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Abstract: Convex optimization is an increasingly important theme in applications.

We consider the construction of a binary classification rule by minimizing the risk

based on a convex loss as a surrogate to the 0-1 loss. Compared with the approach

of directly estimating the conditional probability of the binary class label given

a vector of covariates, our proposed convex surrogate minimization approach is

computationally simpler and more efficient. We begin with a discussion of what

type of convex surrogate is valid. When the conditional probability model for

class label is parametric, we show that our proposed approach is either equivalent

to the traditional maximum likelihood method or a substitute for computational

saving. When the conditional probability model is semiparametric, we show how to

apply convex surrogate minimization in conjuncture with kernel weighting, which

results in an asymptotically valid classification rule. Some convergence rates are

established and empirical simulation results are presented.
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ing, 0-1 loss.

1. Introduction

In many social, economical, biological, and medical studies, it is important

to classify a subject into one of two classes based on a set of covariates observed

from the subject. Let Y = 1 and −1 be the labels of the two classes and X

be the p-dimensional vector of covariates observed from the subject. In most

applications, variability exists and, hence, X and Y are random. A classification

rule or discriminant function is any Borel function T from the range of X to

{1,−1} such that the subject is classified to class T (X) when X is observed. A

natural measure to evaluate the performance of a rule T is the misclassification

rate P (Y 6= T (X)), where P (·) is the probability with respect to the distribution

of (Y,X).

If the distribution of (Y,X) is known, then we can construct the optimal

classification rule T ∗(X) = sign(P (Y = 1|X) − P (Y = −1|X)), where sign(x)
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is the sign of x and P (Y = y|X) is the conditional probability given X. The

distribution of (Y,X) is usually unknown, and classification rules are constructed

using observations from a training sample, {(X1, Y1), . . . , (Xn, Yn)}, which is an

independent sample identically distributed as (Y,X). A statistical issue is how

to use the training sample to construct a classification rule that has a misclassi-

fication rate close to that of the optimal rule.

Throughout this paper we assume a model

P (Y = 1|X) = g(βT0 X), (1.1)

where β0 = (β01, . . . , β0p)
T is an unknown p-dimensional vector, aT denotes the

transpose of a vector a, g is either a known distribution function (the paramet-

ric case) or an unspecified distribution function (the semiparametric case), and

g(0) = 1/2 is assumed. Without loss of generality, we assume that the first com-

ponent of X is 1 so β01 is an intercept and that p > 1 and β0p 6= 0 so there is at

least one useful non-constant covariate. Under the monotonicity condition on g

and g(0) = 1/2, the optimal rule T ∗(X) = sign(βT0 X).

Since we know the form of the optimal rule T ∗, one way to construct a classi-

fication rule based on data from the training sample is to substitute the unknown

β0 in the optimal rule by an estimator β̂ based on data (X1, Y1), . . . , (Xn, Yn). Al-

though we need not worry about g in the optimal rule, whether or not g is known

actually affects the estimation of β0. When g is known, so that model (1.1) is

parametric, β0 can be estimated using the parametric method of maximum like-

lihood and the estimator is asymptotically (as n → ∞) normal and optimal.

When both g and β0 are unknown, model (1.1) is referred to as the single-index

model and β0 may be estimated by the method of sliced inverse regression (SIR)

proposed in Li (1991, 1992), sliced average variance estimation (SAVE) proposed

by Cook and Weisberg (1991), directional regression (DR) proposed in Li and

Wang (2007), and extended principal fitted components (EPFC) and likelihood

acquired directions (LAD) proposed in Cook and Forzani (2009). Although we

can only estimate cβ0 using these methods under the single-index model, it is

enough for classification because sign(βT0 X) = sign(cβT0 X) for any c > 0. These

estimation-based methods, however, rely on either a correct specification of the

function g in the parametric case or that E(bTX|βT0 X) is linear in βT0 X for any

p-dimensional vector b satisfied if X is elliptically symmetric (Li (1991)).

The purpose of this paper is to study a different approach for the construction

of a classification rule, a method that directly minimizes an estimated misclassi-

fication rate. We focus on rules having the form sign(βTX) for a p-dimensional



CONVEX SURROGATE MINIMIZATION IN CLASSIFICATION 355

vector β (which may not be β0 and may depend on data). Let `(α) be the 0-1

loss function that is 1 if α ≤ 0, and 0 otherwise. Then the misclassification rate

of any T (X) = sign(βTX) is the risk under the 0-1 loss,

R(β) = E{`(Y βTX)} = P (Y 6= sign(βTX)). (1.2)

The expectation and probability are with respect to the distribution of (Y,X).

Here R is a function of β as well as β0 and g, but we omit β0 and g for simplicity.

If β is an estimator, a function of the training data Tn = {(Y1, X1), . . . , (Yn, Xn)},
then the expectation is taken conditional on Tn, and R(β) is a function of β0, g,

and data Tn. Given the training data Tn and a fixed β, it is natural to estimate

R(β) by the sample average

R̂(β) =
1

n

n∑
i=1

`(Yiβ
TXi).

