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S1 Lemmas

Define Ui,j,g = 1
ngq

∑ng
k=1

∑q
l=1{ε

(g)
k,i,lε

(g)
k,j,l −E(ε

(g)
k,i,lε

(g)
k,j,l)}, for g = 1, 2. The following lemma

states the results in the oracle case. Its proof can be obtained from Xia et al. (2015), with ngq

inverse regression models instead.

Lemma 1. Suppose that (C1) and (C4) hold. Then we have

max
1≤i≤p

|r̂i,i,g − ri,i,g| = op[{log p/(nq)}1/2],

and

r̃i,j,g = R̃i,j,g − r̃i,i,g(β̂i,j,g − βi,j,g)− r̃j,j,g(β̂j−1,i,g − βj−1,i,g) + op{(nq log p)−1/2},

for 1 ≤ i < j ≤ p, g = 1, 2, where R̃i,j,g is the empirical covariance between {ε(g)k,i,l, k =

1, . . . , ng, l = 1, . . . , q} and {ε(g)k,j,l, k = 1, . . . , ng, l = 1, . . . , q}. Consequently, uniformly in

1 ≤ i < j ≤ p,

r̂i,j,g − (ωSg ,i,iσ̂
(g)
i,i,ε + ωSg ,j,jσ̂

(g)
j,j,ε − 1)ri,j,g = −Ui,j,g + op{(nq log p)−1/2},

where (σ̂
(g)
i,j,ε) = 1

ngq

∑ng
k=1

∑q
l=1(ε

(g)
k,,l − ε̄(g))(ε

(g)
k,,l − ε̄(g))′, ε

(g)
k,,l = (ε

(g)
k,1,l, . . . , ε

(g)
k,p,l) and ε̄(g) =

1
ngq

∑ng
k=1

∑q
l=1 ε

(g)
k,,l.
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Lemma 2. Let Xk ∼ N(µ1,Σ1) for k = 1, . . . , n1 and Yk ∼ N(µ2,Σ2) for k = 1, . . . , n2.

Define Σ̃1 = (σ̃i,j,1)p×p = 1
n1

∑n1

k=1(X−µ1)(X−µ1)
T and Σ̃2 = (σ̃i,j,2)p×p = 1

n2

∑n2

k=1(Y −

µ2)(Y −µ2)
T. Then, for some constantC > 0, σ̃i,j,1−σ̃i,j,2 satisfies the large deviation bound,

pr

[
max
(i,j)∈S

(σ̃i,j,1 − σ̃i,j,2 − σi,j,1 + σi,j,2)
2

var{(Xk,i − µ1,i)(Xk,j − µ1,j)}/n1 + var{(Yk,i − µ2,i)(Yk,j − µ2,j)}/n2

≥ x2

]
≤ C|S|{1− Φ(x)}+O(p−1),

uniformly for 0 ≤ x ≤ (8 log p)1/2 and any subset S ⊆ {(i, j) : 1 ≤ i ≤ j ≤ p}.

Lemma 3. Suppose that (C1), (C5) and (C6) hold. Then we have, for g = 1, 2, uniformly in

1 ≤ i ≤ j ≤ p,

r̂di,j,g − (ωSg ,i,iσ̂
(g)
i,i,ε + ωSg ,j,jσ̂

(g)
j,j,ε − 1)ri,j,g = −Ui,j,g + op{(nq log p)−1/2},

where r̂di,j,g = −(r̃di,j,g + r̃di,i,gβ̂
d
i,j,g + r̃dj,j,gβ̂

d
j−1,i,g), r̃di,j,g = 1/(nq)

∑n
k=1

∑q
l=1 ε̂

d
k,i,l,g ε̂

d
k,j,l,g, and

ε̂dk,i,l,g = Y
(g)
k,i,l − (Y

(g)
k,−i,l)

Tβ̂di,l,g with Y (g)
k = X

(g)
k Σ̂

−1/2
Tg

.

This lemma is essentially proved in Theorems 5 and 6 in Xia and Li (2017).

