Matrix Graph Hypothesis Testing and Application in Brain Connectivity Alternation Detection

Yin Xia and Lexin Li
Fudan University
University of California at Berkeley

Supplementary Material

S1 Lemmas

Define $U_{i, j, g}=\frac{1}{n_{g} q} \sum_{k=1}^{n_{g}} \sum_{l=1}^{q}\left\{\epsilon_{k, i, l}^{(g)} \epsilon_{k, j, l}^{(g)}-E\left(\epsilon_{k, i, l}^{(g)} \epsilon_{k, j, l}^{(g)}\right)\right\}$, for $g=1,2$. The following lemma states the results in the oracle case. Its proof can be obtained from Xia et al. (2015), with $n_{g} q$ inverse regression models instead.

Lemma 1. Suppose that (C1) and (C4) hold. Then we have

$$
\max _{1 \leq i \leq p}\left|\hat{r}_{i, i, g}-r_{i, i, g}\right|=o_{\mathrm{p}}\left[\{\log p /(n q)\}^{1 / 2}\right],
$$

and

$$
\tilde{r}_{i, j, g}=\tilde{R}_{i, j, g}-\tilde{r}_{i, i, g}\left(\hat{\beta}_{i, j, g}-\beta_{i, j, g}\right)-\tilde{r}_{j, j, g}\left(\hat{\beta}_{j-1, i, g}-\beta_{j-1, i, g}\right)+o_{\mathrm{p}}\left\{(n q \log p)^{-1 / 2}\right\},
$$

for $1 \leq i<j \leq p, g=1,2$, where $\tilde{R}_{i, j, g}$ is the empirical covariance between $\left\{\epsilon_{k, i, l}^{(g)}, k=\right.$ $\left.1, \ldots, n_{g}, l=1, \ldots, q\right\}$ and $\left\{\epsilon_{k, j, l}^{(g)}, k=1, \ldots, n_{g}, l=1, \ldots, q\right\}$. Consequently, uniformly in $1 \leq i<j \leq p$,

$$
\hat{r}_{i, j, g}-\left(\omega_{S_{g}, i, i} \hat{\sigma}_{i, i, \epsilon}^{(g)}+\omega_{S_{g}, j, j} \hat{\sigma}_{j, j, \epsilon}^{(g)}-1\right) r_{i, j, g}=-U_{i, j, g}+o_{\mathrm{p}}\left\{(n q \log p)^{-1 / 2}\right\}
$$

where $\left(\hat{\sigma}_{i, j, \epsilon}^{(g)}\right)=\frac{1}{n_{g} q} \sum_{k=1}^{n_{g}} \sum_{l=1}^{q}\left(\boldsymbol{\epsilon}_{k,, l}^{(g)}-\overline{\boldsymbol{\epsilon}}^{(g)}\right)\left(\boldsymbol{\epsilon}_{k, l}^{(g)}-\overline{\boldsymbol{\epsilon}}^{(g)}\right)^{\prime}, \boldsymbol{\epsilon}_{k, l}^{(g)}=\left(\epsilon_{k, 1, l}^{(g)}, \ldots, \epsilon_{k, p, l}^{(g)}\right)$ and $\overline{\boldsymbol{\epsilon}}^{(g)}=$ $\frac{1}{n_{g} q} \sum_{k=1}^{n_{g}} \sum_{l=1}^{q} \boldsymbol{\epsilon}_{k, l}^{(g)}$.

Lemma 2. Let $\boldsymbol{X}_{k} \sim N\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$ for $k=1, \ldots, n_{1}$ and $\boldsymbol{Y}_{k} \sim N\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$ for $k=1, \ldots, n_{2}$. Define $\tilde{\boldsymbol{\Sigma}}_{1}=\left(\tilde{\sigma}_{i, j, 1}\right)_{p \times p}=\frac{1}{n_{1}} \sum_{k=1}^{n_{1}}\left(\boldsymbol{X}-\boldsymbol{\mu}_{1}\right)\left(\boldsymbol{X}-\boldsymbol{\mu}_{1}\right)^{\mathrm{T}}$ and $\tilde{\boldsymbol{\Sigma}}_{2}=\left(\tilde{\sigma}_{i, j, 2}\right)_{p \times p}=\frac{1}{n_{2}} \sum_{k=1}^{n_{2}}(\boldsymbol{Y}-$ $\left.\boldsymbol{\mu}_{2}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}_{2}\right)^{\mathrm{T}}$. Then, for some constant $C>0, \tilde{\sigma}_{i, j, 1}-\tilde{\sigma}_{i, j, 2}$ satisfies the large deviation bound,

