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Abstract: Brain connectivity alternation analysis reveals important insights of

pathologies for a wide range of neurological disorders. It calls for development

of rigorous statistical inferential tools, which can both provide an explicit sta-

tistical significance quantification as well as a rigid false discovery control. We

formulate the problem as partial correlation hypothesis testing under a matrix

normal distribution. We develop inferential procedures for testing equality of in-

dividual entries of partial correlation matrices across multiple groups. We derive

the asymptotic properties and show the procedures can control the false discovery

at the pre-specified level. We also compare our proposal with alternative testing

procedures, both analytically and numerically, and demonstrate clear advantages

of the new method. We illustrate with a functional connectivity analysis of an

attention deficit hyperactivity disorder dataset.
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1. Introduction

Brain connectivity analysis is now in the foreground of neuroscience research

(Bullmore and Sporns (2009); Fornito, Zalesky and Breakspear (2013)), and is

drawing ever-increasing attention in the statistics field as well (Kim et al. (2014);

Ahn et al. (2015); Chen et al. (2015); Narayan, Allen and Tomson (2015); Zhang

et al. (2015); Han et al. (2016); Kang et al. (2016); Qiu et al. (2016); Wang et al.

(2016); Xia and Li (2017); among others). Brain functional connectivity reveals

synchronization of brain systems via correlations in neurophysiological measures

of brain activity. When measured during resting state, it maps the intrinsic func-

tional architecture of the brain (Varoquaux and Craddock (2013)). Accumulated

evidence has indicated that, compared to a healthy brain, a connectivity network

alters in the presence of numerous neurological disorders, including Alzheimer’s
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disease, attention deficit hyperactivity disorder, autism spectrum disorder, and

many others (Hedden et al. (2009); Tomasi and Volkow (2012); Rudie et al.

(2013)). Such alternations in brain connectivity are associated with cognitive

and behavioral functions, and hold crucial insights of pathologies of neurological

disorders (Fox and Greicius (2010)). In this article, we tackle the problem of

comparing brain functional connectivity patterns across multiple subject groups,

e.g., the diseased versus the healthy control.

One of the mainstream imaging modalities to study brain functional connec-

tivity is resting-state functional magnetic resonance imaging (fMRI). We focus

on fMRI here, while the method we develop is applicable to other similar imag-

ing modalities as well. For each study subject at rest during the scan, fMRI

measures changes in blood flow and oxygenation at individual voxels of brain

over time, yielding a 4-way data array (Lindquist (2008)). To overcome spurious

correlations due to close spatial proximity, a common practice is to parcellate the

brain and map brain voxels to a list of pre-specified brain regions, then average

the time courses of voxels within the same region. This results in a region by

time matrix for each fMRI scan. Based upon this spatial temporal matrix, an

undirected graph is constructed to depict brain connectivity, where nodes rep-

resent neurological elements such as brain regions, and links measure pairwise

interaction and dependence between nodes (Bullmore and Sporns (2009)). There

have been numerous dependence metrics proposed in the brain connectivity lit-

erature, and among those, partial correlation is a well accepted and commonly

used measure for functional connectivity (Ryali et al. (2012); Wang et al. (2016)).

Central to functional connectivity analysis are estimation and inference of

connectivity patterns across multiple subject groups. The former can be formu-

lated as a sparse precision matrix estimation problem, and there have been a large

number of graph estimation solutions proposed. Examples include precision ma-

trix estimation under a vector normal distribution (Meinshausen and Bühlmann

(2006); Yuan and Lin (2007); Friedman, Hastie and Tibshirani (2008); Cai, Liu

and Luo (2011)), or a matrix normal distribution (Yin and Li (2012); Leng and

Tang (2012); Zhou (2014); Qiu et al. (2016)). The latter can be formulated as

a graph-based hypothesis testing problem. Most existing studies transform this

problem into the classical two-sample testing framework by summarizing a net-

work as a set of network metrics (Kim et al. (2014)). Although this strategy

has proven useful, the extent to which each network metric provides a meaning-

ful representation of brain function requires substantial care (Fornito, Zalesky

and Breakspear (2013)), and there is no unanimous agreement on what network
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metrics best characterize brain functions. There have been relatively much fewer

solutions that directly test precision matrices under graphical models, and those

are emerging only recently (Liu (2013); Xia, Cai and Cai (2015); Narayan, Allen

and Tomson (2015); Chen and Liu (2015); Xia and Li (2017)).

In this article, we adopt the matrix Gaussian graphical model framework,

and develop statistical inferential procedures for testing equality of individual

entries of the partial correlation matrices across multiple groups. We mostly fo-

cus on the two-population scenario, and only briefly discuss the extension to

more than two populations. Specifically, let X(1),X(2) ∈ IRp×q denote the

spatial-temporal matrices of the two groups, e.g., the diseased and the healthy

control. We assume X(g) follows a matrix normal distribution, with the Kro-

necker product covariance structure, Σ{vec(X(g))} = ΣSg
⊗ ΣTg

, g = 1, 2, and

correspondingly, Σ−1{vec(X(g))} = Σ−1Sg
⊗ Σ−1Tg

= ΩSg
⊗ ΩTg

, g = 1, 2, where

ΣSg
,ΩSg

∈ IRp×p denote the spatial covariance and precision matrix, respec-

tively, and ΣTg
,ΩTg

∈ IRq×q denote the temporal ones. This matrix normal

assumption has been frequently adopted in numerous finance, genetics, and bi-

ological applications (Yin and Li (2012); Leng and Tang (2012)), and is also

scientifically plausible in the neuroimaging context. For instance, the standard

neuroimaging processing software, such as SPM (Friston et al. (2007)) and FSL

(Smith et al. (2004)), commonly adopt a framework that assumes the data are

normally distributed per location with a noise factor and an autoregressive struc-

ture, which shares a similar spirit as the matrix normal formulation. Moreover,

Aston, Pigoli and Tavakoli (2016) has developed a test to check if the data con-

forms with the Kronecker product structure.

