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This material contains proof of Theorem 4.3, Theorem 4.4,and 4.5 from the main context.

S1 Appendix

Proof of Theorem 4.5 . We only give proof for p > 0. For p = 0, the proof is exactly the same

with φp replaced by − log |M(ξ)|. In Lemma 3.1, we proved

M(αξ1 + (1− α)ξ2) ≥ αM(ξ1) + (1− α)M(ξ2) (S1.1)

By the monotonicity and convexity of Ψp(M) (Fedorov and Hackl 1997, sec. 2.2), where ΦpM) =

(v−1Tr(M−p))1/p, we have

Φp(M((1− ε)ξ1 + εξ2)) =

(
1

v
Tr(M(αξ1 + (1− α)ξ2)−p)

)1/p

≤
(

1

v
Tr([αM(ξ1) + (1− α)M(ξ2)]−p)

)1/p

≤ α
(

1

v
Tr(M(ξ1)−p)

)1/p

+ (1− α)

(
1

v
Tr(M(ξ2)−p)

)1/p

= αΦp(M(ξ1)) + (1− α)Φp(M(ξ2))

(S1.2)



Φp(ξ) as function of ξ is convex.

Consider iteration t in the algorithm, since

x∗t = arg min
x∈χ

η(νx, ξ)

= arg min
x∈χ

∂Φp(M((1− α)ξ + ανx))

∂α

∣∣∣∣
α=0

(S1.3)

and by (S1.2) we have

Φp(ξ̃α,t) ≤ Φp(ξS(t)), ∀α ∈ [0, 1] (S1.4)

where ξ̃α,t = (1 − α)ξS(t) + ανx∗t , then Φp(ξS(t+1)) ≤ Φp(ξ̃α,t) since ξS(t+1) is optimal with

support set S(t) ∪ x∗t .

Thus,

Φp(ξS(t+1)) ≤ Φp(ξS(t)) ≤ Φp(ξS(0)), ∀t ∈ N (S1.5)

Φp is a decreasing non-negative function of t, its convergence follows. Then we prove Φp(ξS(t))

actually converge to Φp(ξ
∗).

Define Θ1 = {Φp(ξ) ≤ 2Φp(ξS(0))}. It is obvious that ξS(t) ∈ Θ1, ∀t, since Φp is decreasing

in t. For any α ∈ [0, 1/2], M(ξ̃t,α) ≥ (1−α)M(ξS(t))+αM(νx∗t ) ≥ 0.5M(ξS(t)), thus Φp(ξα,t) ≤

2Φp(ξS(t)) ≤ 2Φp(ξS(0)), ξα,t ∈ Θ1. Mξ is nonsingular for any ξ ∈ Θ1, thus Φp(αξ1 + (1−α)ξ2)

is infinitely differentiable with respect to α for any α ∈ [0, 1/2]. So there exist K < ∞, such

that

sup

{
∂2Φp(αξ1 + (1− α)ξ2)

∂α2
: ξ1, ξ2 ∈ Θ1, α ∈ [0, 1/2]

}
= K (S1.6)

We shall show that

lim
t→∞

Φp(ξS(t)) = Φp(ξ
∗), (S1.7)

where ξ∗ is optimal design. Otherwise, by Φp’s monotocity, ∃δ > 0 such that Φp(ξS(t)) −

Φp(ξ
∗) > δ,∀t. By (S1.2), ∀ε ∈ [0, 1], we have Φp((1− ε)ξS(t) + εξ∗) ≤ (1− ε)Φp(ξS(t)) + εΦp(ξ

∗)
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dΦp(ξS(t) , α, ξ
∗) =

∂Φp((1− α)ξS(t) + αξ∗)

∂α

∣∣∣∣
α=0

= lim
ε→0

1

ε
(Φp(εξ

∗ + (1− ε)ξS(t))− Φp(ξS(t)))

≤ Φp(ξ
∗)− Φp(ξS(t)) < −δ

(S1.8)

By definition of x∗t , we have η(νx∗t , ξS(t)) >
∫
η(x, ξS(t))ξ∗dx and thus

dΦp(ξS(t) , α, νx∗t ) =
∂Φp((1− α)ξS(t) + ανx∗t )

∂α

∣∣∣∣
α=0

≥ δ (S1.9)

Expand Φp(ξ̃α,t) to a Taylor series in α and apply (S1.6) and (S1.9), we can show that

Φp(ξ̃α,t)

=Φp(ξS(t))− dΦp(ξS(t) , α, νx∗t )α

+
1

2
α2 ∂

2Φp(αξ1 + (1− α)ξ2)

∂α2

∣∣∣∣
α=α′

≤ Φp(ξS(t))− δα+
1

2
Kα2

(S1.10)

Let α = δ
K

, by Φp(ξS(t+1)) ≤ Φp(ξ̃α,t) we can derive that for all t ≥ 0 we have

Φp(ξS(t+1))− Φp(ξS(t)) ≤ −δ2/2K (S1.11)

which is contrary to Φp ≥ 0 if let t → ∞. Similar arguments can be applied to the case when

K ≤ δ, in which we let α = 1.