S2 Proofs

S2.1 Proof of Theorem 1

By separation of the spatial and temporal dependence structures, we have the following 2nq

inverse regression models

(X
(g)
k Σ

−1/2
T )i,l = (X

(g)
k Σ

−1/2
T )−i,lβi,g + ε

(g)
k,i,l, 1 ≤ k ≤ n, 1 ≤ l ≤ q, g = 1, 2.

We first show that t̂, as defined in (9) in Algorithm 1, can be obtained in the range (0, 2(log p)1/2).

Then we illustrate that the number of false rejections is close to 2{1−Φ(t)}|H0|, by first show-

ing the terms in Aτ are negligible. We then focus on the setH0 \ Aτ and prove the result.

Without loss of generality, throughout this proof, we assume that ωSg ,i,i = 1 for g = 1, 2

and i = 1, . . . , p. For g = 1, 2, let

Vi,j = (Ui,j,2 − Ui,j,1)/{var(ε(1)k,i,lε
(1)
k,j,l)/(n1q) + var(ε(2)k,i,lε

(2)
k,j,l)/(n2q)}1/2,
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where var(ε(g)k,i,lε
(g)
k,j,l) = ri,i,grj,j,g(1 + η2i,j,g) with η2i,j,g = β2

i,j,gri,i,g/rj,j,g. By Lemma 1, we

have

max
1≤i≤p

|r̂i,i,g − ri,i,g| = Op[{log p/(nq)}
1
2 ],

and

max
1≤i≤p

|r̂i,i,g − R̃i,i,g| = op{(nq log p)−1/2}.

Note that

max
1≤i<j≤p

(β̂2
i,j,gr̂i,i,g/r̂j,j,g − η2i,j,g) = op(1/ log p),

and

max
1≤i≤j≤p

|ωSg ,i,iσ̂
(g)
i,i,ε + ωSg ,j,jσ̂

(g)
j,j,ε − 2| = Op{(log p/(nq))1/2}.

As noted in Section 4.2, in the two-sample case, ρS1,i,j and ρS2,i,j are not necessarily equal

to 0 under the null, and additional corrections are crucial. Toward that end, we divide the

set of indices into two subsets, H0 \ Aτ and Aτ , the former with a negligible correction and

the latter requiring a major correction by bi,j . Also note that for (i, j) ∈ H0 \ Aτ , we have

|ωSg ,i,j| = o{(log p)−1}. Then by Lemma 1, it is straightforward to see that, under Conditions

(C1) and (C2), we have, for (i, j) ∈ H0 \ Aτ ,

max
(i,j)∈H0\Aτ

||Wi,j| − |Vi,j|| = op{(log p)−1/2}.

For (i, j) ∈ Aτ , as a result of Lemma 1, we have

Wi,j = Vi,j + bi,j + op(log p−1/2),

where bi,j = 2{ωi,j(σ̂(1)
i,i,ε − σ̂

(2)
i,i,ε) + ωi,j(σ̂

(1)
j,j,ε − σ̂

(2)
j,j,ε)}/(θ̂i,j,1 + θ̂i,j,2)

1/2. Note that

|bi,j| ≤ 2

(
2η2i,j

1 + η2i,j

) 1
2
[

|σ̃(1)
i,i,ε − σ̃

(2)
i,i,ε|

{var((ε(1)k,i,l)2)/(n1q) + var((ε(2)k,i,l)2)/(n2q)}
1
2

+
|σ̃(1)
j,j,ε − σ̃

(2)
j,j,ε|

{var((ε(1)k,j,l)2)/(n1q) + var((ε(2)k,j,l)2)/(n2q)}
1
2

]
+ o{(log p)−1/2},

where σ̃(s)
i,i,ε = n−1s

∑ns
k=1

∑q
l=1(ε

(s)
k,i,l)

2. Thus, we have

pr( max
(i,j)∈Aτ

W 2
i,j ≥ 4 log p− log log p+ t)

≤ Card(Aτ ){pr(V 2
i,j ≥ log p/8) + pr(b2i,j ≥ 2 log p)} = o(1), (S2.1)
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where the last equality is a direct result of Lemma 2.