Then, we wish to find a classification rule with a β that minimizes the estimated

risk R̂(β), but such a procedure is computationally intractable (Arora et al.

(1997)). It has been suggested that one might replace the 0-1 loss `(α) by a convex

surrogate ϕ(α) so that the minimization is tractable, where ϕ is differentiable,

decreasing, and strictly convex (Zhang (2004); Bartlett, Jordan and McAuliffe

(2006); Nguyen, Wainwright and Jordan (2009)). Thus, we define Rϕ(β) =

E{ϕ(Y βTX)} to be the ϕ-risk, and look to find that the minimizer of Rϕ(β) as

a reasonable surrogate for the minimizer of R(β), that we can construct a rule

by minimizing the sample average

R̂ϕ(β) =
1

n

n∑
i=1

ϕ(Yiβ
TXi). (1.3)

This is called convex surrogate minimization (CSM). Although our primary goal

is classification, the minimizer of the risk function in (1.3) will be called the CSM

estimator of cβ0, where c > 0 and β0 is in (1.1).

Convexity is an increasingly important theme (Boyd and Vandenberghe

(2004)). One area in which this trend has been most salient is machine learning,

where computational efficiency is imperative and many of the most prominent

methods make significant use of convexity; for example, support vector machines

(Cristianini and Shawe-Taylor (2000); Schölkopf and Smola (2002)) and boosting

(Collins, Schapire and Singer (2002); Lebanon and Lafferty (2002)).

In Section 2, we establish a sufficient condition on the validity of a convex

surrogate ϕ in CSM in the sense that Rϕ(β) and R(β) share the same minimizer;

this leads to a CSM classification rule that converges to the optimal rule. This
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sufficient condition relates ϕ to the function g in (1.1). We show in Section 3 that,

when g is known, a CSM estimator is the same as the classical maximum likeli-

hood estimator (MLE) if the parametric likelihood is convex; otherwise the CSM

estimator differs from the MLE but is computationally more efficient because of

the convex optimization.

Section 4 is devoted to the case of unknown g, the single-index semiparamet-

ric model. We show how to use an approximate convex surrogate ϕ that is based

on a truncated quadratic loss function. The quadratic loss function, however, de-

pends on the derivative function of g. To avoid the estimation of the derivative

function of g, we apply a kernel weighting that enables us to use an approximate

convex surrogate depending on the derivative of g at 0 only. The derivative of

g at 0 does not need to be estimated since sign(βT0 X) = sign(cβT0 X) for any

c > 0. This method produces a classification rule that converges to the optimal

rule under reasonable conditions. It does not rely on the linearity condition and

is computationally simpler than such dimension-reduction methods as SIR or

SAVE. We obtain the asymptotic distribution of the proposed CSM estimator

and the convergence rate of the CSM classification rule. Some simulation results

are presented that assess the finite sample performance of the CSM estimator and

other estimators under the semiparametric setting. Technical details are given

in the Supplementary Material.

2. Convex Surrogates

A basic requirement for a convex surrogate ϕ is that the ϕ-risk Rϕ(β) =

E{ϕ(Y βTX)} has the same minimizer as the 0-1 risk R(β) = E{`(Y βTX)}. If

this is true for a convex ϕ, then the CSM based on ϕ and the training data can

produce a classification rule that converges to the optimal rule when the training

sample size n→∞. We study this issue in two steps.

2.1. Validity of a convex surrogate

For any given ϕ and β,

E{ϕ(Y βTX)|X = x} = g(βT0 x)ϕ(βTx) + {1− g(βT0 x)}ϕ(−βTx)

is the conditional ϕ-risk, where β0 is the true parameter value in (1.1). With

α0 = βT0 x and α = βTx, the conditional ϕ-risk in the previous express can be

written as

C(α) = g(α0)ϕ(α) + {1− g(α0)}ϕ(−α), (2.1)

termed the generic conditional ϕ-risk by Bartlett, Jordan and McAuliffe (2006).
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If a convex function ϕ has the property that α0 is a unique minimizer of the

generic conditional ϕ-risk C(α) defined by (2.1), then ϕ is called a valid convex

surrogate.

Theorem 1. For any continuous g satisfying 0 < g(α) = 1 − g(−α) < 1 for

α ∈ (−αb, αb) and g(α) 6= g(α0) for any α 6= α0, where g(αb) = 1 and g(−αb) = 0

(αb may be infinity), there exists a decreasing valid convex surrogate that depends

on g.

