\right] x d F(x)
$$

If $\varphi \in \Psi\left(\beta_{0}\right)$, by $(9),\left.\frac{\partial R_{\varphi}(\beta)}{\partial \beta}\right|_{\beta=\beta_{0}}=0$. Since

$$
\frac{\partial^{2} R_{\varphi}(\beta)}{\partial \beta \partial \beta^{T}}=\int\left[\varphi^{\prime \prime}\left(\beta^{T} x\right) g\left(\beta_{0}^{T} x\right)+\varphi^{\prime \prime}\left(-\beta^{T} x\right)\left\{1-g\left(\beta_{0}^{T} x\right)\right\}\right] x x^{T} d F(x)
$$

$\left.\frac{\partial^{2} R_{\varphi}(\beta)}{\partial \beta \partial \beta^{T}}\right|_{\beta=\beta_{0}}$ is positive definite. Hence, β_{0} is the unique minimizer of $R_{\varphi}(\beta)$.

Proof of Theorem 2. (i) Define

$$
L(\beta)=\frac{1}{n} \sum_{i=1}^{n} \tilde{\varphi}^{\prime}\left(Y_{i} \beta^{T} X_{i}\right) Y_{i} X_{i} K_{h}\left(\beta^{T} X_{i}\right)
$$

We first show that

$$
\begin{equation*}
E\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\} \asymp h^{2} . \tag{S0.1}
\end{equation*}
$$

Consider the surrogate $\tilde{\varphi}$ in (5) and let $U=\left\{g^{\prime}(0) \beta_{0}^{T} X\right\} / h$. Then

$$
\begin{align*}
& \frac{1}{2} E\left[\tilde{\varphi}^{\prime}\left(Y g^{\prime}(0) \beta_{0}^{T} X\right) Y X K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right] \\
& =E\left[\left\{Y g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\right\} Y X K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right] \\
& =E\left[\left\{g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\left(2 g\left(\beta_{0}^{T} X\right)-1\right)\right\} X K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right] \\
& =E\left[\left\{h U+\frac{1}{2}-g\left(\frac{h U}{g^{\prime}(0)}\right)\right\} X K(U) / h\right] \\
& =E\left[\left\{h U+\frac{1}{2}-g(0)-g^{\prime}(0) \frac{h U}{g^{\prime}(0)}+g^{\prime \prime}(0) \frac{h^{2} U^{2}}{2 g^{\prime 2}(0)}-g^{\prime \prime \prime}(\xi) \frac{h^{3} U^{3}}{6 g^{\prime 3}(0)}\right\} X K(U) / h\right] \\
& =\frac{h^{2} g^{\prime \prime}(0)}{2 g^{\prime 2}(0)} E\left[U^{2} X \frac{K(U)}{h}\right]-\frac{h^{3}}{6 g^{\prime 3}(0)} E\left[g^{\prime \prime \prime}(\xi) U^{3} X \frac{K(U)}{h}\right] \tag{S0.2}
\end{align*}
$$

where ξ is between 0 and $h U / g^{\prime}(0)$. Consider the transformation

$$
u=g^{\prime}(0) \frac{\beta_{01}+\beta_{02} x_{2}+\cdots+\beta_{0 p} x_{p}}{h}, \quad \text { and } \quad x_{j}=x_{j}, j=2, \ldots, p-1
$$

Let $d x_{-p}=d x_{2} \cdots d x_{p-1}$. For $j=2, \ldots, p-1$, the j th component of $E\left[U^{2} X \frac{K(U)}{h}\right]$ is the integral

$$
\begin{aligned}
& \frac{1}{h} \int_{u \in[-1,1]} u^{2} x_{j} K(u) f\left(x_{2}, \ldots, x_{p}\right) d x_{2} \cdots d x_{p} \\
& =\int_{u \in[-1,1]} u^{2} x_{j} K(u) f\left(x_{2}, \ldots, x_{p-1}, \frac{u h}{\beta_{0 p} g^{\prime}(0)}-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) \frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} d u d x_{-p} \\
& \xrightarrow{h \rightarrow 0} \int_{u \in[-1,1]} u^{2} x_{j} K(u) f\left(x_{2}, \ldots, x_{p-1},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) \frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} d u d x_{-p} \\
& =\frac{B_{k}}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int x_{j} f\left(x_{2}, \ldots, x_{p-1},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) d x_{-p} \\
& =\frac{B_{k}}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int x_{j} f(z) d x_{-p}
\end{aligned}
$$

