Optimal Designs for Nonlinear Models with Random Block Effects

Xin Wang, Min Yang and Wei Zheng

University of Illinois at Chicago, University of Illinois at Chicago, and University of Tennessee

Supplementary Material

This material contains proof of Theorem 4.3. Theorem 4.4 and 4.5 from the main context.

S1 Appendix

Proof of Theorem 4.5. We only give proof for $p>0$. For $p=0$, the proof is exactly the same with ϕ_{p} replaced by $-\log |M(\xi)|$. In Lemma 3.1 we proved

$$
\begin{equation*}
M\left(\alpha \xi_{1}+(1-\alpha) \xi_{2}\right) \geq \alpha M\left(\xi_{1}\right)+(1-\alpha) M\left(\xi_{2}\right) \tag{S1.1}
\end{equation*}
$$

By the monotonicity and convexity of $\Psi_{p}(M)$ (Fedorov and Hackl 1997, sec. 2.2), where $\left.\Phi_{p} M\right)=$ $\left(v^{-1} \operatorname{Tr}\left(M^{-p}\right)\right)^{1 / p}$, we have

$$
\begin{align*}
\Phi_{p}\left(M\left((1-\epsilon) \xi_{1}+\epsilon \xi_{2}\right)\right) & =\left(\frac{1}{v} \operatorname{Tr}\left(M\left(\alpha \xi_{1}+(1-\alpha) \xi_{2}\right)^{-p}\right)\right)^{1 / p} \\
& \leq\left(\frac{1}{v} \operatorname{Tr}\left(\left[\alpha M\left(\xi_{1}\right)+(1-\alpha) M\left(\xi_{2}\right)\right]^{-p}\right)\right)^{1 / p} \tag{S1.2}\\
& \leq \alpha\left(\frac{1}{v} \operatorname{Tr}\left(M\left(\xi_{1}\right)^{-p}\right)\right)^{1 / p}+(1-\alpha)\left(\frac{1}{v} \operatorname{Tr}\left(M\left(\xi_{2}\right)^{-p}\right)\right)^{1 / p} \\
& =\alpha \Phi_{p}\left(M\left(\xi_{1}\right)\right)+(1-\alpha) \Phi_{p}\left(M\left(\xi_{2}\right)\right)
\end{align*}
$$

$\Phi_{p}(\xi)$ as function of ξ is convex.
Consider iteration t in the algorithm, since

$$
\begin{align*}
x_{t}^{*} & =\arg \min _{x \in \chi} \eta\left(\nu_{x}, \xi\right) \\
& =\left.\arg \min _{x \in \chi} \frac{\partial \Phi_{p}\left(M\left((1-\alpha) \xi+\alpha \nu_{x}\right)\right)}{\partial \alpha}\right|_{\alpha=0} \tag{S1.3}
\end{align*}
$$

and by S1.2 we have

$$
\begin{equation*}
\Phi_{p}\left(\tilde{\xi}_{\alpha, t}\right) \leq \Phi_{p}\left(\xi_{S^{(t)}}\right), \forall \alpha \in[0,1] \tag{S1.4}
\end{equation*}
$$

where $\tilde{\xi}_{\alpha, t}=(1-\alpha) \xi_{S^{(t)}}+\alpha \nu_{x_{t}^{*}}$, then $\Phi_{p}\left(\xi_{S^{(t+1)}}\right) \leq \Phi_{p}\left(\tilde{\xi}_{\alpha, t}\right)$ since $\xi_{S^{(t+1)}}$ is optimal with support set $S^{(t)} \cup x_{t}^{*}$.

Thus,

$$
\begin{equation*}
\Phi_{p}\left(\xi_{S^{(t+1)}}\right) \leq \Phi_{p}\left(\xi_{S^{(t)}}\right) \leq \Phi_{p}\left(\xi_{S^{(0)}}\right), \forall t \in \mathscr{N} \tag{S1.5}
\end{equation*}
$$

Φ_{p} is a decreasing non-negative function of t, its convergence follows. Then we prove $\Phi_{p}\left(\xi_{S^{(t)}}\right)$ actually converge to $\Phi_{p}\left(\xi^{*}\right)$.