To establish this result, we construct a decreasing convex function ϕ of the

form

ϕ(α) =

{
ζ(α) 0 < α < αb,

λ(−α) −αb < α ≤ 0,
(2.2)

where αb is the upper bound for α, λ is an increasing, convex and differentiable

function, ζ is a decreasing and differentiable function with ζ(0) = λ(0), and both

ζ and λ are defined on [0, αb). Given λ, we look to find a decreasing convex

function ζ such that the solution of C ′(α) = 0 is α = α0, where C ′ is the

derivative of the function C in (2.1). From the definition of C in (2.1) and ϕ in

(2.2),

C ′(α) =

{
g(α0)ζ

′(α) + {1− g(α0)}λ′(α) 0 < α < αb,

−g(α0)λ
′(−α)− {1− g(α0)}ζ ′(−α) −αb < α ≤ 0.

If C ′(α0) = 0, then

0 =

{
g(α0)ζ

′(α0) + {1− g(α0)}λ′(α0) 0 < α0 < αb,

−g(α0)λ
′(−α0)− {1− g(α0)}ζ ′(−α0) −αb < α0 ≤ 0.

Since g(α) = 1−g(−α), as long as λ is chosen such that {(g−1)/g}λ′ is integrable,

the relationship between ζ and λ is

ζ ′(α) =
g(α)− 1

g(α)
λ′(α) or ζ(α) =

∫
g(α)− 1

g(α)
λ′(α)dα. (2.3)

The function ζ is convex if and only if [{g(α) − 1}/g(α)]λ′(α) is an increasing

function. Given g, such a function λ can be easily constructed (see Examples

1-2). Also, since λ′ > 0, ζ is a decreasing and convex function and

ζ ′(0) =
g(0)− 1

g(0)
λ′(0) = −λ′(0),

so that ϕ is differentiable and continuous at α = 0.

Without loss of generality, assume α0 > 0. With the chosen λ and ϕ given

by (2.3), if 0 < α < αb,
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C ′(α) = λ′(α)

{
g(α0)

g(α)− 1

g(α)
+ 1− g(α0)

}
=
λ′(α)

g(α)
{g(α)− g(α0)},

which is 0 at α = α0. Furthermore, since λ′(α) > 0 and g(α) 6= g(α0) for any

α 6= α0, α0 is the unique solution to C ′(α) = 0 for 0 < α < αb. If −αb < α ≤ 0,

then

C ′(α) = −g(α0)λ
′(−α)− {1− g(α0)}ζ ′(−α)

= −λ
′(−α)

g(−α)
[g(−α)− {1− g(α0)}]

= −λ
′(−α)

g(−α)
{g(α0)− g(α)} < 0.

Hence, α0 is the unique minimizer of C(α) and ϕ in (2.2)-(2.3) is valid.

To summarize, under the parametric case, we need to find an increasing,

convex, and differentiable function λ such that {(g−1)/g}λ′ is an increasing and

integrable function. A valid surrogate ϕ can then be obtained by (2.2)-(2.3). For

a given g, there may be many valid convex surrogates.

Example 1 (Logistic model). Under the logistic model, g(α) = exp(α)/{1 +

exp(α)}, α ∈ (−αb, αb) with αb = ∞. We first consider λ(α) = exp(α). Then

ζ ′(α) = {(g(α)− 1)/g(α)}λ′(α) = −1 is a constant, and

ϕ(α) =

{
−α+ 1 α ≥ 0,

exp(−α) α < 0,

is a convex function. Without loss of generality, consider α0 > 0 and α > 0, so

α = α0 is a unique solution to

C ′(α) = − exp(α0)

1 + exp(α0)
+

1

1 + exp(α0)
exp(α) = 0.

Next, consider λ(α) = exp(α/2). So ζ ′(α) = − exp(−α/2)/2, and ϕ(α) =

exp(−α/2), the exponential loss function in Zhang (2004). Then with λ(α) =

exp(α/3), ζ ′(α) = − exp(−2α/3)/3, and

ϕ(α) =


1

2
exp

(
−2α

3

)
+

1

2
α ≥ 0,

exp
(
−α

3

)
α < 0.

Example 2 (Truncated linear model). Let

g(α) =


0 α < − 1

2b
,

1

2
+ bα − 1

2b
≤ α ≤ 1

2b
,

1 α >
1

2b
,
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where b is a constant. In this case, αb = 1/(2b). If λ(α) = (bα + 1/2)2, then

ζ ′(α) = 2b(bα − 1/2) is increasing in α, and ϕ(α) = (1/2− bα)2 for α ≤ 1/(2b).

Since ζ ′(1/(2b)) = 0, ζ(α) = 0 for all α > 1/(2b). Hence,

ϕ(α) =


(

1

2
− bα

)2

α ≤ 1

2b
,

0 α >
1

2b
,

(2.4)

which is truncated quadratic loss in Bartlett, Jordan and McAuliffe (2006).