Under the matrix normal framework, let

ΩSg
=
(
ωSg,i,j

)p
i,j=1

, RSg
= D

−1/2
Sg

ΩSg
D
−1/2
Sg

=
(
ρSg,i,j

)p
i,j=1

,

where RSg
is the partial correlation matrix of the spatial locations, and DSg

is

the diagonal matrix of ΩSg
. Our goal is to test, simultaneously, for 1 ≤ i < j ≤ p,

H0,i,j : ρS1,i,j = ρS2,i,j versus H1,i,j : ρS1,i,j 6= ρS2,i,j . (1.1)

Our solution is based upon a key observation that, in the context of brain con-

nectivity analysis, the spatial precision matrix ΩSg
, or more precisely, the spatial

partial correlation matrix RSg
, is of the primary scientific interest, but the tem-

poral precision matrix ΩTg
is not. We thus treat ΩTg

, or equivalently ΣTg
, as a

nuisance. Accordingly, we build our test statistic based on the linear transfor-

mation of the samples, XgΣ
−1/2
Tg

, and consider two scenarios: one assumes the

temporal covariance ΣTg
is known, and we term the method as an oracle proce-

dure; the other uses a data-driven approach to estimate and plug in ΣTg
, and
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we term it a data-driven procedure. We show that, asymptotically, our proposed

multiple testing procedures can control the false discovery at the pre-specified

level. We compare in detail, both analytically in Section 4 and numerically in

Section 5, with some alternative graph model hypothesis testing solutions, and

demonstrate clear advantages of our approach. Our proposal provides a timely

and useful inferential tool for brain connectivity alternation analysis.

The rest of the article is organized as follows. Section 2 develops the multiple

testing procedure and Section 3 studies its asymptotic properties. Section 4

analytically compare our method with some related solutions. Section 5 presents

the numerical simulations, and Section 6 analyzes a real fMRI dataset. Section 7

extends the discussion to multiple populations. All technical proofs are relegated

to an online supplement.

2. Testing Procedure

2.1. Data transformation

Let {X(1)
1 , . . . ,X

(1)
n1 } and {X(2)

1 , . . . ,X
(2)
n2 }, each a matrix with dimension

p × q, denote two sets of i.i.d. random samples from two independent matrix

normal distributions. The mean, without loss of generality, is assumed to be zero,

and the covariance is of the form ΣSg
⊗ΣTg

for g = 1, 2. Assume n1 � n2 and let

n = max(n1, n2). Our goal is to detect spatial locations where the connectivity, in

terms of the spatial partial correlation, differ across the two groups. Toward that

goal, we separate the spatial and temporal dependence structures, and develop

our testing procedure targeting the spatial partial correlation matrix RSg
, while

treating ΣTg
as a nuisance. Working with RSg

, rather than ΩSg
, also avoids

the identifiability issue between ΣSg
and ΣTg

. We build the test based upon the

linear transformation of the original samples. We first consider the scenario where

ΣTg
is known, and consider the transformed samples, Y

(g)
k = X

(g)
k Σ

−1/2
Tg

, k =

1, . . . , ng, g = 1, 2. We term the resulting test an oracle procedure. As ΣTg
is

rarely known in practice, we next consider the scenario where an estimator Σ̂Tg
of

ΣTg
is plugged in, and consider the transformed samples, Ŷ

(g)
k = X

(g)
k Σ̂

−1/2
Tg

, k =

1, . . . , ng, g = 1, 2. Accordingly, we term it as a data-driven procedure. There

are multiple ways to estimate ΣTg
, or equivalently ΩTg

. Examples include the

usual sample covariance estimator, the banded estimator (Bickel and Levina

(2008)), the adaptive thresholding estimator (Cai and Liu (2011)) for ΣTg
, or

the Clime estimator (Cai, Liu and Luo (2011)) for ΩTg
. In Section 3.2, we

give the necessary conditions for the estimators of ΣTg
to guarantee the desired
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asymptotic properties. In Section 5, we choose two estimators, the usual sample

covariance estimator and the banded estimator, and numerically compare them

in our context of matrix graph multiple testing.

2.2. Test statistics

We first develop the test statistics for the oracle case when ΣTg
is known.

The key is to describe the partial correlation matrix RSg
in terms of a series of

regression models (Anderson (2003, Sec. 2.5)). Specifically, for the transformed

samples Y
(g)
k = X

(g)
k Σ

−1/2
Tg

, we have,

Y
(g)
k,i,l = Y

(g)T
k,−i,lβi,g + ε

(g)
k,i,l, 1 ≤ i ≤ p, 1 ≤ l ≤ q, (2.1)

where ε
(g)
k,i,l ∼ N(0, σSg,i,i−ΣSg,i,−iΣ

−1
Sg,−i,−iΣSg,−i,i) and is independent of Y

(g)
k,−i,l.

The slope coefficient vector βi,g and the error term ε
(g)
k,i satisfy that βi,g =

−ω−1Sg,i,i
ΩSg,−i,i and ri,j,g = cov(ε

(g)
k,i,l, ε

(g)
k,j,l) = (ωSg,i,j)/(ωSg,i,iωSg,j,j). There-

fore, the elements ωSg,i,j of the precision matrix ΩSg
, and in turn the elements

ρSg,i,j of the partial correlation matrix RSg
, can be represented in terms of ri,j,g

from the regression model (2.1). A natural estimator of ri,j,g is the sample

covariance between the residuals, r̃i,j,g = (1/ngq)
∑ng

k=1

∑q
l=1 ε̂

(g)
k,i,lε̂

(g)
k,j,l, where

ε̂
(g)
k,i,l = Y

(g)
k,i,l − Ȳ

(g)
i,l − (Y

(g)
k,−i,l − Ȳ

(g)
·,−i,l)

Tβ̂i,g, and β̂i,g is an estimator of βi,g. We

discuss the estimation of βi,g in Section 2.3. When i = j, r̃i,i,g is a nearly un-

biased estimator of ri,i,g. However, when i 6= j, r̃i,j,g tends to be biased due

to the correlation induced by the estimated parameters. We thus consider a

bias-corrected estimator of ri,j,g of the form

r̂i,j,g =

{
−(r̃i,j,g + r̃i,i,gβ̂i,j,g + r̃j,j,gβ̂j−1,i,g), when i < j,

r̃i,i,g, when i = j.