Define $\Theta_{1}=\left\{\Phi_{p}(\xi) \leq 2 \Phi_{p}\left(\xi_{S^{(0)}}\right)\right\}$. It is obvious that $\xi_{S^{(t)}} \in \Theta_{1}, \forall t$, since Φ_{p} is decreasing in t. For any $\alpha \in[0,1 / 2], M\left(\tilde{\xi}_{t, \alpha}\right) \geq(1-\alpha) M\left(\xi_{S^{(t)}}\right)+\alpha M\left(\nu_{x_{t}^{*}}\right) \geq 0.5 M\left(\xi_{S^{(t)}}\right)$, thus $\Phi_{p}\left(\xi_{\alpha, t}\right) \leq$ $2 \Phi_{p}\left(\xi_{S^{(t)}}\right) \leq 2 \Phi_{p}\left(\xi_{S^{(0)}}\right), \xi_{\alpha, t} \in \Theta_{1} . M_{\xi}$ is nonsingular for any $\xi \in \Theta_{1}$, thus $\Phi_{p}\left(\alpha \xi_{1}+(1-\alpha) \xi_{2}\right)$ is infinitely differentiable with respect to α for any $\alpha \in[0,1 / 2]$. So there exist $K<\infty$, such that

$$
\begin{equation*}
\sup \left\{\frac{\partial^{2} \Phi_{p}\left(\alpha \xi_{1}+(1-\alpha) \xi_{2}\right)}{\partial \alpha^{2}}: \xi_{1}, \xi_{2} \in \Theta_{1}, \alpha \in[0,1 / 2]\right\}=K \tag{S1.6}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Phi_{p}\left(\xi_{S^{(t)}}\right)=\Phi_{p}\left(\xi^{*}\right), \tag{S1.7}
\end{equation*}
$$

where ξ^{*} is optimal design. Otherwise, by Φ_{p} 's monotocity, $\exists \delta>0$ such that $\Phi_{p}\left(\xi_{S^{(t)}}\right)-$ $\Phi_{p}\left(\xi^{*}\right)>\delta, \forall t$. By S1.2,$\forall \epsilon \in[0,1]$, we have $\Phi_{p}\left((1-\epsilon) \xi_{S^{(t)}}+\epsilon \xi^{*}\right) \leq(1-\epsilon) \Phi_{p}\left(\xi_{S^{(t)}}\right)+\epsilon \Phi_{p}\left(\xi^{*}\right)$

$$
\begin{align*}
d \Phi_{p}\left(\xi_{S^{(t)}}, \alpha, \xi^{*}\right) & =\left.\frac{\partial \Phi_{p}\left((1-\alpha) \xi_{S^{(t)}}+\alpha \xi^{*}\right)}{\partial \alpha}\right|_{\alpha=0} \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\Phi_{p}\left(\epsilon \xi^{*}+(1-\epsilon) \xi_{S^{(t)}}\right)-\Phi_{p}\left(\xi_{S^{(t)}}\right)\right) \tag{S1.8}\\
& \leq \Phi_{p}\left(\xi^{*}\right)-\Phi_{p}\left(\xi_{S^{(t)}}\right)<-\delta
\end{align*}
$$

By definition of x_{t}^{*}, we have $\eta\left(\nu_{x_{t}^{*}}, \xi_{S^{(t)}}\right)>\int \eta\left(x, \xi_{S^{(t)}}\right) \xi^{*} d x$ and thus

$$
\begin{equation*}
d \Phi_{p}\left(\xi_{S^{(t)}}, \alpha, \nu_{x_{t}^{*}}\right)=\left.\frac{\partial \Phi_{p}\left((1-\alpha) \xi_{S^{(t)}}+\alpha \nu_{x_{t}^{*}}\right)}{\partial \alpha}\right|_{\alpha=0} \geq \delta \tag{S1.9}
\end{equation*}
$$