Proof of Theorem 4.4. Under Model (2.5), the information matrix under within-group design ξ

can be written as

Mξ = Mξ(θ) =

(
∂F

∂θ

)T
V −1 ∂F

∂θ

where V −1 = c1W − c2WJnW , with W = diag (w1, ...wn). The covariance matrix for the

maximum likelihood estimator of θ can be written as M−1
ξ . Here we consider all designs such

that Mξ is nonsingular.



Let Ωi be a matrix whose (i, i)th element is 1 and (n, n)th element is -1, and 0 otherwise.

We have

Vi− =
∂V −1

∂wi
= c1Ωi − c2ΩiJnW − c2WJnΩi,

Vij− =
∂2V −1

∂wi∂wj
= −c2ΩiJnΩj − c2ΩjJnΩi,

M i
ξ =

∂Mξ(θ)

∂wi
=

(
∂F

∂θ

)T
∂V −1

∂wi

∂F

∂θ
=

(
∂F

∂θ

)T
Vi−

∂F

∂θ
, and

M ij
ξ =

∂2Mξ(θ)

∂wi∂wj
=

(
∂F

∂θ

)T
∂2V −1

∂wi∂wj

∂F

∂θ
=

(
∂F

∂θ

)T
Vij−

∂F

∂θ
.

Thus by Lemma 15.10.5 of Harville (1997), for i = 1, ..., n− 1, we have

∂Σξ(θ)

∂wi
=
∂M−1

ξ (θ)

∂wi
= −M−1

ξ

∂Mξ(θ)

∂wi
M−1
ξ = −M−1

ξ M i
ξM
−1
ξ and

∂2Σξ(θ)

∂wi∂wj
= M−1

ξ (M j
ξM

−1
ξ M i

ξ −M ij
ξ +M i

ξM
−1
ξ M j

ξ )M−1
ξ .

Notice that

∂2Tr(Σξ(θ))

∂wi∂wj
= Tr

(
∂2Σξ(θ)

∂wi∂wj

)
, ∀i, j = 1, ...n− 1.

Thus the (i, j)th element of H(w), the Hessian matrix of TrΣξ(θ), can be written as

H(w)[i, j] =Tr(M−1
ξ (M j

ξM
−1
ξ M i

ξ −M ij
ξ +M i

ξM
−1
ξ M j

ξ )M−1
ξ )

=2Tr(M−1
ξ M i

ξM
−1
ξ M j

ξM
−1
ξ ) + Tr(−M−1

ξ M ij
ξ M

−1
ξ )

=2Tr(M−1
ξ M i

ξM
−1
ξ M j

ξM
−1
ξ )

+ Tr(−M−1
ξ

(
∂F

∂θ

)T
(−c2ΩiJnΩj − c2ΩjJnΩi)

∂F

∂θ
M−1
ξ )

=2Tr(M−1
ξ M i

ξM
−1
ξ M j

ξM
−1
ξ ) + 2c2Tr(M

−1
ξ

(
∂F

∂θ

)T
ΩiJnΩj

∂F

∂θ
M−1
ξ ).

H(w) can be written as H(w) = H1(w) + c2H2(w), where c2 =
ρ

[1 + (k − 1)ρ](1− ρ)
> 0.

This means as long as both H1(w) and H2(w) are both nonnegative definite, H(w) will be

nonnegative definite.
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Since Mξ is nonnegative definite, its inverse M−1
ξ is also nonnegative definite. Thus

M−1
ξ can be written as M−1

ξ = (M−1
ξ )1/2(M−1

ξ )1/2, and similarly Jn = J
1/2
n J

1/2
n . Let Ai =

M−1
ξ M i

ξ(M
−1
ξ )1/2. By Proposition 1 in the appendix of Stufken and Yang (2012), it follows that

H1(w) is nonnegative definite. H2(w) can be proved to be nonnegative definite by the similar

way. Thus H(w) = H1(w) + c2H2(w) is nonnegative definite.

Therefore, Tr(Σξ(θ)) attains its minimum at any of the critical points or at the boundary.