where $z=\left(x_{2}, \ldots, x_{p-1},-\left(\beta_{0}^{T} x\right)_{-p} / \beta_{0 p}\right)^{T}$. Similarly, the first component of $E\left[U^{2} X \frac{K(U)}{h}\right]$ is $\frac{B_{k}}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int f(z) d x_{-p}$ and the p th component of $E\left[U^{2} X \frac{K(U)}{h}\right]$ is the integral

$$
\begin{aligned}
& \frac{1}{h} \int_{u \in[-1,1]} u^{2} x_{p} K(u) f\left(x_{2}, \ldots, x_{p}\right) d x_{2} \cdots d x_{p} \\
& =\frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int_{u \in[-1,1]} u^{2} K(u) \frac{u h-\left(\beta_{0}^{T} x\right)_{-p} g^{\prime}(0)}{\beta_{0 p} g^{\prime}(0)} \\
& \quad \times f\left(x_{2}, \ldots, x_{p-1}, \frac{u h-\left(\beta_{0}^{T} x\right)_{-p} g^{\prime}(0)}{\beta_{0 p} g^{\prime}(0)}\right) d u d x_{-p} \\
& \rightarrow \frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int_{u \in[-1,1]} u^{2}\left(-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) K(u) f\left(x_{2}, \ldots, x_{p-1},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) d u d x_{-p} \\
& =\frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} B_{k} \int\left(-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) f(z) d x_{-p} .
\end{aligned}
$$

Combining these results, we obtain that each component of the first term on the right hand side of $(\mathrm{S} 0.2) \asymp h^{2}$. The j th component of the second term on the right hand side of (S 0.2) is bounded by

$$
\frac{h^{3} \max _{x}\left|g^{\prime \prime \prime}(x)\right|}{6 g^{\prime 3}(0)} E\left|U^{3} X \frac{K(U)}{h}\right|
$$

Replacing $u^{2} x_{j}$ by $\left|u^{3} x_{j}\right|$ in the previous proof we obtain that each component of the second term on the right hand side of (S0.2) $\asymp h^{3}$. Hence,

$$
\text { each component of } E\left[\left\{Y g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\right\} Y X K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right] \asymp h^{2}
$$

To prove (i), we also need to calculate $\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=g^{\prime}(0) \beta_{0}}$ and find the asymptotic distribution of $L\left(g^{\prime}(0) \beta_{0}\right)$. Note that

$$
\begin{aligned}
\left.\frac{1}{2} \frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=g^{\prime}(0) \beta_{0}}= & \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T} K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X_{i}\right) \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i} g^{\prime}(0) \beta_{0}^{T} X_{i}-\frac{1}{2}\right) Y_{i} X_{i} X_{i}^{T} K_{h}^{\prime}\left(g^{\prime}(0) \beta_{0}^{T} X_{i}\right)
\end{aligned}
$$

Using almost the same proof as that for (S0.1), we obtain that

$$
\begin{aligned}
& E\left\{\left(Y g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\right) Y X X^{T} K_{h}^{\prime}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right\} \\
& =E\left\{\left[g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\left\{2 g\left(\beta_{0}^{T} X\right)-1\right\}\right] X X^{T} K_{h}^{\prime}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right\} \\
& =E\left\{\left[h U+\frac{1}{2}-g\left(\frac{h U}{g^{\prime}(0)}\right)\right] X X^{T} K^{\prime}(U) / h\right\} \\
& =E\left[\left\{g^{\prime \prime}(0) \frac{h^{2} U^{2}}{2 g^{\prime 2}(0)}-g^{\prime \prime \prime}(\xi) \frac{h^{3} U^{3}}{6 g^{\prime 3}(0)}\right\} X X^{T} K^{\prime}(U) / h\right] \\
& \rightarrow 0 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& E\left\{X X^{T} K_{h}\left(g^{\prime}(0) \beta_{0}^{T} X\right)\right\}=\frac{1}{h} E\left\{X X^{T} K(U)\right\} \\
& =\frac{1}{h} \int_{u \in[-1,1]} x x^{T} K(u) f\left(x_{2}, \ldots, x_{p}\right) d x_{2} \cdots d x_{p} \\
& \rightarrow \frac{1}{\left|\beta_{0 p}\right| g^{\prime}(0)} \int_{u \in[-1,1]}\left(\begin{array}{cc}
1 & z^{T} \\
z & z z^{T}
\end{array}\right) K(u) f\left(x_{2}, \ldots, x_{p-1},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) d u d x_{-p} \\
& =D
\end{aligned}
$$