2.2. The risk function and its minimizers

The risk function for the classification rule T (X) = sign(βTX) under the

0-1 loss is

R(β) = E{`(Y βTX)} = E[E{`(Y βTX)|X}]
= E

{
P (Y = 1, βTX ≤ 0|X) + P (Y = −1, βTX ≥ 0|X)

}
=

∫
βTx≤0

g(βT0 x)dF (x) +

∫
βTx>0

{1− g(βT0 x)}dF (x)

=

∫
βTx≤0

{2g(βT0 x)− 1}dF (x) +

∫
{1− g(βT0 x)}dF (x), (2.5)

where F is the joint cumulative distribution function of X. Figure 1 shows a

3d plot of the function R(β) for g(βTX) = exp(β1x1 + β2x2)/{1 + exp(β1x1 +

β2x2)}, and (x1, x2) is bivariate normal with mean zero and identity matrix as

the covariance matrix. From Figure 1, when β1 = β2, the risk function R(β) is

minimized.

In general, it can be seen from (2.5) that if we choose β = cβ0 with a

constant c > 0, then the first integral on the right side of (2.5) is 0 and R(β)

reaches its minimum
∫
{1 − g(βT0 x)}dF (x), cβ0 is a minimizer of R(β) for any

c > 0 (the minimizer is not unique). The proof of the following is given in the

Supplementary Material.

Lemma 1. If the non-constant part of X has a density f , and f and g are

continuous, then R(β) is differentiable at β = cβ0 for any constant c > 0 and

∂R(β)/∂β|β=cβ0
= 0.

We now turn to the ϕ-risk for convex surrogate ϕ, Rϕ(β) = E{ϕ(Y βTX)}.
We take Ψ(β0) to be a set of valid convex surrogates ϕ,

Ψ(β0) = {ϕ : convex, differentiable, for any x (2.6)

g(βT0 x)ϕ′(βT0 x) + {1− g(βT0 x)}ϕ′(−βT0 x) = 0}.
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Figure 1. The plot of 0-1 risk R(β).

From Theorem 1, Ψ(β0) is not empty. Unlike the 0-1 risk, for any ϕ ∈ Ψ(β0), the

minimizer of ϕ-risk is unique. The proof of the following is in the Supplementary

Material.

Lemma 2. Let ϕ ∈ Ψ(β0) with finite
∫

supβ∈N |ϕ′(βTx)|xdF (x) and∫
supβ∈N |ϕ′′(βTx)|xTxdF (x), where N is a neighborhood of β0. Then, the

unique minimizer of Rϕ(β) over β is at β = β0.

By Lemma 1, the minimizers of the 0-1 risk R(β) form a set {cβ0 : c > 0},
and, by Lemma 2, the minimizer of Rϕ(β) is unique for each ϕ ∈ Ψ under minor

conditions. For any positive constant c, cβ0 is actually a minimizer of the ϕc-risk

with ϕc(α) = ϕ(cα), which is a valid convex surrogate if ϕ is a valid convex

surrogate.

These conclusions help us to simplify the problem in the semiparametric case

by ignoring an unknown constant (slope).

3. Applications in Parametric Models

When g is known, model (1.1) is parametric and we can apply maximum-

likelihood estimation (MLE) to estimate the unknown β0. The likelihood based

on training data (Yi, Xi), i = 1, . . . , n, is

L(β) =

n∏
i=1

g
(
βTXi

)(1+Yi)/2 {
1− g

(
βTXi

)}(1−Yi)/2
,

the joint probability mass function of Y1, . . . , Yn conditioned on Xi, i = 1, . . . , n.

Classical asymptotic theory shows that the MLE is asymptotically normal with
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mean β0 and asymptotic covariance matrix

1

n

[
E

{
XXT g′2(βT0 X)

g(βT0 X)g(−βT0 X)

}]−1
(3.1)

under the conditions on g in Theorem 1, where g′ is the derivative of g, and that

the MLE is optimal in the sense that any other asymptotically normal estimator

of β0 has asymptotic covariance matrix no smaller than that in (3.1) in terms of

matrix ordering.

The CSM estimator based on a convex surrogate ϕ is obtained by minimizing

the empirical ϕ-risk defined in (1.3),

1

n

n∑
i=1

ϕ(Yiβ
TXi).

Let ϕ be given by (2.2) with ζ ′(α) = [{g(α)− 1}/g(α)]λ′(α). Then

ϕ(Yiβ
TXi) =


1 + Yi

2
ζ(βTXi) +

1− Yi
2

λ(βTXi) if βTXi > 0,

1 + Yi
2

λ(−βTXi) +
1− Yi

2
ζ(−βTXi) if βTXi ≤ 0,

∂ϕ(Yiβ
TXi)

∂β

=


1 + Yi

2
Xi
g(βTXi)− 1

g(βTxi)
λ′(βTXi) +

1− Yi
2

Xiλ
′(βTXi) if βTXi > 0

−1 + Yi
2

Xiλ
′(−βTXi)−

1− Yi
2

Xi
g(−βTXi)− 1

g(−βTXi)
λ′(−βTXi) if βTXi ≤ 0

=
Xiλ

′(|βTXi|)
2g(|βTXi|)

{
2g(βTXi)− 1− Yi

}
.