Expand $\Phi_{p}\left(\tilde{\xi}_{\alpha, t}\right)$ to a Taylor series in α and apply S1.6) and S1.9, we can show that

$$
\begin{align*}
& \quad \Phi_{p}\left(\tilde{\xi}_{\alpha, t}\right) \\
& =\Phi_{p}\left(\xi_{S^{(t)}}\right)-d \Phi_{p}\left(\xi_{S^{(t)}}, \alpha, \nu_{x_{t}^{*}}\right) \alpha \\
& \quad+\left.\frac{1}{2} \alpha^{2} \frac{\partial^{2} \Phi_{p}\left(\alpha \xi_{1}+(1-\alpha) \xi_{2}\right)}{\partial \alpha^{2}}\right|_{\alpha=\alpha^{\prime}} \tag{S1.10}\\
& \quad \leq \Phi_{p}\left(\xi_{S^{(t)}}\right)-\delta \alpha+\frac{1}{2} K \alpha^{2}
\end{align*}
$$

Let $\alpha=\frac{\delta}{K}$, by $\Phi_{p}\left(\xi_{S^{(t+1)}}\right) \leq \Phi_{p}\left(\tilde{\xi}_{\alpha, t}\right)$ we can derive that for all $t \geq 0$ we have

$$
\begin{equation*}
\Phi_{p}\left(\xi_{S^{(t+1)}}\right)-\Phi_{p}\left(\xi_{S^{(t)}}\right) \leq-\delta^{2} / 2 K \tag{S1.11}
\end{equation*}
$$

which is contrary to $\Phi_{p} \geq 0$ if let $t \rightarrow \infty$. Similar arguments can be applied to the case when $K \leq \delta$, in which we let $\alpha=1$.

Proof of Theorem 4.4. Under Model 2.5, the information matrix under within-group design ξ can be written as

$$
M_{\xi}=M_{\xi}(\theta)=\left(\frac{\partial F}{\partial \theta}\right)^{T} V^{-1} \frac{\partial F}{\partial \theta}
$$

where $V^{-1}=c_{1} W-c_{2} W J_{n} W$, with $W=\operatorname{diag}\left(w_{1}, \ldots w_{n}\right)$. The covariance matrix for the maximum likelihood estimator of θ can be written as M_{ξ}^{-1}. Here we consider all designs such that M_{ξ} is nonsingular.

Let Ω_{i} be a matrix whose (i, i) th element is 1 and (n, n) th element is -1 , and 0 otherwise.
We have

$$
\begin{aligned}
V_{i-} & =\frac{\partial V^{-1}}{\partial w_{i}}=c_{1} \Omega_{i}-c_{2} \Omega_{i} J_{n} W-c_{2} W J_{n} \Omega_{i}, \\
V_{i j-} & =\frac{\partial^{2} V^{-1}}{\partial w_{i} \partial w_{j}}=-c_{2} \Omega_{i} J_{n} \Omega_{j}-c_{2} \Omega_{j} J_{n} \Omega_{i}, \\
M_{\xi}^{i} & =\frac{\partial M_{\xi}(\theta)}{\partial w_{i}}=\left(\frac{\partial F}{\partial \theta}\right)^{T} \frac{\partial V^{-1}}{\partial w_{i}} \frac{\partial F}{\partial \theta}=\left(\frac{\partial F}{\partial \theta}\right)^{T} V_{i-} \frac{\partial F}{\partial \theta}, \text { and } \\
M_{\xi}^{i j} & =\frac{\partial^{2} M_{\xi}(\theta)}{\partial w_{i} \partial w_{j}}=\left(\frac{\partial F}{\partial \theta}\right)^{T} \frac{\partial^{2} V^{-1}}{\partial w_{i} \partial w_{j}} \frac{\partial F}{\partial \theta}=\left(\frac{\partial F}{\partial \theta}\right)^{T} V_{i j-} \frac{\partial F}{\partial \theta} .
\end{aligned}
$$

Thus by Lemma 15.10.5 of Harville (1997), for $i=1, \ldots, n-1$, we have

$$
\begin{aligned}
\frac{\partial \Sigma_{\xi}(\theta)}{\partial w_{i}} & =\frac{\partial M_{\xi}^{-1}(\theta)}{\partial w_{i}}=-M_{\xi}^{-1} \frac{\partial M_{\xi}(\theta)}{\partial w_{i}} M_{\xi}^{-1}=-M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} \text { and } \\
\frac{\partial^{2} \Sigma_{\xi}(\theta)}{\partial w_{i} \partial w_{j}} & =M_{\xi}^{-1}\left(M_{\xi}^{j} M_{\xi}^{-1} M_{\xi}^{i}-M_{\xi}^{i j}+M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j}\right) M_{\xi}^{-1}
\end{aligned}
$$