$$
\begin{aligned}
& \operatorname{pr}\left[\max _{(i, j) \in \mathcal{S}} \frac{\left(\tilde{\sigma}_{i, j, 1}-\tilde{\sigma}_{i, j, 2}-\sigma_{i, j, 1}+\sigma_{i, j, 2}\right)^{2}}{\operatorname{var}\left\{\left(X_{k, i}-\mu_{1, i}\right)\left(X_{k, j}-\mu_{1, j}\right)\right\} / n_{1}+\operatorname{var}\left\{\left(Y_{k, i}-\mu_{2, i}\right)\left(Y_{k, j}-\mu_{2, j}\right)\right\} / n_{2}} \geq x^{2}\right] \\
& \leq C|\mathcal{S}|\{1-\Phi(x)\}+O\left(p^{-1}\right),
\end{aligned}
$$

uniformly for $0 \leq x \leq(8 \log p)^{1 / 2}$ and any subset $\mathcal{S} \subseteq\{(i, j): 1 \leq i \leq j \leq p\}$.
Lemma 3. Suppose that (C1), (C5) and (C6) hold. Then we have, for $g=1,2$, uniformly in $1 \leq i \leq j \leq p$,

$$
\hat{r}_{i, j, g}^{d}-\left(\omega_{S_{g}, i, i} \hat{\sigma}_{i, i, \epsilon}^{(g)}+\omega_{S_{g}, j, j} \hat{\sigma}_{j, j, \epsilon}^{(g)}-1\right) r_{i, j, g}=-U_{i, j, g}+o_{\mathrm{p}}\left\{(n q \log p)^{-1 / 2}\right\}
$$

where $\hat{r}_{i, j, g}^{d}=-\left(\tilde{r}_{i, j, g}^{d}+\tilde{r}_{i, i, g}^{d} \hat{\beta}_{i, j, g}^{d}+\tilde{r}_{j, j, g}^{d} \hat{\beta}_{j-1, i, g}^{d}\right), \tilde{r}_{i, j, g}^{d}=1 /(n q) \sum_{k=1}^{n} \sum_{l=1}^{q} \hat{\epsilon}_{k, i, l, g}^{d} \hat{\epsilon}_{k, j, l, g}^{d}$, and $\hat{\epsilon}_{k, i, l, g}^{d}=Y_{k, i, l}^{(g)}-\left(\boldsymbol{Y}_{k,-i, l}^{(g)}\right)^{\mathrm{T}} \hat{\boldsymbol{\beta}}_{i, l, g}^{d}$ with $\boldsymbol{Y}_{k}^{(g)}=\boldsymbol{X}_{k}^{(g)} \hat{\boldsymbol{\Sigma}}_{T_{g}}^{-1 / 2}$.

This lemma is essentially proved in Theorems 5 and 6 in Xia and Li (2017).

S2 Proofs

S2.1 Proof of Theorem 1

By separation of the spatial and temporal dependence structures, we have the following $2 n q$ inverse regression models

$$
\left(\boldsymbol{X}_{k}^{(g)} \boldsymbol{\Sigma}_{T}^{-1 / 2}\right)_{i, l}=\left(\boldsymbol{X}_{k}^{(g)} \boldsymbol{\Sigma}_{T}^{-1 / 2}\right)_{-i, l} \boldsymbol{\beta}_{i, g}+\epsilon_{k, i, l}^{(g)}, \quad 1 \leq k \leq n, 1 \leq l \leq q, g=1,2 .
$$

We first show that \hat{t}, as defined in (9) in Algorithm 1, can be obtained in the range $\left(0,2(\log p)^{1 / 2}\right)$. Then we illustrate that the number of false rejections is close to $2\{1-\Phi(t)\}\left|\mathcal{H}_{0}\right|$, by first showing the terms in A_{τ} are negligible. We then focus on the set $\mathcal{H}_{0} \backslash A_{\tau}$ and prove the result.