Consequently, the CSM estimator is obtained by solving

H(β) =
∂

∂β

{
n∑
i=1

ϕ(Yiβ
TXi)

}
=

n∑
i=1

Xiλ
′(|βTXi|)

2g(|βTXi|)
{

2g(βTXi)− 1− Yi
}

= 0.

Since H(β) is a sum of independent and identically distributed random vectors,

the solution is asymptotically normal with mean β0 and asymptotic covariance

matrix

n−1[E{H ′(β0)}]−1Cov(H(β0))[E{H ′(β0)}]−1, (3.2)

where H ′(β) = ∂H(β)/∂β,

E{H ′(β0)} = E

{
XXT λ

′(|βT0 X|)g′(βT0 X)

g(|βT0 X|)

}
,
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Cov(H(β0)) = E

{
XXT λ

′2(|βT0 X|)g(βT0 X)g(−βT0 X)

g2(|βT0 X|)

}
.

Comparing (3.1) and (3.2), we conclude that the matrices in (3.1) and (3.2) are

the same if and only if the λ function satisfies λ′(α) = g′(α)/{1 − g(α)}, or

ϕ(α) = − log(g(α)) provided − log(g(α)) is convex.

Conclusion 1. Thus, when − log{g} is a convex function and g satisfies the

conditions in Theorem 1, the CSM with ϕ = − log(g) is equivalent to the MLE.

The CSM estimators with other ϕ’s have asymptotic covariance matrices given

by (3.2) and are asymptotically less efficient than the MLE, but may be compu-

tationally more efficient.

Example 1 (continued). Consider the logistic model with g(α) = exp(α)/{1 +

exp(α)}. If model (1.1) is viewed as a generalized linear model, then the logistic

model corresponds to the canonical link (McCullagh and Nelder (1989)). It is

well known that − log of likelihood is convex in this case. In fact, − log(g(α)) =

log(1 + exp(−α)) is convex. The CSM with ϕ(α) = log(1 + exp(−α)) is the same

as the MLE.

Consider the CSM with the convex surrogate ϕ(α) = exp(−α/2) given in

Example 1 in Section 2. From the previous discussion, this CSM is not equivalent

to the MLE. We compared in a simulation the MLE and CSM with ϕ(α) =

exp(−α/2) in a logistic model with a 5-dimensional β0 = (β01, . . . , β05)
T and

X = (1, ξ2, . . . , ξ5)
T , where ξ2, . . . , ξ5 are independent standard normal random

variables. The sample size was n = 200 and the simulation size was 1,000. Table

1 shows the means and root mean squared errors (rmse) of the estimated ratios

β0j/β01, j = 2, . . . , 5. The true values of the ratios and the time used to compute

the estimators are also included in the table. All estimators were computed using

the R function “optimize”.

From Table 1, both estimators are almost unbiased and the CSM estimator

has a larger but comparable rmse. However, the CSM is much faster.

Example 1A (probit model). Consider probit model, g(α) in (1.1) is Φ(α), the

standard normal cumulative distribution function. We can show that ϕ(α) =

− log Φ(α) is convex so that the conclusions are the same as those in the logistic

model. We have

ϕ′(α) = −Φ′(α)

Φ(α)
and ϕ′′(α) = −Φ′′(α)Φ(α)− {Φ′(α)}2

{Φ(α)}2
.

For the normal, Φ′′(α) = −αΦ′(α), so
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Table 1. Simulation mean, rmse, and time under the logistic model.

simulation size = 1,000
n = 200

true ratio CSM MLE
β02/β01 = 0.5 mean 0.524 0.521

rmse 0.210 0.204
β03/β01 = 1 mean 1.036 1.030

rmse 0.256 0.248
β04/β01 = 0.5 mean 0.529 0.526

rmse 0.213 0.211
β05/β01 = 0 mean 0.001 0.003

rmse 0.196 0.188
time in seconds 49.87 274.28

ϕ′′(α) =
Φ′(α)

{Φ(α)}2
{αΦ(α) + Φ′(α)} =

Φ′(α)

{Φ(α)}2

∫ α

−∞
Φ(t)dt > 0,

which proves that ϕ(α) = − log Φ(α) is convex.

Example 2 (continued). Consider the truncated linear model

P (Y = 1|X) =



0 βT0 X ≤ −
1

2
,

1

2
+ βT0 X −1

2
< βT0 X ≤

1

2
,

1 βT0 X >
1

2
,

with β0 = (β01, . . . , β05)
T = (0.25, 0.5, 0.25, 0.5, 0.5)T and X the same as that

in Example 1. Here − log of likelihood is not convex. If we use the truncated

quadratic loss in (2.4) (Bartlett, Jordan and McAuliffe (2006)) as the convex

surrogate, the CSM and MLE differ. The simulation results given in Table 2

show that the MLE is worse than the CSM when n = 200 in terms of rmse;

although the MLE is asymptotically optimal, when − log(g(α)) is not convex,

the MLE requires a large n to appreciate the asymptotic effect. To show this we

ran an additional simulation with n = 500. The results are in Table 2 and show

that the MLE is slightly better than the CSM. The computational gain in using

the CSM is larger in this case because the MLE is not a convex optimization.

