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Supplementary Material

This material contains proof of Theorem [£.3] Theorem [£:4land [£-5] from the main context.

S1 Appendix

Proof of Theorem[[-5. We only give proof for p > 0. For p = 0, the proof is exactly the same
with ¢, replaced by —log |M(§)|. In Lemma we proved

M(agy + (1 — a)&2) > aM (&) + (1 — ) M(&2) (S1.1)
By the monotonicity and convexity of W, (M) (Fedorov and Hackl 1997, sec. 2.2), where ®, M) =
(v Tr(M™P))YP, we have
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D, (&) as function of £ is convex.

Consider iteration ¢ in the algorithm, since

xi = argminn(va, §)
TEX

(S1.3)
 rgmin 22U (1= )€+ av.)
zEX oo 00
and by (S1.2) we have
q>p(£a,t) < Pp(Es), Vo € [0, 1] (51.4)

where £ = (1 — a)lg) + avgr, then ®,(§5e+1)) < ®,(Eat) since Est+1) is optimal with
support set S® U z}.

Thus,

q’p(fsuﬂ)) < ¢p(£s(t)) < ‘Pp(fs(o))7Vt eN (81-5)

®, is a decreasing non-negative function of ¢, its convergence follows. Then we prove ®,(£4))
actually converge to ®,(£").

Define ©1 = {®,(&) < 29,(E5(0))}- It is obvious that {g) € O1, Vt, since P, is decreasing
in ¢. For any o € [0,1/2], M(,0) > (1—a)M(Egt)) +aM (vpr) > 0.5M (Eg0r)), thus @ (€ae) <
20,(Egt)) < 2P5(€50))s Ea,t € O1. Me is nonsingular for any £ € O1, thus ®,(aé1 + (1 — a)é2)
is infinitely differentiable with respect to « for any o € [0,1/2]. So there exist K < oo, such

that

sup { 0y (ats + (1 — a)ba)

Fo2 :51752691,056[071/2]}21( (S1.6)

‘We shall show that
t1l>1£10 ép(gs(t)) =d,(£"), (S1.7)

where £* is optimal design. Otherwise, by ®,’s monotocity, 3§ > 0 such that ®,(£qt)) —

D,(€%) > §,Vt. By , Ve € [0, 1], we have @, ((1 —€)ége) +€£") < (1 —€)Pp(€gty) +€Pp(£7)
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9P, ((1 — a)€sr) + ")
O

dép(gs(f) s O g*) =

a=0

= i @€+ (1= ) — Bylesc0) (518)

e—0 €

< ‘1)10(5*) - q’p(fs(t)) <=4

By definition of x}, we have n(va:, &g ) > [ n(x, g )€ dr and thus

0P, ((1 — @)ég0) + avey)
Oa

d¢P(§s(t)aa7Vz;) = >0 (S1.9)

a=0

Expand @, (fa,t) to a Taylor series in o and apply 1) and 1 , we can show that

®p(Eare)
=05 (€sn) — dPp(Es), 0, oy
) (S1.10)
4 1207 %p(0fs + (1 — )6
2 da? a=a’
1. 2
S q)p(gs(t)) — + iKoz
Let a = &, by ®p(Egie41)) < ®,(£a,¢) we can derive that for all £ > 0 we have
Dy (Egein) — Pp(€sny) < —67/2K (S1.11)

which is contrary to ®, > 0 if let ¢ — co. Similar arguments can be applied to the case when

K <4, in which we let a = 1. O

Proof of Theorem @ Under Model (2.5)), the information matrix under within-group design &

can be written as

OF\"  _,0F

where V7' = /W — eaWJ, W, with W = diag (w1, ...wn). The covariance matrix for the
maximum likelihood estimator of § can be written as M, 1. Here we consider all designs such

that M¢ is nonsingular.



Let Q; be a matrix whose (7,7)th element is 1 and (n,n)th element is -1, and 0 otherwise.

We have
—1
V;_ = av = Clﬂi — CQQiJnW — CQWJnQi,
8wi
82‘/71
Vvij_ = M = *CQQZ'Jan — CQQjJnQi,
. OMe(0) (9F\Tov'oF (oF\T = OF
Me= 3w =\a0) Bw a0 \ag) Vo> ™9
= M) _ (OFNT VL oF _ (OF\T OF
€7 owiow;  \ 90 ) Owow; 0  \ 99 Y700

Thus by Lemma 15.10.5 of Harville (1997), for ¢ = 1,...,n — 1, we have

oM (0 _
0%e(0) _ OMe () - M 5M5(9)M51 = MMM and

ow; ow; ow;
230

Ow; 0w i

i
= Mg (M Mg M — MP + M{M ME)M;

Notice that

PTr(Se(®) _ .. (azzg(fn

i, =1,..n — 1.
c’)wi&wj 6wi8w]—>’vz’] et

Thus the (4, j)th element of H(w), the Hessian matrix of TrX¢(0), can be written as