Without loss of generality, throughout this proof, we assume that $\omega_{S_{g}, i, i}=1$ for $g=1,2$ and $i=1, \ldots, p$. For $g=1,2$, let

$$
V_{i, j}=\left(U_{i, j, 2}-U_{i, j, 1}\right) /\left\{\operatorname{var}\left(\epsilon_{k, i, l}^{(1)} \epsilon_{k, j, l}^{(1)}\right) /\left(n_{1} q\right)+\operatorname{var}\left(\epsilon_{k, i, l}^{(2)} \epsilon_{k, j, l}^{(2)}\right) /\left(n_{2} q\right)\right\}^{1 / 2}
$$

where $\operatorname{var}\left(\epsilon_{k, i, l}^{(g)} \epsilon_{k, j, l}^{(g)}\right)=r_{i, i, g} r_{j, j, g}\left(1+\eta_{i, j, g}^{2}\right)$ with $\eta_{i, j, g}^{2}=\beta_{i, j, g}^{2} r_{i, i, g} / r_{j, j, g}$. By Lemma 1 , we have

$$
\max _{1 \leq i \leq p}\left|\hat{r}_{i, i, g}-r_{i, i, g}\right|=O_{\mathrm{p}}\left[\{\log p /(n q)\}^{\frac{1}{2}}\right],
$$

and

$$
\max _{1 \leq i \leq p}\left|\hat{r}_{i, i, g}-\tilde{R}_{i, i, g}\right|=o_{\mathrm{p}}\left\{(n q \log p)^{-1 / 2}\right\} .
$$

Note that

$$
\max _{1 \leq i<j \leq p}\left(\hat{\beta}_{i, j, g}^{2} \hat{r}_{i, i, g} / \hat{r}_{j, j, g}-\eta_{i, j, g}^{2}\right)=o_{\mathrm{p}}(1 / \log p),
$$

and

$$
\max _{1 \leq i \leq j \leq p}\left|\omega_{S_{g}, i, i} \hat{\sigma}_{i, i, \epsilon}^{(g)}+\omega_{S_{g}, j, j} \hat{\sigma}_{j, j, \epsilon}^{(g)}-2\right|=O_{\mathrm{p}}\left\{(\log p /(n q))^{1 / 2}\right\} .
$$

As noted in Section 4.2, in the two-sample case, $\rho_{S_{1}, i, j}$ and $\rho_{S_{2}, i, j}$ are not necessarily equal to 0 under the null, and additional corrections are crucial. Toward that end, we divide the set of indices into two subsets, $\mathcal{H}_{0} \backslash A_{\tau}$ and A_{τ}, the former with a negligible correction and the latter requiring a major correction by $b_{i, j}$. Also note that for $(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}$, we have $\left|\omega_{S_{g}, i, j}\right|=o\left\{(\log p)^{-1}\right\}$. Then by Lemma 1. it is straightforward to see that, under Conditions (C1) and (C2), we have, for $(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}$,

$$
\max _{(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}}| | W_{i, j}\left|-\left|V_{i, j}\right|\right|=o_{\mathrm{p}}\left\{(\log p)^{-1 / 2}\right\} .
$$