Proof of Theorem 4.3. The covariance matrix for the maximum likelihood estimator of θ has

the same format as that of Theorem 4.4. Here we also consider all designs such that Mξ is

nonsingular. It is equivalent to show that log |Σξ(θ)| is minimized at the critical points or at a

point on the boundary. It suffices to show that the Hessian matrix of log |Σξ(θ)| is nonnegative

definite. The (i, j)th entry of the Hessian matrix can be written as

H(w)D[i, j] =
∂2 log |Σξ(θ)|
∂wi∂wj

= Tr

(
Σ−1
ξ (θ)

∂2Σξ(θ)

∂wi∂wj
− Σ−1

ξ (θ)
∂Σξ(θ)

∂wi
Σ−1
ξ (θ)

∂Σξ(θ)

∂wj

)
.

Similar to the proof of Theorem 4.4, we have

Tr

(
Σ−1
ξ (θ)

∂2Σξ(θ)

∂wi∂wj

)
=Tr(Σ

−1/2
ξ (θ)M−1

ξ M j
ξM

−1
ξ M i

ξM
−1
ξ Σ

−1/2
ξ (θ)

+ Σ
−1/2
ξ (θ)M−1

ξ M i
ξM
−1
ξ M j

ξM
−1
ξ Σ

−1/2
ξ (θ)

+ 2c2Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ))

=2Tr
(

Σ
−1/2
ξ (θ)M−1

ξ M j
ξM

−1
ξ M i

ξM
−1
ξ Σ

−1/2
ξ (θ)

)
+ 2c2Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)



and

Tr(Σ−1
ξ (θ)

∂Σξ(θ)

∂wi
Σ−1
ξ (θ)

∂Σξ(θ)

∂wj
) =Tr(Σ−1

ξ (θ)M−1
ξ M i

ξM
−1
ξ Σ−1

ξ (θ)M−1
ξ M j

ξM
−1
ξ

=Tr(Σ
−1/2
ξ (θ)M−1

ξ M j
ξM

−1
ξ M i

ξM
−1
ξ Σ

−1/2
ξ (θ)).

Therefore

∂2 (log |Σξ(θ)|)
∂wi∂wj

=Tr
(

Σ
−1/2
ξ (θ)M−1

ξ M i
ξM
−1
ξ M j

ξM
−1
ξ Σ

−1/2
ξ (θ)

)
+ 2c2Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)
.

Let H(w)D = H(w)D1 + 2c2H(w)D2, where

H(w)D1[i, j] = Tr
(

Σ
−1/2
ξ (θ)M−1

ξ M i
ξM
−1
ξ M j

ξM
−1
ξ Σ

−1/2
ξ (θ)

)
and

H(w)D2[i, j] = Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)
.

(S1.12)

Let Ai = Σ
−1/2
ξ (θ)M−1

ξ M i
ξ(M

−1
ξ )1/2, by Proposition 1 in the appendix of Stufken and

Yang (2012), it follows that H(w)D1 is nonnegative definite. Similarly, let Ai =

Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJ

1/2
n , we can show that H(w)D2 is also nonnegative definite. Thus

H(w)D is nonnegative definite. Consequently, |Σξ(θ)| is minimized at any of the critical points

or at a point on the boundary.

Proof of Theorem 4.3 Remark. The (i, j)th entry of the corresponding Hessian matrix can be

written as

∂2 (log |Σξ(η(θ))|)
∂wi∂wj

=Tr

(
Σ−1/2

(
∂η

∂θ

)
M−ξ

{
M i
ξ(M

−
ξ )1/2P⊥

(
(∂η/∂θ)(M−ξ )1/2

)
(M−ξ )1/2M j

ξ

}
M−ξ

(
∂η

∂θ

)T
Σ−1/2

)

+ Tr

(
Σ−1/2

(
∂η

∂θ

)
M−ξ M

i
ξM
−
ξ M

j
ξMξ

(
∂η

∂θ

)T
Σ−1/2

)
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where P⊥
(

(∂η/∂θ)(M−ξ )1/2
)

= In − (M−ξ )1/2
(
∂η

∂θ

)T
Σ−1
ξ (η(θ))

(
∂η

∂θ

)
(M−ξ )1/2 is projection

matrix onto the complement of column space of
∂η

∂θ
(M−ξ )1/2.

Let

Ai = Σξ(θ)
−1/2

(
∂η

∂θ

)
M−ξ M

i
ξ(M

−
ξ )1/2

and

Ai = Σξ(θ)
−1/2

(
∂η

∂θ

)
M−ξ M

i
ξ(M

−
ξ )1/2P⊥

(
(∂η/∂θ)(M−ξ )1/2

)
respectively, by Proposition 1 in the appendix of Stufken and Yang (2012), it follows that the

first part and the second part of the Hessian matrix are nonnegative definite respectively. Thus

the conclusion follows.
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