for the D defined in (16). By the law of large numbers,

$$
\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=g^{\prime}(0) \beta_{0}} \rightarrow 2 D
$$

in probability. We further calculate the covariance matrix of $L\left(g^{\prime}(0) \beta_{0}\right)$.
From (S0.1), we have $E\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\} \asymp h^{2}$. Then
$\operatorname{Cov}\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\}$
$=\frac{4}{n h^{2}} E\left[\left\{Y g^{\prime}(0) \beta_{0}^{T} X-\frac{1}{2}\right\}^{2} X X^{T} K^{2}\left(\frac{g^{\prime}(0) \beta_{0}^{T} X}{h}\right)\right]$
$-\frac{1}{n} E\left\{L\left(g^{\prime}(0) \beta_{0}\right) L\left(g^{\prime}(0) \beta_{0}\right)^{T}\right\}$
$=\frac{4}{n h^{2}} E\left[\left\{\frac{1}{4}-\left(2 g\left(\beta_{0}^{T} X\right)-1\right) g^{\prime}(0) \beta_{0}^{T} X+\left(g^{\prime}(0) \beta_{0}^{T} X\right)^{2}\right\} X X^{T} K^{2}\left(\frac{g^{\prime}(0) \beta_{0}^{T} X}{h}\right)\right]$
$-\frac{1}{n} E\left\{L\left(g^{\prime}(0) \beta_{0}\right) L\left(g^{\prime}(0) \beta_{0}\right)^{T}\right\}$
$=\frac{4}{n h^{2}} E\left[\left\{\frac{1}{4}-h^{2} U^{2}-g^{\prime \prime}(0) \frac{h^{3} U^{3}}{g^{\prime 2}(0)}-g^{\prime \prime \prime}(\xi) \frac{h^{4} U^{4}}{3 g^{\prime 3}(0)}\right\} X X^{T} K^{2}(U)\right]$
$-\frac{1}{n} E\left\{L\left(g^{\prime}(0) \beta_{0}\right) L\left(g^{\prime}(0) \beta_{0}\right)^{T}\right\}$.

Using the same argument as before, we obtain that

$$
\begin{aligned}
& \frac{1}{h} E\left[\left\{\frac{1}{4}-h^{2} U^{2}-g^{\prime \prime}(0) \frac{h^{3} U^{3}}{g^{\prime 2}(0)}-g^{\prime \prime \prime}(\xi) \frac{h^{4} U^{4}}{3 g^{\prime 3}(0)}\right\} X X^{T} K^{2}(U)\right] \\
& =\frac{1}{h} \int_{u \in[-1,1]}\left\{\frac{1}{4}-h^{2} U^{2}-g^{\prime \prime}(0) \frac{h^{3} U^{3}}{g^{\prime 2}(0)}-g^{\prime \prime \prime}(\xi) \frac{h^{4} U^{4}}{3 g^{\prime 3}(0)}\right\} x x^{T} \\
& \quad \times K^{2}(u) f\left(x_{2}, \ldots, x_{p}\right) d x_{2} \cdots d x_{p} \\
& \rightarrow \int_{u \in[-1,1]} \frac{K^{2}(u)}{4\left|\beta_{0 p}\right| g^{\prime}(0)}\left(\begin{array}{cc}
1 & z^{T} \\
z & z z^{T}
\end{array}\right) f\left(x_{2}, \ldots, x_{p-1},-\frac{\left(\beta_{0}^{T} x\right)_{-p}}{\beta_{0 p}}\right) d u d x_{-p} \\
& =\frac{V_{k} D}{4}
\end{aligned}
$$

This shows that

$$
\operatorname{Cov}\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\} \asymp 1 /(n h)
$$

since $E\left\{L\left(g^{\prime}(0) \beta_{0}\right) L\left(g^{\prime}(0) \beta_{0}\right)^{T}\right\} \asymp h^{4}$. By the central limit theorem,

$$
\sqrt{n h}\left[L\left(g^{\prime}(0) \beta_{0}\right)-E\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\}\right] \rightarrow N_{p}\left(0, V_{k} D\right)
$$

in distribution. Since $E\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right\} \asymp h^{2}$, we have

$$
\begin{equation*}
\sqrt{n h} L\left(g^{\prime}(0) \beta_{0}\right) \rightarrow N_{p}\left(0, V_{k} D\right) \tag{S0.3}
\end{equation*}
$$

in distribution, under the assumed condition that $n h^{5} \rightarrow 0$.
Based on the minimum distance theory (Newey and Mcfadden, 1994), let $Q(\beta)=L(\beta)^{T} L(\beta)$ and define