For $(i, j) \in A_{\tau}$, as a result of Lemma 1, we have

$$
W_{i, j}=V_{i, j}+b_{i, j}+o_{\mathrm{p}}\left(\log p^{-1 / 2}\right),
$$

where $b_{i, j}=2\left\{\omega_{i, j}\left(\hat{\sigma}_{i, i, \epsilon}^{(1)}-\hat{\sigma}_{i, i, \epsilon}^{(2)}\right)+\omega_{i, j}\left(\hat{\sigma}_{j, j, \epsilon}^{(1)}-\hat{\sigma}_{j, j, \epsilon}^{(2)}\right)\right\} /\left(\hat{\theta}_{i, j, 1}+\hat{\theta}_{i, j, 2}\right)^{1 / 2}$. Note that

$$
\begin{aligned}
\left|b_{i, j}\right| \leq 2(& \left.\frac{2 \eta_{i, j}^{2}}{1+\eta_{i, j}^{2}}\right)^{\frac{1}{2}}\left[\frac{\left|\tilde{\sigma}_{i, i, \epsilon}^{(1)}-\tilde{\sigma}_{i, i, \epsilon}^{(2)}\right|}{\left\{\operatorname{var}\left(\left(\epsilon_{k, i, l}^{(1)}\right)^{2}\right) /\left(n_{1} q\right)+\operatorname{var}\left(\left(\epsilon_{k, i, l}^{(2)}\right)^{2}\right) /\left(n_{2} q\right)\right\}^{\frac{1}{2}}}\right. \\
& \left.+\frac{\left|\tilde{\sigma}_{j, j, \epsilon}^{(1)}-\tilde{\sigma}_{j, j, \epsilon}^{(2)}\right|}{\left\{\operatorname{var}\left(\left(\epsilon_{k, j, l}^{(1)}\right)^{2}\right) /\left(n_{1} q\right)+\operatorname{var}\left(\left(\epsilon_{k, j, l}^{(2)}\right)^{2}\right) /\left(n_{2} q\right)\right\}^{\frac{1}{2}}}\right]+o\left\{(\log p)^{-1 / 2}\right\},
\end{aligned}
$$

where $\tilde{\sigma}_{i, i, \epsilon}^{(s)}=n_{s}^{-1} \sum_{k=1}^{n_{s}} \sum_{l=1}^{q}\left(\epsilon_{k, i, l}^{(s)}\right)^{2}$. Thus, we have

$$
\begin{align*}
& \operatorname{pr}\left(\max _{(i, j) \in A_{\tau}} W_{i, j}^{2} \geq 4 \log p-\log \log p+t\right) \\
& \quad \leq \operatorname{Card}\left(A_{\tau}\right)\left\{\operatorname{pr}\left(V_{i, j}^{2} \geq \log p / 8\right)+\operatorname{pr}\left(b_{i, j}^{2} \geq 2 \log p\right)\right\}=o(1) \tag{S2.1}
\end{align*}
$$

where the last equality is a direct result of Lemma 2 .
Under the conditions of Theorem 1, we have

$$
\sum_{1 \leq i<j \leq p} I\left\{\left|W_{i, j}\right| \geq 2(\log p)^{1 / 2}\right\} \geq\left[1 /\left\{(8 \pi)^{1 / 2} \alpha\right\}+\delta\right]\left(\log _{2} p\right)^{1 / 2}
$$

with probability going to one. Henceforth, with probability going to one, we have

$$
\frac{\left(p^{2}-p\right) / 2}{\max \left\{\sum_{1 \leq i<j \leq p} I\left\{\left|W_{i, j}\right| \geq 2(\log p)^{1 / 2}\right\}, 1\right\}} \leq \frac{p^{2}-p}{2}\left\{\frac{1}{(8 \pi)^{1 / 2} \alpha}+\delta\right\}^{-1}\left(\log _{2} p\right)^{-1 / 2}
$$

Let $t_{p}=\left(4 \log p-\log _{2} p-\log _{3} p\right)^{1 / 2}$. Because $1-\Phi\left(t_{p}\right) \sim 1 /\left\{(2 \pi)^{1 / 2} t_{p}\right\} \exp \left(-t_{p}^{2} / 2\right)$, we have $\operatorname{pr}\left(1 \leq \hat{t} \leq t_{p}\right) \rightarrow 1$ according to the definition of \hat{t} in (9). Note that, for $0 \leq \hat{t} \leq t_{p}$,

$$
\frac{2\{1-\Phi(\hat{t})\}\left(p^{2}-p\right) / 2}{\max \left\{\sum_{1 \leq i<j \leq p} I\left\{\left|W_{i, j}\right| \geq 2(\log p)^{1 / 2}\right\}, 1\right\}}=\alpha .
$$