Based on this estimator r̂i,j,g of ri,j,g, we obtain an estimator of ρSg,i,j ,

ρ̂Sg,i,j =
r̂i,j,g

(r̂i,i,g · r̂j,j,g)1/2
, 1 ≤ i < j ≤ p. (2.2)

To estimate the variance of ρ̂Sg,i,j , we note that θi,j,g = var{ε(g)k,i ε
(g)
k,j/(ri,i,grj,j,g)

1/2}
/(ngq) = (1 + β2i,j,gri,i,g/rj,j,g)/(ngq). As such, the variance of ρ̂Sg,i,j can be esti-

mated by

θ̂i,j,g =
(1 + β̂2i,j,g r̂i,i,g/r̂j,j,g)

ngq
. (2.3)

Finally, for the hypothesis testing problem (1.1), we arrive at our test statis-

tic,

Wi,j =
ρ̂S1,i,j − ρ̂S2,i,j

(θ̂i,j,1 + θ̂i,j,2)1/2
, 1 ≤ i < j ≤ p.
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We next consider the data-driven case when ΣTg
is unknown and estimated.

With an estimator Σ̂Tg
of ΣTg

plugged in, the transformed samples are Ŷ
(g)
k =

X
(g)
k Σ̂

−1/2
Tg

. In addition, in this scenario, the regression coefficients vary at dif-

ferent time points. We thus replace (2.1) with

Ŷ
(g)
k,i,l = Ŷ

(g)T
k,−i,lβi,l,g + ε

(g)
k,i,l, 1 ≤ i ≤ p, 1 ≤ l ≤ q, (2.4)

where βi,l,g denotes the slope coefficient vector, and we estimate {βi,l,g, 1 ≤ l ≤ q}
by β̂i,g, as will be discussed in Section 2.3. The rest of the setup is the same as

in the oracle case, and we follow a similar process of building the test statistic

Wi,j . We remark that, if one estimates ΣTg
using the usual sample covariance

estimator, it is biased up to a factor of tr(ΣSg
)/p. However, this bias does not

affect the test statistic Wi,j , due to the two-step standardization employed in

(2.2) and (2.3).

2.3. Estimation of slope

There are multiple ways to estimate the slope coefficient vector βi,g in (2.1)

and βi,l,g in (2.4). To ensure the desired asymptotic properties, we require that

the corresponding estimator satisfies the regularity condition (C4) in Section 3.1

for the oracle case, or the regularity condition (C5) in Section 3.2 for the data-

driven case.

In our implementation, we use the Lasso to estimate the slope vector. Specif-

ically, for the oracle case, we estimate βi,g by

β̂i,g=D
−1/2
i,g arg minu

{
1

2nq

∣∣∣(Y (g)
·,−i−Ȳ

(g)
(·,−i)

)
D
−1/2
i,g u−

(
Y

(g)
(i) −Ȳ

(g)
(i)

)∣∣∣2
2
+λn,i,g|u|1

}
,

(2.5)

where Y (g), g = 1, 2, is the ngq × p data matrix by stacking the transformed

samples Y
(g)
k = X

(g)
k Σ

−1/2
Tg

, k = 1, . . . , ng, Y
(g)
(i) = (Y

(g)
1,i , . . . , Y

(g)
ngq,i

)T ∈ IRngq×1 ,

Ȳ
(g)
(i) = (Ȳ

(g)
i , . . . , Ȳ

(g)
i )T ∈ IRngq×1 , with Ȳ

(g)
i = (1/ngq)

∑ngq
k=1 Y

(g)
k,i , Ȳ

(g)
(·,−i) =

(Ȳ
(g)T
·,−i , . . . , Ȳ

(g)T
·,−i )T ∈ IRngq×(p−1 ), with Ȳ

(g)
·,−i = (1/ngq)

∑ngq
k=1 Y

(g)
k,−i, Di,g =

diag(Σ̂Sg,−i,−i), Σ̂Sg
is the sample covariance matrix with ngq transformed sam-

ples, | · |2 denotes the vector L2 norm, and | · |1 denotes the vector L1 norm.

For the data-driven case, we replace the transformed samples Y
(g)
k = X

(g)
k Σ

−1/2
Tg

with Ŷ
(g)
k = X

(g)
k Σ̂

−1/2
Tg

, and estimate βi,l,g accordingly. The tuning parameters

λn,i,g in (2.5) is selected adaptively given the data, following a similar procedure

as in Xia and Li (2017).

2.4. Multiple testing

Next we develop a multiple testing procedure for H0,i,j : ρS1,i,j = ρS2,i,j ,
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Algorithm 1 Matrix graph hypothesis testing with FDR control.

1: Calculate the two-sample standardized test statistics {Wi,j , 1 ≤ i < j ≤ p}.
2: Estimate the false discovery proportion by

F̂DP(t) =
2{1− Φ(t)}(p2 − p)/2∑
1≤i<j≤p I(|Wi,j | ≥ t) ∨ 1

.

3: For given 0 ≤ α ≤ 1, calculate

t̂ = inf
{

0 ≤ t ≤ 2(log p)1/2 : F̂DP(t) ≤ α
}
. (2.6)

If t̂ does not exist, set t̂ = 2(log p)1/2.

4: For 1 ≤ i < j ≤ p, reject H0,i,j if and only if |Wi,j | ≥ t̂.

so to identify spatial locations that have their conditional dependence changed

between the two groups. We first describe the procedure in Algorithm 1, then the

reasoning behind it. Once the test statistics are obtained, the testing algorithms

are the same for the oracle and data-driven cases. As such, we use the same set

of notations for both scenarios. We only differentiate them when we study their

respective asymptotic properties in Section 3.