$$
\hat{\beta}=\operatorname{argmin}_{\beta} Q(\beta) .
$$

The local identification can be verified since $\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=g^{\prime}(0) \beta_{0}}$ is positive definite. Next, to show $\hat{\beta} \rightarrow g^{\prime}(0) \beta$ in probability, the proof is similar to that of Lemma 1 of Qin and Lawless (1994). Denote $\beta=g^{\prime}(0) \beta_{0}+u(n h)^{-1 / 3}$ for $\beta \in\left\{\beta \mid\left\|\beta-g^{\prime}(0) \beta_{0}\right\|=(n h)^{-1 / 3}\right\}$, where $\|u\|=1$ and $\|\cdot\|$ denotes Euclidean norm.

First, we give a lower bound for $Q(\beta)$ when β belongs to the ball $\| \beta-$ $g^{\prime}(0) \beta_{0} \| \leq(n h)^{-1 / 3}$. By Taylor expansion and (S0.3), we have (uniformly for u)

$$
\begin{aligned}
& Q(\beta)=\left\{L\left(g^{\prime}(0) \beta_{0}\right)+L^{\prime}\left(g^{\prime}(0) \beta_{0}\right) u(n h)^{-1 / 3}\right\}^{T}\left\{L\left(g^{\prime}(0) \beta_{0}\right)\right. \\
&\left.\quad+L^{\prime}\left(g^{\prime}(0) \beta_{0}\right) u(n h)^{-1 / 3}\right\}+o\left((n h)^{-2 / 3}\right) \\
&=\left\{O\left((n h)^{-1 / 2}\right)+L^{\prime}\left(g^{\prime}(0) \beta_{0}\right) u(n h)^{-1 / 3}\right\}^{T}\left\{O\left((n h)^{-1 / 2}\right)\right. \\
&\left.\quad+L^{\prime}\left(g^{\prime}(0) \beta_{0}\right) u(n h)^{-1 / 3}\right\}+o\left((n h)^{-2 / 3}\right) \\
& \geq C \cdot(n h)^{-2 / 3}
\end{aligned}
$$

with $C>0$. Similarly, we have $Q\left(g^{\prime}(0) \beta_{0}\right)=O\left((n h)^{-1}\right)$. Since $Q(\beta)$ is a continuous function about β as β belongs to the ball $\left\|\beta-g^{\prime}(0) \beta_{0}\right\| \leq$ $(n h)^{-1 / 3}$, with probability tending to $1, Q(\beta)$ has a minimum $\hat{\beta}$ in the interior of the ball, and this $\hat{\beta}$ satisfies

$$
\left.\frac{\partial Q(\beta)}{\partial \beta}\right|_{\beta=\hat{\beta}}=\left.2 \frac{\partial L(\beta)^{T}}{\partial \beta}\right|_{\beta=\hat{\beta}} L(\hat{\beta})=0,
$$

which holds only when $L(\hat{\beta})=0$. That is with probability tending to 1 ,
$L(\beta)=0$ has a root in the interior of the ball $\left\|\beta-g^{\prime}(0) \beta_{0}\right\| \leq(n h)^{-1 / 3}$.
To prove (ii), by Taylors expansion, there exists a η between $\hat{\beta}$ and $g^{\prime}(0) \beta_{0}$ such that

$$
L(\hat{\beta})-L\left(g^{\prime}(0) \beta_{0}\right)=\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=\eta}\left(\hat{\beta}-g^{\prime}(0) \beta_{0}\right)
$$

which implies that

$$
(n h)^{1 / 2}\left\{\hat{\beta}-g^{\prime}(0) \beta_{0}\right\}=-(n h)^{1 / 2}\left\{\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=\eta}\right\}^{-1} L\left(g^{\prime}(0) \beta_{0}\right) .
$$

Using the fact that $\hat{\beta} \rightarrow g^{\prime}(0) \beta_{0}$ in probability, we have $\left\{\left.\frac{\partial L(\beta)}{\partial \beta}\right|_{\beta=\eta}\right\}^{-1} \rightarrow$ $(2 D)^{-1}$ in probability, which also implies that

$$
(n h)^{1 / 2}\left\{\hat{\beta}-g^{\prime}(0) \beta_{0}\right\}=-(n h)^{1 / 2}(2 D)^{-1} L\left(g^{\prime}(0) \beta_{0}\right)
$$