H(w)li, ) =Tr(Mg " (MM Mg = M + MEMZ MM
=2Tr(M¢ ' M{M MM ) + Tr(—Mg ' MP M)

=2Tr(M¢ ' M{M MM )

-1 6F T 8F —1
+TT(—M§ (%) (_CQQiJan—CQQjJnQi)%Mg )
Aaping—lasins—1 L (OF\T oF . 1
ZQTT(ME M§M§ MEME )+262TT‘(M§ (%) QranQj%Mg )
p

H(w) can be written as H(w) = Hi(w) + c2H2(w), where co = > 0.
(1) can be (W) = Hw) - caffalw), whete ez = GG ,00 )
This means as long as both Hi(w) and Ha(w) are both nonnegative definite, H(w) will be

nonnegative definite.
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Since Me is nonnegative definite, its inverse M, ! is also nonnegative definite. Thus

M-

. 1 can be written as M{l = (Mgl)lﬂ(ME_l)l/Q, and similarly J, = J711/2J711/2. Let A; =

Mg ME(M )2, By Proposition 1 in the appendix of Stufken and Yang (2012), it follows that
Hq(w) is nonnegative definite. Ha(w) can be proved to be nonnegative definite by the similar
way. Thus H(w) = Hi(w) + c2Hz2(w) is nonnegative definite.

Therefore, Tr(X¢(0)) attains its minimum at any of the critical points or at the boundary.

O

Proof of Theorem[f.3 The covariance matrix for the maximum likelihood estimator of  has
the same format as that of Theorem @ Here we also consider all designs such that M is
nonsingular. It is equivalent to show that log [X¢ ()| is minimized at the critical points or at a
point on the boundary. It suffices to show that the Hessian matrix of log |3¢(6)] is nonnegative
definite. The (4, j)th entry of the Hessian matrix can be written as

9% log [S¢(0)]

H(wolij) = =52 5

9?3 (0)

8wi 8w i

) 325(9)271(0) 325(9)) '

Owi 3 8wj

=Tr <2g1(9)
Similar to the proof of Theorem [{.4] we have
1, 0%%(0) _ oy i L il
1 ¢ _ 1/2 1 14 5i 1w—1/2
~1/2 “aging—lagins—ls—1/2
+ 22O M MM MM s (6)

T
+ 2635 V2 (O) M <%§> Qi JnQ; (%?) M:'s2(0)

=2Tr (52 (0) Mg MM MM B (0))

_ _1 (OF\" OF\ .« 1
4 2e,Tr (Zg 1/2(9)M§ 1 (@) Qa0 (%> M; 125 1/2(9))



and

9% (0)
ow;

0%¢(0)

Tr(Eé (0) B

()

) =Tr(Sg ' (0) Mg MEM 'S (0) M MM
=Tr(S; V2 O) Mg MM MM SV (0)).

Therefore

0 (log [Ze (0)1)
8wi8w]-

=Tr (2 V2(0) M MEM MM 2‘1/2(9))
., (OF OF\ e
+ 2¢oTr (z V2 0)Mc ! <%> Qi Jn €Y <%> MI's, 1”(9)) .

Let H(w)p = H(w)p1 + 2c2H (w) p2, where

H(w)pili, ] = Tr (55 /2(0) M MEME  MZME 572(6) ) and

T (S1.12)
H(w)ps[i, j] = Tr (z‘“(e)Mgl (%1;) wmj(gg)m zg“(e)).

Let A; = Egl/z(Q)MglMg(Mgl)l/Q, by Proposition 1 in the appendix of Stufken and
Yang (2012), it follows that H(w)p1 is nonnegative definite. Similarly, let A; =
ar\"
Eglp(@)Mgl (%> Q:Ja/?, we can show that H(w)ps is also nonnegative definite. Thus

H(w)p is nonnegative definite. Consequently, |X¢(0)| is minimized at any of the critical points

or at a point on the boundary. O

Proof of Theorem[[.3 Remark. The (i, j)th entry of the corresponding Hessian matrix can be

written as

7" (log S (n(0)])

(’)wi 8w i

—Tr (21/2(32) M7 {Mg M)V2pt ((an/ae)( )1/2) (Mg 1/2M7}M5 <an) 21/2>

90
v (w2 (90 v v MM, 9n 2—1/2
00 ) e e <\ o0
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where Pt ((617/80)(M5_)1/2) =1I,— (Mg_)l/2 <gz>T§)£_1(n(9)) <@> (Mg)l/2 is projection

. 0 _
matrix onto the complement of column space of —n(Mg /2,

00
Let
Ai = Xe(0)7? <%) M ME(M)Y?
and
Ai=3¢(0) (%) Mg ME(M )P+ ((9n/00) (M )'?)

respectively, by Proposition 1 in the appendix of Stufken and Yang (2012), it follows that the
first part and the second part of the Hessian matrix are nonnegative definite respectively. Thus

the conclusion follows. O
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