The key for our testing is to control the false discovery, since there are

(p2 − p)/2 simultaneous hypothesis tests. Let t be the threshold level such that

H0,i,j is rejected if |Wi,j | ≥ t. Then the false discovery proportion (FDP) and

the false discovery rate (FDR) are defined as

FDP(t) =

∑
(i,j)∈H0

I(|Wi,j | ≥ t)∑
1≤i<j≤p I(|Wi,j | ≥ t) ∨ 1

, FDR(t) = E{FDP(t)}.

If the true nulls are known, we shall reject as many true positives as possible

while controlling the false discovery proportion at the pre-specified level α. Here

we choose the threshold level t0 = inf
{

0 ≤ t ≤ 2(log p)1/2 : FDP(t) ≤ α
}

. In

practice, since the true nulls are unknown, we estimate |H0| by (p2 − p)/2, as it

is at maximum (p2 − p)/2 and is close to (p2 − p)/2 when RS1
−RS2

is sparse.

Henceforth, we estimate the number of false rejections by 2{1−Φ(t)}(p2− p)/2,

where Φ(t) is the standard normal cumulative distribution function. This leads

to the multiple testing Algorithm 1.

3. Theory

3.1. The oracle procedure

We first investigate the theoretical properties of the oracle multiple testing
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procedure. We begin with a set of regularity conditions.

(C1) There are constants c0, c1 > 0 such that, c−10 ≤ λmin(ΩSg
) ≤ λmax(ΩSg

) ≤
c0, and c−11 ≤ λmin(ΩTg

) ≤ λmax(ΩTg
) ≤ c1, for g = 1, 2. Besides, log p =

o{(nq)1/5}.

(C2) Let Aτ =
{

(i, j) : |ωSg,i,j | ≥ (log p)−2−τ , 1 ≤ i < j ≤ p, for g = 1 or 2
}

.

There exists some τ > 0 such that |Aτ ∩H0| = o(pν) for any ν > 0.

(C3) Let

Sζ =

{
(i, j) : 1 ≤ i < j ≤ p,

|ρS1,i,j − ρS2,i,j |
(θi,j,1 + θi,j,2)

1/2
≥ (log p)1/2+ζ

}
.

For some ζ, δ > 0, |Sζ | ≥ [1/{(8π)1/2α}+ δ](log log p)1/2.

(C4) Let β̂oi,g denote an estimator of βi,g in (2.1) under the oracle scenario with

the transformed samples Y
(g)
k = X

(g)
k Σ

−1/2
Tg

, k = 1, . . . , ng, g = 1, 2. Then

max1≤i≤p |β̂oi,g−βi,g|1 = op[{log max(p, q, n)}−1], and max1≤i≤p |β̂oi,g−βi,g|2
= op

{
(nq log p)−1/4

}
.

A few remarks are in order regarding the regularity conditions. Condition (C1) is

a technical condition that is commonly imposed in the high-dimensional hypothe-

sis testing setting (Cai, Liu and Xia (2013); Liu (2013); Xia, Cai and Cai (2015)).

Condition (C2) ensures that most of the regression residuals are not highly corre-

lated with each other under the null hypothesis H0,i,j : ρS1,i,j = ρS2,i,j . Condition

(C3) is rather mild, because we have (p2 − p)/2 hypotheses in total, while this

condition only requires a few entries of RS1
−RS2

to have a standardized magni-

tude exceeding {(log p)1/2+ρ/(nq)}1/2, for some constant ρ > 0. Condition (C4)

places some requirements on the estimator β̂oi,g; it is easily satisfied by many

estimation methods such as the Lasso and Dantzig selector. For instance, if

one uses the Lasso, then (C4) is satisfied under (C1) and the sparsity condition

max1≤i≤p |βi|0 = o[(nq)1/2/{log max(p, q, n)}3/2]. These conditions are generally

mild and reasonable.

The next theorem shows that our proposed oracle testing procedure controls

the false discovery proportion and false discovery rate at the pre-specified level

α, asymptotically.

Theorem 1. Assume (C1) to (C4). Let l0 = |H0| and l = (p2−p)/2. If l0 ≥ c0p2

for some c0 > 0, p ≤ c1(nq)
r for some c1, r > 0, and t̂o denotes the threshold

value in (2.6) under the oracle case, then

lim
(nq,p)→∞

FDR(t̂o)

αl0/l
= 1, and

FDP(t̂o)

αl0/l
→ 1 in probability, as (nq, p)→∞.
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By Theorem 1, when the number of brain network alternations between the two

groups is small, i.e., |H1| = o(p2) where H1 is the set of alternatives where

ρS1,i,j 6= ρS2,i,j , then we have lim(nq,p)→∞ FDR(t̂o) = α and FDP(t̂o) → α in

probability, as (nq, p)→∞.

3.2. The data-driven procedure

We next derive the theoretical properties of the data-driven testing proce-

dure. We continue to employ the regularity conditions (C1) to (C3), slightly mod-

ify the condition (C4) to (C5), and add a new condition, (C6), that places some

constraint on the estimated temporal covariance matrix Σ̂Tg
. For a matrix A ∈

IRp×p , let the matrix element-wise infinity norm be ‖A‖∞ = max1≤i,j≤p |ai,j |,
and the matrix 1-norm be ‖A‖L1

= max1≤j≤p
∑p

i=1 |ai,j |. Let (ω
(g)
l,i,j)p×p de-

note the elements of Ω
(g)
l = cov−1((X

(g)
k Σ̂

−1/2
Tg

)·,l). Take r1,n,p,q = {sp,qq log3/2

max(p, q, n)‖ΩSg
‖2L1
}−1, r2,n,p,q={nqs2p,q log p log2 max(p, q, n)}−1/4(q‖ΩSg

‖2L1
)−1,

and sp,q = maxg=1,2 max1≤l≤q max1≤i≤p
∑p

j=1 max{I(ωSg,i,j 6= 0), I(ω
(g)
l,i,j 6= 0)}.