Thus to prove Theorem 1, it suffices to show that

$$
\frac{\left|\sum_{(i, j) \in \mathcal{H}_{0}}\left\{I\left(\left|W_{i, j}\right| \geq t\right)-G(t)\right\}\right|}{\left\{l_{0} G(t)\right\}} \rightarrow 0
$$

in probability, for $0 \leq t \leq\{4 \log p+o(\log p)\}^{1 / 2}$, where $G(t)=2\{1-\Phi(t)\}$.
If $t=\{4 \log p+o(\log p)\}^{1 / 2}$, by (S2.1) and Condition (C2), it suffices to show

$$
\begin{equation*}
\frac{\left|\sum_{(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}}\left\{I\left(\left|V_{i, j}\right| \geq t\right)-G(t)\right\}\right|}{\left\{l_{0} G(t)\right\}} \rightarrow 0 \tag{S2.2}
\end{equation*}
$$

If $t \leq(C \log p)^{1 / 2}$ with $C<4$, we have

$$
\left|\frac{\sum_{(i, j) \in A_{\tau} \cap \mathcal{H}_{0}}\left\{I\left(\left|W_{i, j}\right| \geq t\right)-I\left(\left|V_{i, j}\right| \geq t\right)\right\}}{l_{0} G(t)}\right| \leq \frac{2\left|A_{\tau} \cap \mathcal{H}_{0}\right|}{O\left(p^{2-C / 2}\right)} \rightarrow 0
$$

in probability. Thus, it is again enough to show that (S2.2) holds. This shows the negligibility of the highly dependent pairs. We arrange the indices $\left\{(i, j):(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}\right\}$ in any ordering and set them as $\left\{\left(i_{m}, j_{m}\right): m=1, \ldots, s\right\}$ with $s=\operatorname{Card}\left(\mathcal{H}_{0} \backslash A_{\tau}\right)$. Let $n_{1} / n_{2} \leq K$ with $K \geq 1, \theta_{m, g}=\operatorname{var}\left(\epsilon_{k, i_{m}, l}^{(g)} \epsilon_{k, j_{m}, l}^{(g)}\right)$, and define $Z_{k, m, l}=\left(n_{1} / n_{2}\right)\left\{\epsilon_{k, i_{m}, l}^{(2)} \epsilon_{k, j_{m}, l}^{(2)}-E\left(\epsilon_{k, i_{m}, l}^{(2)} \epsilon_{k, j_{m}, l}^{(2)}\right)\right\}$ for $1 \leq k \leq n_{2}$ and $1 \leq l \leq q$, and $Z_{k, m, l}=-\left\{\epsilon_{k, i_{m}, l}^{(1)} \epsilon_{k, j_{m}, l}^{(1)}-E\left(\epsilon_{k, i_{m}, l}^{(1)} \epsilon_{k, j_{m}, l}^{(1)}\right)\right\}$ for $n_{2}+1 \leq$ $k \leq n_{1}+n_{2}$ and $1 \leq l \leq q$. Define

$$
V_{m}=\left(n_{1}^{2} q \theta_{m, 2} / n_{2}+n_{1} q \theta_{m, 1}\right)^{-1 / 2} \sum_{k=1}^{n_{1}+n_{2}} \sum_{l=1}^{q} Z_{k, m, l}
$$

and

$$
\hat{V}_{m}=\left(n_{1}^{2} q \theta_{m, 2} / n_{2}+n_{1} q \theta_{m, 1}\right)^{-1 / 2} \sum_{k=1}^{n_{1}+n_{2}} \sum_{l=1}^{q} \hat{Z}_{k, m, l}
$$

where $\hat{Z}_{k, m, l}=Z_{k, m, l} I\left(\left|Z_{k, m, l}\right| \leq \tau_{n}\right)-E\left\{Z_{k, m, l} I\left(\left|Z_{k, m, l}\right| \leq \tau_{n}\right)\right\}$, and $\tau_{n}=32 \log (p+n q)$.
Note that $\max _{(i, j) \in \mathcal{H}_{0} \backslash A_{\tau}} V_{i, j}^{2}=\max _{1 \leq m \leq s} V_{m}^{2}$, and that