We conclude that when − log{g(α)} is not convex, the CSM can be used as

a substitute for the MLE for computational saving. Because of the complexity

in computing the MLE, the CSM estimators may be better than the MLE with

not very large n, although they are asymptotically less efficient than the MLE.
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Table 2. Simulation mean, rmse, and time under the truncated linear model.

simulation size = 1,000
n = 200 n = 500

true ratio CSM MLE CSM MLE
β02/β01 = 2 mean 2.075 2.095 2.025 2.018

rmse 0.489 0.588 0.257 0.243
β03/β01 = 1 mean 1.044 1.060 1.008 1.006

rmse 0.305 0.355 0.159 0.142
β04/β01 = 2 mean 2.086 2.110 2.022 2.016

rmse 0.504 0.609 0.258 0.251
β05/β01 = 2 mean 2.083 2.108 2.022 2.012

rmse 0.510 0.613 0.259 0.251
time in seconds 53.22 387.55 101.56 829.39

When− log{g(α)} is not convex, there may not exist an optimal CSM estima-

tor in terms of either estimation efficiency or computation complexity. Because

the CSM is mainly for computational saving, it is not necessary to find a ϕ hav-

ing the optimal computation efficiency. Using the asymptotic covariance matrix

given by (3.2), we can perform some numerical studies to choose a surrogate ϕ

having reasonable estimation efficiency. For example, in the three examples in

this section, we have found some good surrogates.

4. Applications in Semiparametric Models

We now consider model (1.1) with unknown g and β0, a semiparametric

model. Although Theorem 1 shows the existence of a valid convex surrogate,

when g is unknown it is difficult to find a valid convex surrogate. We pro-

pose a method of constructing an approximate convex surrogate and establish

its asymptotic properties in Section 4.1, then provide some empirical results in

Section 4.2.

4.1. Method and theory

Our idea is to first linearize g at 0 and consider the truncated quadratic loss

in (2.4), which produces a valid convex surrogate ϕ when g is actually linear.

After obtaining a ϕ, we apply kernel weighting to overcome the difficulty that g

is not linear.

Consider the Taylor expansion of g(α) at α = 0,

g(α) ≈ g(0) + g′(0)α. (4.1)

Although g(0) = 1/2, the derivative g′(0) is unknown. From the discussion at
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the end of Section 2.2, if ϕ(α) is valid, so is ϕ(cα) for any c > 0. Thus, we need

not estimate the unknown g′(0). If g is actually linear, then ≈ in (4.1) is an

equality, and, based on Example 2, we can use the convex surrogate

ϕ̃(α) =


(

1

2
− α

)2

α ≤ 1

2
,

0 α >
1

2
.

(4.2)

Still, (4.1) is an approximation that only holds for α near 0 when g is not linear.

Therefore, minimizing the ϕ̃-risk R̂ϕ̃(β) = n−1
∑n

i=1 ϕ̃(Yiβ
TXi) may not lead to

a satisfactory result since Yiβ
TXi may not be close to 0 for all i. To overcome

this, we apply kernel weighting in conjuncture with the convex surrogate ϕ̃ in

(4.2). Minimizing
∑n

i=1 ϕ̃(Yiβ
TXi) is the same as solving

1

n

n∑
i=1

ϕ̃′(Yiβ
TXi)YiXi = 0. (4.3)

Let K be a symmetric probability density function, a kernel with support [−1, 1]

and

BK =

∫ 1

−1
u2K(u)du <∞ and VK =

∫ 1

−1
K2(u)du <∞,

and let h > 0 be a bandwidth and Kh(t) = K(t/h)/h. Then, we replace (4.3) by

the kernel weighted version,

1

n

n∑
i=1

ϕ̃′(Yiβ
TXi)YiXiKh(βTXi) = 0. (4.4)

By suitably choosing the bandwidth h, the solution of (4.4) is asymptotically

valid.

Solving (4.4) is not a convex optimization since the weightKh(βTXi) involves

β. We have to apply an algorithm such as Newton’s method. This is the price

we pay for using a semiparametric model.

The solution to (4.4) estimates g′(0)β0, g
′(0) > 0. The proof of the following

is given in the Supplementary Material.