That is the asymptotic distribution of $(n h)^{1 / 2}\left\{\hat{\beta}-g^{\prime}(0) \beta_{0}\right\}$ is the same as the asymptotic distribution of $-(n h)^{1 / 2}(2 D)^{-1} L\left(g^{\prime}(0) \beta_{0}\right)$. Therefore,

$$
\sqrt{n h}\left\{\hat{\beta}-g^{\prime}(0) \beta_{0}\right\} \rightarrow N_{p}\left(0, V_{k} D^{-1} / 4\right)
$$

in distribution. This proves the results in (i)-(ii).
From the proofs of (i)-(ii), the bias of $\hat{\beta}$ as an estimator of $g^{\prime}(0) \beta_{0}$ is of the order h^{2} and the covariance matrix of $\hat{\beta}$ is of the order $(n h)^{-1}$. Hence, the asymptotic mean squared error of $\hat{\beta}$ is of the order $(n h)^{-1}+$ h^{4}. Therefore, the best rate of convergence to 0 in mean squared error is achieved when $h \asymp n^{-1 / 5}$. This proves part (iii) of the theorem.

For $j=1, \ldots, p-1$ and $k=1, \ldots, p-1$,

$$
\begin{aligned}
& \frac{\partial^{2} R(\beta)}{\partial \beta_{j} \partial \beta_{k}} \\
& =\frac{\partial^{2}}{\partial \beta_{j} \partial \beta_{k}} \int_{x_{p} \leq-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}} g\left(\beta_{0}^{T} x\right) f(x) d x+\frac{\partial^{2}}{\partial \beta_{j} \partial \beta_{k}} \int_{x_{p} \geq-\frac{\left(\beta^{T} x\right)_{-p}}{\beta_{p}}}\left\{1-g\left(\beta_{0}^{T} x\right)\right\} f(x) d x \\
& =\frac{\partial}{\partial \beta_{j}} \int\left[1-2 g\left(\left(\beta_{0}^{T} x\right)_{-p}-\frac{\beta_{0 p}}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right)\right] f\left(x_{-p},-\frac{1}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right) \frac{x_{k}}{\beta_{p}} d x_{-p} \\
& =\int \frac{2 \beta_{0 p} x_{j} x_{k}}{\beta_{p}^{2}} g^{\prime}\left(\left(\beta_{0}^{T} x\right)_{-p}-\frac{\beta_{0 p}}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right) f\left(x_{-p},-\frac{1}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right) d x_{-p} \\
& +\int\left[1-2 g\left(\left(\beta_{0}^{T} x\right)_{-p}-\frac{\beta_{0 p}}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right)\right] \frac{\partial}{\partial \beta_{j}}\left\{\frac{x_{k}}{\beta_{p}} f\left(x_{-p},-\frac{1}{\beta_{p}}\left(\beta^{T} x\right)_{-p}\right)\right\} d x_{-p}
\end{aligned}
$$

It is clear that

$$
\left.\frac{\partial^{2} R(\beta)}{\partial \beta \partial \beta^{T}}\right|_{\beta=g^{\prime}(0) \beta_{0}}=2 D
$$

Since, $\hat{\beta}-g^{\prime}(0) \beta_{0}=O_{p}\left((n h)^{-1 / 2}\right)$ and

$$
R(\hat{\beta})-R\left(g^{\prime}(0) \beta_{0}\right)=\left.\frac{1}{2}\left(\hat{\beta}-g^{\prime}(0) \beta_{0}\right)^{T} \frac{\partial^{2} R(\beta)}{\partial \beta \partial \beta^{T}}\right|_{\beta=g^{\prime}(0) \beta_{0}}\left(\hat{\beta}-g^{\prime}(0) \beta_{0}\right)\left\{1+o_{p}(1)\right\}
$$

we have

$$
R(\hat{\beta})-R\left(g^{\prime}(0) \beta_{0}\right)=O_{p}\left((n h)^{-1}\right) .
$$

This proves part (iv) of the theorem.

References

Newey, W. and Mcfadden, D. (1994). Large Sample Estimation and Hypothesis Testing. Springer, New York.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics 22, 300-325.

Cui Xiong
School of Statistics, East China Normal University, Shanghai 200241, China.

E-mail:cxiong531@163.com

Jun Shao

Department of Statistics, University of Wisconsin-Madison,
1300 University Ave., Madison, Wisconsin, 53706, U.S.A.
E-mail: shao@stat.wisc.edu

Lei Wang
LPMC and Institute of Statistics, Nankai University,
Tianjin 300071, China.
E-mail:leiwang.stat@gmail.com