$$
\begin{array}{rl}
\max _{1 \leq m \leq s}(n q)^{-1 / 2} \sum_{k=1}^{n_{1}+n_{2}} \sum_{l=1}^{q} & E\left[\left|Z_{k, m, l}\right| I\left\{\left|Z_{k, m, l}\right| \geq 32 \log (p+n q)\right\}\right] \\
& \leq C(n q)^{1 / 2} \max _{1 \leq k \leq n} \max _{1 \leq l \leq q} \max _{1 \leq m \leq s} E\left[\left|Z_{k, m, l}\right| I\left\{\left|Z_{k, m, l}\right| \geq 32 \log (p+n q)\right\}\right] \\
& \leq C(n q)^{1 / 2}(p+n q)^{-4} \max _{1 \leq k \leq n} \max _{1 \leq l \leq q} \max _{1 \leq m \leq s} E\left[\left|Z_{k, m, l}\right| \exp \left\{\left|Z_{k, m, l}\right| / 8\right\}\right] \\
& \leq C(n q)^{1 / 2}(p+n q)^{-4} .
\end{array}
$$

This yields to

$$
\operatorname{pr}\left\{\max _{1 \leq m \leq s}\left|V_{m}-\hat{V}_{m}\right| \geq(\log p)^{-1}\right\} \leq \operatorname{pr}\left(\max _{1 \leq m \leq s} \max _{1 \leq k \leq n} \max _{1 \leq l \leq q}\left|Z_{k, m, l}\right| \geq \tau_{n}\right)=O\left(p^{-1}\right) .
$$

By Lemma 6.1 in Liu (2013), we have

$$
\max _{m} \sum_{0 \leq t \leq t_{p}}\left|\frac{\operatorname{pr}\left(\left|V_{m}\right| \geq t\right)}{G(t)}-1\right| \leq C(\log p)^{-1-\tau_{1}}
$$

with $\tau_{1}=\min \{\tau, 1 / 2\}$ and $t_{p}=\left(4 \log p-\log _{2} p-\log _{3} p\right)^{1 / 2}$. Thus to prove Theorem 1, by the fact that $G\left(t+o\left((\log p)^{-1 / 2}\right)\right) / G(t)=1+o(1)$ uniformly in $0 \leq t \leq 2 \sqrt{\log p}$, it suffices to prove that

$$
\frac{\left|\sum_{1 \leq m \leq s}\left\{I\left(\left|\hat{V}_{m}\right| \geq t\right)-G(t)\right\}\right|}{l_{0} G(t)} \rightarrow 0
$$

in probability, for $0 \leq t \leq t_{p}$, where $G(t)=2\{1-\Phi(t)\}$. Let $0 \leq t_{0}<t_{1}<\cdots<t_{b}=t_{p}$ such that $t_{\iota}-t_{\iota-1}=v_{p}$ for $1 \leq \iota \leq b-1$ and $t_{b}-t_{b-1} \leq v_{p}$, where $v_{p}=1 /\left\{\log p\left(\log _{4} p\right)^{2}\right\}^{1 / 2}$. Thus we have $b \sim t_{p} / v_{p}$. For any t such that $t_{\iota-1} \leq t \leq t_{\iota}$, we have

$$
\begin{aligned}
\frac{\sum_{1 \leq m \leq s} I\left(\left|\hat{V}_{m}\right| \geq t_{\iota}\right)}{l_{0} G\left(t_{\iota}\right)} \frac{G\left(t_{\iota}\right)}{G\left(t_{\iota-1}\right)} & \leq \frac{\sum_{1 \leq m \leq s} I\left(\left|\hat{V}_{m}\right| \geq t\right)}{l_{0} G(t)} \\
& \leq \frac{\sum_{1 \leq m \leq s} I\left(\left|\hat{V}_{m}\right| \geq t_{\iota-1}\right)}{l_{0} G\left(t_{\iota-1}\right)} \frac{G\left(t_{\iota-1}\right)}{G\left(t_{\iota}\right)} .
\end{aligned}
$$