Notice that

$$
\frac{\partial^{2} \operatorname{Tr}\left(\Sigma_{\xi}(\theta)\right)}{\partial w_{i} \partial w_{j}}=\operatorname{Tr}\left(\frac{\partial^{2} \Sigma_{\xi}(\theta)}{\partial w_{i} \partial w_{j}}\right), \forall i, j=1, \ldots n-1 .
$$

Thus the (i, j) th element of $H(w)$, the Hessian matrix of $\operatorname{Tr} \Sigma_{\xi}(\theta)$, can be written as

$$
\begin{aligned}
H(w)[i, j]= & \operatorname{Tr}\left(M_{\xi}^{-1}\left(M_{\xi}^{j} M_{\xi}^{-1} M_{\xi}^{i}-M_{\xi}^{i j}+M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j}\right) M_{\xi}^{-1}\right) \\
= & 2 \operatorname{Tr}\left(M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1}\right)+\operatorname{Tr}\left(-M_{\xi}^{-1} M_{\xi}^{i j} M_{\xi}^{-1}\right) \\
= & 2 \operatorname{Tr}\left(M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1}\right) \\
& +\operatorname{Tr}\left(-M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T}\left(-c_{2} \Omega_{i} J_{n} \Omega_{j}-c_{2} \Omega_{j} J_{n} \Omega_{i}\right) \frac{\partial F}{\partial \theta} M_{\xi}^{-1}\right) \\
= & 2 \operatorname{Tr}\left(M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1}\right)+2 c_{2} \operatorname{Tr}\left(M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n} \Omega_{j} \frac{\partial F}{\partial \theta} M_{\xi}^{-1}\right) .
\end{aligned}
$$

$H(w)$ can be written as $H(w)=H_{1}(w)+c_{2} H_{2}(w)$, where $c_{2}=\frac{\rho}{[1+(k-1) \rho](1-\rho)}>0$. This means as long as both $H_{1}(w)$ and $H_{2}(w)$ are both nonnegative definite, $H(w)$ will be nonnegative definite.

Since M_{ξ} is nonnegative definite, its inverse M_{ξ}^{-1} is also nonnegative definite. Thus M_{ξ}^{-1} can be written as $M_{\xi}^{-1}=\left(M_{\xi}^{-1}\right)^{1 / 2}\left(M_{\xi}^{-1}\right)^{1 / 2}$, and similarly $J_{n}=J_{n}^{1 / 2} J_{n}^{1 / 2}$. Let $A_{i}=$ $M_{\xi}^{-1} M_{\xi}^{i}\left(M_{\xi}^{-1}\right)^{1 / 2}$. By Proposition 1 in the appendix of Stufken and Yang (2012), it follows that $H_{1}(w)$ is nonnegative definite. $H_{2}(w)$ can be proved to be nonnegative definite by the similar way. Thus $H(w)=H_{1}(w)+c_{2} H_{2}(w)$ is nonnegative definite.

Therefore, $\operatorname{Tr}\left(\Sigma_{\xi}(\theta)\right)$ attains its minimum at any of the critical points or at the boundary.

Proof of Theorem 4.3. The covariance matrix for the maximum likelihood estimator of θ has the same format as that of Theorem 4.4 Here we also consider all designs such that M_{ξ} is nonsingular. It is equivalent to show that $\log \left|\Sigma_{\xi}(\theta)\right|$ is minimized at the critical points or at a point on the boundary. It suffices to show that the Hessian matrix of $\log \left|\Sigma_{\xi}(\theta)\right|$ is nonnegative definite. The (i, j) th entry of the Hessian matrix can be written as

$$
\begin{aligned}
H(w)_{D}[i, j] & =\frac{\partial^{2} \log \left|\Sigma_{\xi}(\theta)\right|}{\partial w_{i} \partial w_{j}} \\
& =\operatorname{Tr}\left(\Sigma_{\xi}^{-1}(\theta) \frac{\partial^{2} \Sigma_{\xi}(\theta)}{\partial w_{i} \partial w_{j}}-\Sigma_{\xi}^{-1}(\theta) \frac{\partial \Sigma_{\xi}(\theta)}{\partial w_{i}} \Sigma_{\xi}^{-1}(\theta) \frac{\partial \Sigma_{\xi}(\theta)}{\partial w_{j}}\right)
\end{aligned}
$$