Theorem 2. Let β̂ the solution of (4.4). Assume the parameter space for β0 is a

compact set; model (1.1) holds with an unknown g that is third order differentiable

with bounded third order derivative; K satisfies the basic kernel conditions, h→
0, nh → ∞, and nh5 → 0 as n → ∞; and the non-constant part of X has a

continuous density f > 0. Assume further that the matrix

D =
1

|β0p|g′(0)

∫ (
1 zT

z zzT

)
f (z) dx2 · · · dxp−1 (4.5)
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is positive definite, where z is the (p − 1)-dimensional vector whose first p − 2

components are x2, . . . , xp−1 and the last component is −(β01 + β02x2 + · · · +
β0(p−1)xp−1)/β0p, and β0j is the jth component of β0. Then, as n→∞,

(i) β̂ converges in probability to g′(0)β0;

(ii) (nh)1/2{β̂ − g′(0)β0} converges in distribution to the p-dimensional multi-

variate normal distribution with mean 0 and covariance matrix VKD
−1/4;

(iii) based on the asymptotic mean squared error of β̂ − g′(0)β0, the optimal

choice of h is h � n−1/5, where a � b means a = O(b) and b = O(a);

(iv) If R(β) is the 0-1 risk defined at (1.2), and if the density f is continuously

differentiable, then, R(β̂) = R(β0) +Op(n
−4/5) when h � n−1/5.

In applications we need to choose a bandwidth h for a fixed sample size n.

There is a rich literature on bandwidth selection in applying a kernel method.

One can apply cross-validation, leaving out one data point at a time, and choosing

the value of h that minimizes

CV(h) =
1

n

n∑
i=1

`(Yiβ̂
T
(−i)Xi),

where β̂(−i) is the solution to (4.4) with the ith term in the summation deleted.

Here `(Yiβ̂
T
(−i)Xi) is the loss when we classify the ith subject in the training

data set by using the CSM classification rule based on the data set with (Yi, Xi)

removed from the original data set. Thus, CV(h) quantifies the classification

accuracy of the CSM based on h.

4.2. Simulation results

This section presents some results from two simulation studies under the

semiparametric model (1.1) with unknown g and β0, so as to illustrate the fi-

nite sample performance of the CSM and compare it with the estimation-based

methods SIR, SAVE, DR, EPFC, and LAD. These five are dimension-reduction

methods, which can be applied by using the available LDR package in Matlab.

In the first simulation study we generated X1, . . . , Xn from a multivariate

normal distribution so that the linearity condition described in Section 1 was

satisfied and all estimators were asymptotically normal with mean cβ0 for some

c > 0. In the second simulation study X1, . . . , Xn were generated from a distri-

bution that did not satisfy the linearity condition. In both cases all components

of X were non-constant, and we knew that the intercept was 0.

4.2.1. Results under a multivariate normal X

In the first simulation study, P (Y = 1|X) = exp(βT0 X)/{1+exp(βT0 X)} and
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Table 3. Simulation results for the first simulation study.

simulation size = 1,000
n = 100

true value SIR SAVE DR EPFC LAD CSM
β02/β01 = 0.5 mean 0.512 0.544 0.516 0.510 0.511 0.509

rmse 0.199 0.408 0.221 0.208 0.202 0.198
β03/β01 = 1 mean 1.028 1.003 1.027 1.030 1.024 1.030

rmse 0.283 0.976 0.301 0.298 0.280 0.278
β04/β01 = 0.5 mean 0.516 0.493 0.515 0.518 0.519 0.517

rmse 0.213 0.702 0.218 0.220 0.217 0.202
β05/β01 = 0 mean 0.002 −0.044 −0.000 0.002 0.001 0.003

rmse 0.171 0.687 0.192 0.181 0.178 0.162
R(β0) = 0.157 mean 0.168 0.182 0.169 0.169 0.168 0.168

rmse 0.052 0.069 0.052 0.052 0.052 0.051

X ∼ N5(0, I5), where β0 = (2, 1, 2, 1, 0)T is 5-dimensional and I5 is the identity

matrix of order 5. From the previous discussion we know that it is enough to

estimate cβ0 for classification. Thus, we considered the estimation of the ratios

β0j/β01, j = 2, . . . , 5 with the true value (0.5, 1, 0.5, 0), where β0j is the jth

component of β0.

The results in Table 3 are based on n = 100 and the simulation size 1,000.

We calculated the means and root mean squared errors (rmse) of estimators of

β0j/β01 based on the SIR, SAVE, DR, EPFC, LAD, and CSM. To evaluate the

performance of the classification, in each simulation run we generated another

sample {(Ỹ1, X̃1), . . . , (Ỹm, X̃m)} of size m = 50 from the distribution of (Y,X),

independent of {(Y1, X1), . . . , (Yn, Xn)}, and calculated the sample average of

the loss, R̂(β̂) = m−1
∑m

i=1 `(Ỹiβ̂
T X̃i), for β̂ obtained using each method under

consideration; this can be treated as an estimate of the misclassification rate by

using β̂. The simulation mean and rmse of R̂(β̂) for each method is included in

Table 3.