(C5) Let β̂di,g denote an estimator of βi,l,g under the data-driven scenario with

Ŷ
(g)
k = X

(g)
k Σ̂

−1/2
Tg

, k = 1, . . . , ng, g = 1, 2. Assume max1≤i≤p,1≤l≤q |β̂di,g −
βi,l,g|1 = op[{log max(p, q, n)}−1], and max1≤i≤p,1≤l≤q |β̂di,g − βi,l,g|2 = op(
(nq log p)−1/4

)
.

(C6) Let Σ̂Tg
be an estimator of ΣTg

satisfying ‖Σ̂−1/2Tg
− cΣ−1/2Tg

‖∞ = Op(rn,p,q)

for an arbitrary constant c > 0. Assume rn,p,q = o (min(r1,n,p,q, r2,n,p,q)).

The estimator of βi,l,g in condition (C5) can be obtained by the Lasso and

many other approaches. The estimator of ΣTg
in (C6) can be obtained in

many ways too. To guarantee the desired theoretical properties, the estima-

tor Σ̂Tg
needs to satisfy the condition, ‖Σ̂Tg

− cΣTg
‖∞ = Op

(
{log q/(np)}1/2

)
,

for an arbitrary constant c > 0. The banded estimator of Bickel and Levina

(2008) and the adaptive thresholding estimator of Cai and Liu (2011) both

satisfy this condition, and thus can be used in conjunction with our testing

procedure. Alternatively, one can directly estimate the precision matrix ΩTg

and base the testing procedures on {XkΩ̂
1/2
Tg
}nk=1, as long as the estimator

Ω̂Tg
satisfies ‖Ω̂Tg

− cΩTg
‖∞ = Op

(
‖ΩTg

‖2L1
{log q/(np)}1/2

)
, for some constant

c > 0. For instance, if the temporal precision matrix is sparse, in the sense that

maxg=1,2 max1≤i≤q
∑q

j=1 I(ωTg,i,j 6= 0) ≤ c′ for some constant c′ > 0, then the

Clime estimator of Cai, Liu and Luo (2011) can be employed.
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The next theorem summarizes the asymptotic properties of the data-driven

procedure.

Theorem 2. Assume (C1) to (C3), (C5) and (C6). If t̂d denotes the threshold

value in (2.6) under the data-driven case, and assuming the same conditions as

in Theorem 1, then

lim
(nq,p)→∞

FDR(t̂d)

αl0/l
= 1, and

FDP(t̂d)

αl0/l
→ 1 in probability, as (nq, p)→∞.

This essentially shows that the data-driven multiple testing procedure per-

forms asymptotically as well as the oracle procedure. That is, as long as the

estimation of the temporal covariance structure is reasonably good, the data-

driven procedure controls both the FDR and FDP at the pre-specified level α,

asymptotically, under the same conditions as the oracle case.

4. Comparison

4.1. Estimation versus inference

Both sparse graph estimation and graph inference procedures can produce,

in effect, a sparse representation of the network structure. However, the two

classes of solutions differ in several ways. The key of graph estimation is to

seek a bias-variance tradeoff, and many sparse graph estimators such as those

of Yuan and Lin (2007) and Friedman, Hastie and Tibshirani (2008) are biased.

Our graph testing method, instead, requires and is built upon a nearly unbiased

estimator. Moreover, graph estimation methods do not produce a direct quan-

tification of statistical significance for individual network edges. Practically they

may enjoy a high true positive discovery rate (power), but there is no explicit

control of false positive rate (significance level). Our solution both produces sig-

nificance quantification and controls the false discovery explicitly. As such, it is

distinct from the majority of existing sparse graph estimation solutions.

4.2. One-sample test versus two-sample test

Liu (2013) proposed a graph hypothesis testing procedure under the vector

normal distribution, Chen and Liu (2015) and Xia and Li (2017) under the matrix

normal, while all those tackled one-sample testing. Our method aims at two-

sample testing. They are two different types of hypothesis testing problems. We

next outline the major differences in terms of their research goals, test statistics,

and theoretical tools.
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Difference in goals: The two-sample testing method proposed in this article

aims to detect the alternation of magnitude in spatial partial correlations across

different groups. The one-sample solution produces evidence about the existence

of spatial conditional dependence, i.e., whether ωSg,i,j = 0, but no knowledge

about the magnitude of such dependence. Thus the aims of the two approaches

are completely different, and the conclusion of the two-sample test cannot be

obtained from the one-sample test.

Difference in test statistics: In the one-sample test of Xia and Li (2017), the

testing of the precision matrix and the partial correlation matrix are equivalent.

As such, the test statistics were constructed based on the estimates of ωSg,i,j .

In the two-sample case, the precision matrices are unidentifiable, and the test

aims at the equality of the two partial correlation matrices. Accordingly, the

test statistics are based on the estimates of ρS1,i,j − ρS2,i,j . This requires two

standardization processes: the standardization of the estimates of ωSg,i,j , and

the standardization of the difference of the estimates of ρSg,i,j . This double

standardization implies an increased level of complexity, and requires a different

set of technical tools for the theoretical analysis of the test statistics, as shown

next.

Difference in theoretical proofs: The asymptotic analysis of the two-sample

procedure is technically much more involved than that of the one-sample proce-

dure. First, in the one-sample case, ωS,i,j = 0 under the null hypothesis. As a

result, it is relatively easy to establish the asymptotic normality of ρ̂i,j , then Wi,j .

In the two-sample case, however, ρS1,i,j and ρS2,i,j are not necessarily equal to 0

under the null, and the standardized statistics Wi,j is not asymptotically normal.

To overcome this difficulty, we divide the set of indices into two subsets, one with

a negligible correction and the other requires a major correction. Accordingly,

different technical tools are employed for these two subsets to eventually estab-

lish the asymptotic normality of the corrected version of Wi,j . Second, in the

one-sample setting, the residuals are weakly dependent with each other because

RS = I under the null, whereas in the two-sample setting, the test statistics can

be highly dependent since RSg
is not necessarily an identity matrix. To show

error rate control, reorganization of the set of test statistics according to the level

of dependency is essential. Some special tools have been employed to show the

negligibility of the highly dependent pairs. More details are given in the proofs

in the online supplement.