Under the conditions of Theorem 1, we have∑
1≤i<j≤p

I{|Wi,j| ≥ 2(log p)1/2} ≥ [1/{(8π)1/2α}+ δ](log2 p)
1/2,

with probability going to one. Henceforth, with probability going to one, we have

(p2 − p)/2
max{

∑
1≤i<j≤p I{|Wi,j| ≥ 2(log p)1/2}, 1}

≤ p2 − p
2

{
1

(8π)1/2α
+ δ

}−1
(log2 p)

−1/2.

Let tp = (4 log p− log2 p− log3 p)
1/2. Because 1 − Φ(tp) ∼ 1/{(2π)1/2tp} exp(−t2p/2), we

have pr(1 ≤ t̂ ≤ tp)→ 1 according to the definition of t̂ in (9). Note that, for 0 ≤ t̂ ≤ tp,

2{1− Φ(t̂)}(p2 − p)/2
max{

∑
1≤i<j≤p I{|Wi,j| ≥ 2(log p)1/2}, 1}

= α.

Thus to prove Theorem 1, it suffices to show that

|
∑

(i,j)∈H0
{I(|Wi,j| ≥ t)−G(t)}|
{l0G(t)}

→ 0

in probability, for 0 ≤ t ≤ {4 log p+ o(log p)}1/2, where G(t) = 2{1− Φ(t)}.

If t = {4 log p+ o(log p)}1/2, by (S2.1) and Condition (C2), it suffices to show

|
∑

(i,j)∈H0\Aτ{I(|Vi,j| ≥ t)−G(t)}|
{l0G(t)}

→ 0 (S2.2)

If t ≤ (C log p)1/2 with C < 4, we have∣∣∣∣∣
∑

(i,j)∈Aτ∩H0
{I(|Wi,j| ≥ t)− I(|Vi,j| ≥ t)}

l0G(t)

∣∣∣∣∣ ≤ 2|Aτ ∩H0|
O(p2−C/2)

→ 0

in probability. Thus, it is again enough to show that (S2.2) holds. This shows the negligibility

of the highly dependent pairs. We arrange the indices {(i, j) : (i, j) ∈ H0\Aτ} in any ordering

and set them as {(im, jm) : m = 1, . . . , s} with s =Card(H0 \ Aτ ). Let n1/n2 ≤ K with

K ≥ 1, θm,g = var(ε(g)k,im,lε
(g)
k,jm,l

), and define Zk,m,l = (n1/n2){ε(2)k,im,lε
(2)
k,jm,l

−E(ε
(2)
k,im,l

ε
(2)
k,jm,l

)}

for 1 ≤ k ≤ n2 and 1 ≤ l ≤ q, and Zk,m,l = −{ε(1)k,im,lε
(1)
k,jm,l

− E(ε
(1)
k,im,l

ε
(1)
k,jm,l

)} for n2 + 1 ≤

k ≤ n1 + n2 and 1 ≤ l ≤ q. Define

Vm = (n2
1qθm,2/n2 + n1qθm,1)

−1/2
n1+n2∑
k=1

q∑
l=1

Zk,m,l,
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and

V̂m = (n2
1qθm,2/n2 + n1qθm,1)

−1/2
n1+n2∑
k=1

q∑
l=1

Ẑk,m,l,

where Ẑk,m,l = Zk,m,lI(|Zk,m,l| ≤ τn)−E{Zk,m,lI(|Zk,m,l| ≤ τn)}, and τn = 32 log(p+ nq).

Note that max(i,j)∈H0\Aτ V
2
i,j = max1≤m≤s V

2
m, and that

max
1≤m≤s

(nq)−1/2
n1+n2∑
k=1

q∑
l=1

E[|Zk,m,l|I{|Zk,m,l| ≥ 32 log(p+ nq)}]

≤ C(nq)1/2 max
1≤k≤n

max
1≤l≤q

max
1≤m≤s

E[|Zk,m,l|I{|Zk,m,l| ≥ 32 log(p+ nq)}]

≤ C(nq)1/2(p+ nq)−4 max
1≤k≤n

max
1≤l≤q

max
1≤m≤s

E[|Zk,m,l| exp{|Zk,m,l|/8}]

≤ C(nq)1/2(p+ nq)−4.