From this table, all the methods have good performances, except that SAVE

has a larger rmse and slightly worse misspecification rate than the other methods.

4.2.2. Results under an asymmetric X

In the second simulation study, P (Y = 1|X) = Φ(βT0 X) and each component

of X had an asymmetric mixture distribution (1/2)N(1, 2) + (1/2)N (−(1/2), 1).

The vector β0 was 6-dimensional with the true ratios (0.5, 1, 0.5, 0, 0). The sim-

ulation results are given in Table 4.

Under this setting, the linearity condition described in Section 1 does not
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Table 4. Simulation results for the second simulation study.

simulation size = 1,000
n = 100

true value SIR SAVE DR EPFC LAD CSM
β02/β01 = 0.5 mean 0.545 0.488 0.544 0.547 0.523 0.524

rmse 0.181 0.800 0.185 0.186 0.169 0.141
β02/β01 = 1 mean 1.022 1.056 1.028 1.020 1.025 1.020

rmse 0.204 1.455 0.212 0.214 0.205 0.172
β02/β01 = 0.5 mean 0.540 0.454 0.536 0.541 0.513 0.516

rmse 0.172 1.297 0.173 0.177 0.164 0.139
β02/β01 = 0 mean 0.007 0.001 0.004 0.009 0.006 0.020

rmse 0.139 0.337 0.152 0.144 0.128 0.111
β02/β01 = 0 mean −0.004 −0.020 −0.008 −0.005 0.002 0.017

rmse 0.141 0.563 0.156 0.144 0.129 0.112
R(β0) = 0.064 mean 0.083 0.104 0.085 0.085 0.082 0.076

rmse 0.043 0.079 0.043 0.043 0.041 0.039

hold and the asymptotic behaviors of SIR, SAVE, DR, EPFC, and LAD are

unknown. Theorem 2 for the CSM does not require the linearity condition and,

from Table 4, it is better than the other five methods in terms of rmse. SAVE

has a substantially larger rmse than all other methods, and also has the worst

misspecification rate. The CSM has the best misspecification rate although the

SIR, DR, EPFC, and LAD have misspecification rates close to that of the CSM.

Supplementary Materials

The supplementary material contains proofs of Lemmas 1-2 and Theorem 2.

Acknowledgment

The authors would like to thank two referees and an associate editor for

helpful comments and suggestions. The first and second authors’ research was

partially supported by the Chinese 111 Project B14019 and the US National

Science Foundation Grants DMS-1305474 and DMS-1612873. The last author’s

research was supported by the National Natural Science Foundation of China

(11501208) and Postdoctoral Science Foundation of China (2014M560317).

References

Arora, S., Babai, L., Stern, J. and Sweedyk, Z. (1997). The hardness of approximate optima in

lattices, codes, and systems of linear equations. Journal of Computer and System Sciences



CONVEX SURROGATE MINIMIZATION IN CLASSIFICATION 369

54, 317–331.

Bartlett, P. L., Jordan, M. I. and McAuliffe, J. D. (2006). Convexity, classification, and risk

bounds. Journal of the American Statistical Association 101, 138–156.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press,

Cambridge.

Collins, M., Schapire, R. E. and Singer, Y. (2002). Logistic regression, AdaBoost and Bregman

distances. Machine Learning 48, 253–285.

Cook, R. D. and Forzani, L. (2009). Likelihood-based sufficient dimension reduction. Journal of

the American Statistical Association 104, 197–208.

Cook, R. D. and Weisberg, S. (1991). Comment on “Sliced inverse regression for dimension

reduction”. Journal of the American Statistical Association 86, 328–332.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, Cambridge.

Lebanon, G. and Lafferty, J. (2002). Boosting and maximum likelihood for exponential models.

In Advances in Neural Information Processing Systems 14, 447–454.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the

American Statistical Association 102, 997–1008.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association 86, 316–327.

Li, K. C. (1992). On principal hessian directions for data visualization and dimension reduction:

Another application of Stein’s lemma. Journal of the American Statistical Association 87,

1025–1039.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models (Second Edition). Chapman

and Hall/CRC, London.

Nguyen, X. L., Wainwright, M. J. and Jordan, M. I. (2009). On surrogate loss functions and

f-divergences. The Annals of Statistics 37, 876–904.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels: Support Vector Machines, Regular-

ization, Optimization, and Beyond. MIT Press, Cambridge, MA.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex

risk minimization. The Annals of Statistics 32, 56–85.

School of Statistics, East China Normal University, Shanghai 200241, China.

E-mail: cxiong531@163.com

Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA.

E-mail: shao@stat.wisc.edu

LPMC and Institute of Statistics, Nankai University, Tianjin 300071, China.

E-mail: leiwang.stat@gmail.com

(Received November 2015; accepted July 2017)

mailto:cxiong531@163.com
mailto:shao@stat.wisc.edu
mailto:leiwang.stat@gmail.com