314 XIA AND LI

4.3. Vector normal test versus matrix normal test

For the two-sample testing problem, Xia, Cai and Cai (2015) developed a test

under the vector normal distribution and established its asymptotic properties.

Narayan, Allen and Tomson (2015) tackled the problem under the matrix normal

distribution, but transformed the problem back to the vector normal case by

employing a whitening preprocessing step to help induce independent columns of

the matrix data. Our transformation of the data and the separation of the spatial

and temporal covariances can be viewed, at the conceptual level, as a version of

whitening for the matrix-valued quantity. However, our procedure differs from

the classical whitening, resulting in different properties, both computationally

and theoretically.

Difference in computation: Classical whitening seeks an unbiased estimator

of the q × q temporal covariance matrix at every spatial location based on the

n samples. As a result, it is computationally expensive, and requires q < n if

the usual sample covariance estimator is employed. This can be restrictive in

brain connectivity analysis, since the temporal dimension q can easily exceed the

sample size n. Our method in effect pools the np correlated samples to estimate

ΣTg
, and as such it does not require q < n, and is much faster to compute.

Due to the correlations among the np samples, the pooled estimator of ΣTg
is

unbiased only up to a constant. However, our test statistics, by construction, are

not affected by this constant.

Difference in theory: To ensure the data-driven procedure performs asymp-

totically as well as the oracle one as if ΣTg
were known, we require the estimator

of ΣTg
to satisfy (C6), in that some norm of Σ̂

−1/2
Tg

− cΣ−1/2Tg
, with c > 0 a con-

stant, satisfies a given convergence rate. By pooling np samples, our estimator

meets this requirement. However, the estimator of the conventional whitening

procedure does not satisfy (C6), and thus cannot guarantee the asymptotic per-

formance of the data-driven test.

5. Simulations

We have carried out intensive simulations to study the finite-sample perfor-

mance of the proposed testing procedures. We have numerically compared the

oracle and data-driven tests, compared the data-driven tests with the usual sam-

ple covariance estimator as the plug-in and the banded covariance estimator as

the plug-in, and compared our proposed tests with the solution that first whitens

and de-correlates the columns of the matrix data, then applies the two-sample
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test of Xia, Cai and Cai (2015).

Specifically, we generated n i.i.d. samples from a matrix normal distribu-

tion with the precision matrix ΩSg
⊗ ΩTg

, ΩSg
∈ IRp×p ,ΩTg

∈ IRq×q , g = 1, 2.

We examined a range of spatial and temporal dimensions and the sample sizes:

p = {50, 200, 800}, q = {50, 200}, and n = n1 = n2 = {15, 50}. These values are

consistent with the usual setup in functional connectivity analysis. We considered

two temporal covariance structures: an autoregressive model, ΣTg
= (σTg,i,j),

with elements σT1,i,j = 0.4|i−j|, and σT2,i,j = 0.5|i−j|, 1 ≤ i, j ≤ p; and a moving

average model, ΣTg
= (σTg,i,j), with nonzero elements σT1,i,j = 1/(|i− j|+1), for

|i−j| ≤ 3, and σT2,i,j = 1/(|i−j|+1), for |i−j| ≤ 4. We also considered three spa-

tial covariance structures: a banded graph, with bandwidth equal to 3 (Zhao et

al. (2012)); a hub graph, with row and columns evenly partitioned into 20 disjoint

groups; and a small-world graph, with 5 starting neighbors and 5% probability of

rewiring (van Wieringen and Peeters (2014)). We first generated ΩS1
according to

one of these spatial graph models, then constructed ΩS2
by randomly eliminating

m percent of edges of ΩS1
, with m = 10% and 50%. Tables 1 to 4 summarize the

empirical FDR and the empirical power, in percentages, of various testing proce-

dures based on 100 data replications. The significance level was set at α = 1%.

The power was calculated as 100−1
∑100

l=1{
∑

(i,j)∈H1
I(|Wi,j,l| ≥ t̂)}/|H1|, where

Wi,j,l denotes the test statistic for the l-th replication andH1 denotes the nonzero

locations.

For the empirical FDR, we see from the tables that, the data-driven proce-

dure based on the banded temporal covariance estimator achieves an FDR well

under control of the specified significance level across all settings. Its performance

further improves as (p, q) increases, and is close to that of the oracle procedure.

The data-driven procedure based on the sample temporal covariance estimator

is outperformed by the banded estimator based procedure when n = 15. This

is because the sample covariance estimator is incapable of estimating the true

covariance matrix well with a large q and a relatively small value of np. However,

as n and p grow, its performance improves, and gets closer to the oracle proce-

dure. On the other hand, the alternative whitening based testing solution suffers

from some obvious FDR distortion, especially for the moving average temporal

model when the sample size is relatively small (n = 15). Moreover, as (n, p, q)

increases, for all testing procedures, the standard error of the empirical FDR

decreases, whereas our oracle and data-driven procedures perform similarly and

achieve smaller standard errors than the whitening based solution.

For the empirical power, the proposed testing procedures are more powerful
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than the whitening based procedure. The data-driven procedure based on the

banded estimator again performs similarly as the oracle, and outperforms the

one based on the sample covariance estimator when (n, p) is small. Moreover,

the empirical power decreases when p increases, since there are more edges to

estimate, and the power increases when q increases, as there are more samples

to estimate the graph structure. The empirical powers are low for the hub graph

and the small-world graph when n = 15, q = 50, and p = 800. This is due to

the fact that the magnitudes of the partial correlations generated are very small

for these two graphs, and, as such, are difficult to detect when (n, q) is small but

the spatial dimension p is large. Theoretically, one needs the difference of partial

correlations to have the magnitude exceeding c {log p/(nq)}1/2, for some constant

c > 0. We see from Tables 1 and 2, when q grows to 200, the powers become much

larger for those two graphs. Similarly, when the sample size becomes larger, i.e.,

when n = 50, we see from Tables 3 and 4 that the empirical powers are much

higher than those when n = 15.