Thus it suffices to prove

$$
\begin{equation*}
\max _{0 \leq \iota \leq b}\left|\frac{\sum_{1 \leq m \leq s}\left[I\left(\left|\hat{V}_{m}\right| \geq t_{\iota}\right)-G\left(t_{\iota}\right)\right]}{l_{0} G\left(t_{\iota}\right)}\right| \rightarrow 0 \tag{S2.3}
\end{equation*}
$$

in probability. Note that

$$
\begin{aligned}
& \operatorname{pr}\left\{\max _{1 \leq \iota \leq b}\left|\frac{\sum_{1 \leq m \leq s}\left[I\left(\left|\hat{V}_{m}\right| \geq t_{\iota}\right)-G\left(t_{\iota}\right)\right]}{l_{0} G\left(t_{\iota}\right)}\right| \geq \epsilon\right\} \\
& \\
& \leq \sum_{l=1}^{m} \operatorname{pr}\left\{\left|\frac{\sum_{1 \leq m \leq s}\left[I\left(\left|\hat{V}_{m}\right| \geq t_{\iota}\right)-G\left(t_{\iota}\right)\right]}{l_{0} G\left(t_{\iota}\right)}\right| \geq \epsilon\right\} \\
& \\
& \leq \frac{1}{v_{p}} \int_{0}^{t_{p}} \operatorname{pr}\left\{\left|\frac{\sum_{1 \leq m \leq s}\left[I\left(\left|\hat{V}_{m}\right| \geq t\right)-G(t)\right]}{l_{0} G(t)}\right| \geq \epsilon\right\} d t \\
& \quad+\sum_{\iota=b-1}^{b} \operatorname{pr}\left\{\left|\frac{\sum_{1 \leq m \leq s}\left[I\left(\left|\hat{V}_{m}\right| \geq t_{\iota}\right)-G\left(t_{\iota}\right)\right]}{l_{0} G\left(t_{\iota}\right)}\right| \geq \epsilon\right\} .
\end{aligned}
$$

As noted in Section 4.2, in the two-sample setting, the test statistics can be highly dependent since $\boldsymbol{R}_{S_{g}}$ is not necessarily an identity matrix. To show the error rate control, we reorganize the set of test statistics into a number of subgroups according to the level of dependency, as shown in the proof of Theorem 4 in Xia et al. (2015), with $2 n q$ regression models. As a result, for any $\epsilon>0$ that,

$$
\begin{aligned}
& \sum_{0 \leq t \leq t_{p}} \operatorname{pr}\left[\left|\frac{\sum_{1 \leq m \leq s}\left\{I\left(\left|\hat{V}_{m}\right| \geq t\right)-\operatorname{pr}\left(\left|\hat{V}_{m}\right| \geq t\right)\right\}}{2 l_{0}\{1-\Phi(t)\}}\right| \geq \epsilon\right]=o(1) \\
& \int_{0}^{t_{p}} \operatorname{pr}\left[\left|\frac{\sum_{1 \leq m \leq s}\left\{I\left(\left|\hat{V}_{m}\right| \geq t\right)-\operatorname{pr}\left(\left|\hat{V}_{m}\right| \geq t\right)\right\}}{2 l_{0}\{1-\Phi(t)\}}\right| \geq \epsilon\right] d t=o\left(v_{p}\right)
\end{aligned}
$$

Thus (S2.3) is proved. Then Theorem 1 follows.

S2.2 Proof of Theorem 2

By the proof of Theorem 1, together with Lemma 3, Theorem 2 is proved.

References

Liu, W. (2013). Gaussian graphical model estimation with false discovery rate control. The Annals of Statistics, 41:2948-2978.

Xia, Y., Cai, T., and Cai, T. T. (2015). Testing differential networks with applications to the detection of gene-gene interactions. Biometrika, 102:247-266.

Xia, Y. and Li, L. (2017). Hypothesis testing of matrix graph model with application to brain connectivity analysis. Biometrics, in press.