This yields to

pr
{

max
1≤m≤s

|Vm − V̂m| ≥ (log p)−1
}
≤ pr

(
max
1≤m≤s

max
1≤k≤n

max
1≤l≤q

|Zk,m,l| ≥ τn

)
= O(p−1).

By Lemma 6.1 in Liu (2013), we have

max
m

∑
0≤t≤tp

∣∣∣pr(|Vm| ≥ t)

G(t)
− 1
∣∣∣ ≤ C(log p)−1−τ1 ,

with τ1 = min{τ, 1/2} and tp = (4 log p− log2 p− log3 p)
1/2. Thus to prove Theorem 1, by

the fact that G(t+ o((log p)−1/2))/G(t) = 1 + o(1) uniformly in 0 ≤ t ≤ 2
√

log p, it suffices

to prove that
|
∑

1≤m≤s{I(|V̂m| ≥ t)−G(t)}|
l0G(t)

→ 0

in probability, for 0 ≤ t ≤ tp, where G(t) = 2{1 − Φ(t)}. Let 0 ≤ t0 < t1 < · · · < tb = tp

such that tι−tι−1 = vp for 1 ≤ ι ≤ b−1 and tb−tb−1 ≤ vp, where vp = 1/{log p(log4 p)
2}1/2.

Thus we have b ∼ tp/vp. For any t such that tι−1 ≤ t ≤ tι, we have∑
1≤m≤s I(|V̂m| ≥ tι)

l0G(tι)

G(tι)

G(tι−1)
≤
∑

1≤m≤s I(|V̂m| ≥ t)

l0G(t)

≤
∑

1≤m≤s I(|V̂m| ≥ tι−1)

l0G(tι−1)

G(tι−1)

G(tι)
.

Thus it suffices to prove

max
0≤ι≤b

∣∣∣∑1≤m≤s[I(|V̂m| ≥ tι)−G(tι)]

l0G(tι)

∣∣∣→ 0 (S2.3)
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in probability. Note that

pr

{
max
1≤ι≤b

∣∣∣∣∣
∑

1≤m≤s[I(|V̂m| ≥ tι)−G(tι)]

l0G(tι)

∣∣∣∣∣ ≥ ε

}

≤
m∑
l=1

pr

{∣∣∣∣∣
∑

1≤m≤s[I(|V̂m| ≥ tι)−G(tι)]

l0G(tι)

∣∣∣∣∣ ≥ ε

}

≤ 1

vp

∫ tp

0

pr

{∣∣∣∣∣
∑

1≤m≤s[I(|V̂m| ≥ t)−G(t)]

l0G(t)

∣∣∣∣∣ ≥ ε

}
dt

+
b∑

ι=b−1

pr

{∣∣∣∣∣
∑

1≤m≤s[I(|V̂m| ≥ tι)−G(tι)]

l0G(tι)

∣∣∣∣∣ ≥ ε

}
.

As noted in Section 4.2, in the two-sample setting, the test statistics can be highly dependent

since RSg is not necessarily an identity matrix. To show the error rate control, we reorganize

the set of test statistics into a number of subgroups according to the level of dependency, as

shown in the proof of Theorem 4 in Xia et al. (2015), with 2nq regression models. As a result,

for any ε > 0 that,∑
0≤t≤tp

pr

[∣∣∣∣∣
∑

1≤m≤s{I(|V̂m| ≥ t)− pr(|V̂m| ≥ t)}
2l0{1− Φ(t)}

∣∣∣∣∣ ≥ ε

]
= o(1),

∫ tp

0

pr

[∣∣∣∣∣
∑

1≤m≤s{I(|V̂m| ≥ t)− pr(|V̂m| ≥ t)}
2l0{1− Φ(t)}

∣∣∣∣∣ ≥ ε

]
dt = o(vp).

Thus (S2.3) is proved. Then Theorem 1 follows.

S2.2 Proof of Theorem 2

By the proof of Theorem 1, together with Lemma 3, Theorem 2 is proved.
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