Table 5 reports the computation time, in seconds, for the four methods dis-

cussed, for a single data replication. We fix the spatial structure as banded, and

the temporal structure as autoregressive, while we vary (n, p, q). The computa-

tion time for other spatial and temporal structures shows a similar qualitative

pattern and is omitted here. From this table, we see that the data-driven proce-

dure is slightly slower than the oracle procedure, as the former involves an addi-

tional step of temporal covariance estimation. However the overall computation

times are comparable. The classical whitening based procedure is computation-

ally much more expensive. Especially when the temporal dimension is large, e.g.,

q = 200, the computation time of the whitening-based procedure can be as large

as 10 times of that of our method.

6. Data Analysis

Attention deficit hyperactivity disorder (ADHD) is one of the most com-

monly diagnosed child-onset neurodevelopmental disorders. It has an estimated

childhood prevalence of 5−10% worldwide, and an estimated annual cost in tens

of billions of dollars (Pelham, Foster and Robb (2007)). Symptoms of ADHD

include difficulty in staying focused and paying attention, difficulty in control-

ling behavior, and over-activity. These symptoms can persist into adolescence

and adulthood, resulting in a lifelong impairment (Biederman, Mick and Faraone

(2000)). The understanding and diagnosis of ADHD are of great significance. We

analyzed a dataset from the ADHD-200 Global Competition, which includes de-
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Table 5. Computation time in seconds (rounded up to integers) for a single data repli-

cation. The spatial structure is fixed as a banded graph, and the temporal structure is

fixed as an autoregressive covariance.

n = 15 n = 50

p q = 50 q = 200 q = 50 q = 200

50

oracle 7 29 27 89

data-driven-S 7 45 29 102

data-driven-B 7 44 30 119

whitening 41 1,319 68 4,295

200

oracle 96 522 472 2,033

data-driven-S 99 600 532 2,425

data-driven-B 101 553 500 2,370

whitening 219 6,310 691 18,320

800

oracle 2,051 7,585 6,300 25,211

data-driven-S 2,063 7,601 6,658 26,630

data-driven-B 2,196 7,654 6,756 25,634

whitening 2,729 30,413 7,184 91,440

mographical information and resting-state fMRI of nearly one thousand children

and adolescents, including combined types of ADHD and typically developing

control (TDC). The data were collected from eight participating sites. To avoid

potential site bias, we adopted the strategy of Ahn et al. (2015), and focused our

analysis on the fMRI data from the New York University site only, which has the

largest number of subjects among all sites. A Siemens Allegra 3T scanner was

used to acquire the 6-min resting-state fMRI scans. The scan parameters are:

voxel size = 3×3×4mm, slice thickness = 4mm, number of slices = 33, repetition

time = 2s, echo time = 15ms, flip angle = 90◦, and field of view = 240mm. Dur-

ing acquisition, each subject was asked to lie still, stay awake, and not to think

about anything under a black screen. We excluded some subjects from further

analysis, based on the criterion that, for each subject, one or two fMRI scans were

acquired and, for each scan, a quality control assessment (pass or questionable)

was given by the data curators. This information was provided in the pheno-

typic data. We only used the scan that passed the quality control; if both scans

of a subject passed the quality control, we chose the first scan. If neither scan

passes the quality control, we removed that subject from further analysis. We

also removed the subjects with missing diagnostic status or missing scans. The

resulting dataset consisted of 96 combined ADHD subjects and 91 TDC subjects.

All fMRI scans were preprocessed using the Athena pipeline, including slice tim-
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ing correction, motion correction, spatial smoothing, denoising by regressing out

motion parameters and white matter and cerebrospinal fluid time courses. Each

voxel time course was also band-pass filtered (0.009−0.08 Hz) to remove frequen-

cies not related to resting-state brain activity. All the fMRI data were aligned in

the MNI T1 template space, with the same spatial dimensions 49×58×47. Then

the brain was parcellated using the Anatomical Automatic Labeling (AAL) atlas

(Tzourio-Mazoyer et al. (2002)). The resulting data is a spatial by temporal

matrix for each subject, with the spatial dimension p = 116 and the tempo-

ral dimension q = 172. More information about this data competition can be

found at http://fcon_1000.projects.nitrc.org/indi/adhd200/. The pre-

processed version of the data can be found at http://neurobureau.projects.

nitrc.org/ADHD200/Data.html.

We first applied the test of Aston, Pigoli and Tavakoli (2016) to check if the

data conforms with the matrix normal distribution with a Kronecker product

structure. The p-values of the test for the ADHD group and the TDC group were

0.0059 and 0.0068, respectively. Considering that a very small significance level is

typically used in analysis, these p-values suggest that, for this data, the deviation

from the separable structure seems moderate. Nevertheless, we caution that any

interpretation of our data analysis should be taken with a healthy skepticism even

under this relatively mild violation of the model assumption. We then applied

our proposed multiple testing procedure. Given that the banded estimator of

ΣTg
performed best in the simulations, we employed it for the data analysis

as well, and the selected bandwidth for both groups was equal to 3. For ease

of presentation, we report in Table 6 the top 35 links found to differentiate

between the ADHD and TDC groups, and their associated p-values, which were

all smaller than 1e-12. Figure 1 shows those top links and the associated brain

regions visualized with the BrainNet Viewer (Xia, Wang and He (2013)).

It is seen that the differentiating links between the two groups concentrate

on the frontal gyrus, cingulate gyrus, cerebellum and cerebellar vermis, precen-

tral gyrus, postcentral gyrus, and right insula areas. The prefrontal cortex is

responsible for many higher-order mental functions, including those that regu-

late attention and behavior. It is commonly thought that ADHD is associated

with alterations in the prefrontal cortex (Arnsten and Li (2005)). The cingulate

gyrus is associated with cognitive process, and there are evidences of anterior

cingulate dysfunctions in ADHD patients (Bush, Valera and Seidman (2005)).

The cerebellum is responsible for motor control and cognitive functions such as

attention and language, and dysfunction in the cerebellum and anomaly in the

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://neurobureau.projects.nitrc.org/ADHD200/Data.html
http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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Table 6. Differentiating links and their associated p-values found by the proposed mul-

tiple testing procedure for the ADHD resting-state fMRI data. Reported are the links

whose corresponding p-values smaller than 1e-12.

Differentiating links p-value Differentiating links p-value

Frontal Sup Orb L ↔ Frontal Med Orb R 0 Frontal Mid L ↔ Temporal Pole Mid L 2.54e-14

Frontal Sup Orb R ↔ Frontal Mid Orb R 0 Precentral L ↔ Angular L 2.75e-14

Frontal Mid Orb L ↔ Frontal Inf Orb L 0 Calcarine R ↔ Occipital Mid L 3.10e-14

Frontal Mid Orb L ↔ Frontal Med Orb R 0 Frontal Mid Orb R ↔ Frontal Inf Orb L 5.00e-14

Frontal Mid Orb L ↔ Rectus R 0 Supp Motor Area R ↔ Insula R 1.22e-13

Frontal Mid Orb R ↔ Cerebelum 4 5 R 0 Precentral L ↔ Postcentral R 1.40e-13

Frontal Inf Tri R ↔ Temporal Mid L 0 Postcentral L ↔ Angular L 1.54e-13

Cingulum Ant L ↔ Cingulum Mid L 0 Occipital Sup R ↔ Vermis 7 1.88e-13

Cingulum Ant R ↔ Cingulum Mid L 0 Cerebelum Crus2 R ↔ Cerebelum 8 R 2.11e-13

Postcentral L ↔ Postcentral R 0 Insula R ↔ SupraMarginal L 2.90e-13

Occipital Inf R ↔ Vermis 9 1.11e-16 Frontal Inf Oper L ↔ Cingulum Ant R 3.09e-13

Cerebelum 9 L ↔ Vermis 10 2.22e-16 Paracentral Lobule L ↔ Thalamus R 3.18e-13

Frontal Mid Orb R ↔ Rectus R 8.88e-16 Lingual L ↔ Vermis 3 4.44e-13

Frontal Mid Orb R ↔ Temporal Inf L 1.22e-15 Frontal Med Orb R ↔ Thalamus L 6.19e-13

Frontal Sup Orb L ↔ Rectus R 1.89e-15 Heschl L ↔ Cerebelum 8 L 6.87e-13

Frontal Sup Medial L ↔ Occipital Sup L 2.66e-15 Cingulum Ant L ↔ Cingulum Mid R 7.88e-13

Paracentral Lobule L ↔ Vermis 1 2 7.88e-15 Supp Motor Area L ↔ Precuneus R 9.65e-13

ParaHippocampal L ↔ Vermis 3 2.10e-14

cerebellar vermis in ADHD patients have been reported (Toplak, Dockstader and

Tannock (2006); Goetz, Vesela and Ptacek (2014)). The precentral gyrus is the

site of the primary motor cortex, which is involved in the planning, control, and

execution of voluntary movements. The postcentral gyrus is the location of the

primary somatosensory cortex. Their possible involvement with ADHD has been

noted previously (Fassbender et al. (2011)). The insula is involved in conscious-

ness and plays a role in functions linked to emotion, perception, motor control

and self-awareness. Its dysfunction in ADHD has also been reported (Spinelli

et al. (2011)). Our findings are in general consistent with the current clinical

literature of ADHD.

7. Discussion and Extension

Motivated by applications in neuroscience research, we have proposed in this

article a multiple hypothesis testing procedure for detecting the alternations of

brain connectivities between two groups. Empirically it is demonstrated to enjoy

a competitive performance, and it can handle both a small sample size (n = 15)

as well as an adequately large network (p = 800). Theoretically it is shown to

control the false discovery asymptotically. Moreover, since no bootstrap or data
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Figure 1. Differentiating links and the associated brain regions found by the proposed

multiple testing procedure for the ADHD resting-state fMRI data. Reported are the top

35 links.

permutation is required, the computation of our testing procedure is fast.

We have primarily focused on the two-sample testing scenario. In principle,

our approach can be extended to multiple groups testing as well. Specifically,

suppose we have {X(g), g = 1, . . . ,K} to denote the p × q spatial temporal

matrices from K groups, K ≥ 2. Each follows a matrix normal distribution,

with the Kronecker product covariance structure, Σ{vec(X(g))} = ΣSg
⊗ΣTg

, g =

1, . . . ,K. Accordingly, Σ−1{vec(X(g))} = Σ−1Sg
⊗Σ−1Tg

= ΩSg
⊗ΩTg

, g = 1, . . . ,K.

Let RSg
= D

−1/2
Sg

ΩSg
D
−1/2
Sg

=
(
ρSg,i,j

)p
i,j=1

, we aim to simultaneously test,

H0,i,j: ρS1,i,j = ρS2,i,j = · · · = ρSK ,i,j versus H1,i,j: ρSl,i,j 6= ρSk,i,j , 1 ≤ l 6= k ≤ K,
for 1 ≤ i < j ≤ p. For each pair of groups, we define the standardized test statis-

tic, W
(l,k)
i,j = (ρ̂i,j,l − ρ̂i,j,k) /

√
θ̂i,j,l + θ̂i,j,k, 1 ≤ i < j ≤ p, where ρ̂i,j,l and θ̂i,j,l

for the l-th group can be obtained as in (2.2) and (2.3). Then we construct the

sum-of-square type test statistic as Si,j =
∑

1≤l<k≤K(W
(l,k)
i,j )2. It can be shown

that the limiting null distribution of Si,j is a mixture chi-square distribution.

In order to develop a multiple testing procedure based on Si,j , two dependence
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structures need to be taken into consideration. One is the dependence among

different entries (i, j) for a given pair, namely, {W (l,k)
i,j , 1 ≤ i < j ≤ p}, as studied

in Section 3. The other is the dependence between different pairs (l, k) of the

standardized statistics, {W (l,k)
i,j 1 ≤ l < k ≤ K}. We leave this as our future

research.

Supplementary Materials

The proofs of the main theorems and some technical lemmas are available

in the online supplementary material.
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