Similar to the proof of Theorem 4.4. we have

$$
\begin{aligned}
\operatorname{Tr}\left(\Sigma_{\xi}^{-1}(\theta) \frac{\partial^{2} \Sigma_{\xi}(\theta)}{\partial w_{i} \partial w_{j}}\right)= & \operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right. \\
& +\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta) \\
& \left.+2 c_{2} \Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n} \Omega_{j}\left(\frac{\partial F}{\partial \theta}\right) M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) \\
= & 2 \operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) \\
& +2 c_{2} \operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n} \Omega_{j}\left(\frac{\partial F}{\partial \theta}\right) M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\Sigma_{\xi}^{-1}(\theta) \frac{\partial \Sigma_{\xi}(\theta)}{\partial w_{i}} \Sigma_{\xi}^{-1}(\theta) \frac{\partial \Sigma_{\xi}(\theta)}{\partial w_{j}}\right) & =\operatorname{Tr}\left(\Sigma_{\xi}^{-1}(\theta) M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} \Sigma_{\xi}^{-1}(\theta) M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1}\right. \\
& =\operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{\partial^{2}\left(\log \left|\Sigma_{\xi}(\theta)\right|\right)}{\partial w_{i} \partial w_{j}} \\
= & \operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) \\
& +2 c_{2} \operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n} \Omega_{j}\left(\frac{\partial F}{\partial \theta}\right) M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) .
\end{aligned}
$$

Let $H(w)_{D}=H(w)_{D 1}+2 c_{2} H(w)_{D 2}$, where

$$
\begin{align*}
H(w)_{D 1}[i, j] & =\operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{i} M_{\xi}^{-1} M_{\xi}^{j} M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) \text { and } \\
H(w)_{D 2}[i, j] & =\operatorname{Tr}\left(\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n} \Omega_{j}\left(\frac{\partial F}{\partial \theta}\right) M_{\xi}^{-1} \Sigma_{\xi}^{-1 / 2}(\theta)\right) . \tag{S1.12}
\end{align*}
$$

Let $A_{i}=\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1} M_{\xi}^{i}\left(M_{\xi}^{-1}\right)^{1 / 2}$, by Proposition 1 in the appendix of Stufken and Yang (2012), it follows that $H(w)_{D 1}$ is nonnegative definite. Similarly, let $A_{i}=$ $\Sigma_{\xi}^{-1 / 2}(\theta) M_{\xi}^{-1}\left(\frac{\partial F}{\partial \theta}\right)^{T} \Omega_{i} J_{n}^{1 / 2}$, we can show that $H(w)_{D 2}$ is also nonnegative definite. Thus $H(w)_{D}$ is nonnegative definite. Consequently, $\left|\Sigma_{\xi}(\theta)\right|$ is minimized at any of the critical points or at a point on the boundary.

Proof of Theorem 4.3 Remark. The (i, j) th entry of the corresponding Hessian matrix can be written as

$$
\begin{aligned}
& \frac{\partial^{2}\left(\log \left|\Sigma_{\xi}(\eta(\theta))\right|\right)}{\partial w_{i} \partial w_{j}} \\
= & \operatorname{Tr}\left(\Sigma^{-1 / 2}\left(\frac{\partial \eta}{\partial \theta}\right) M_{\xi}^{-}\left\{M_{\xi}^{i}\left(M_{\xi}^{-}\right)^{1 / 2} P^{\perp}\left((\partial \eta / \partial \theta)\left(M_{\xi}^{-}\right)^{1 / 2}\right)\left(M_{\xi}^{-}\right)^{1 / 2} M_{\xi}^{j}\right\} M_{\xi}^{-}\left(\frac{\partial \eta}{\partial \theta}\right)^{T} \Sigma^{-1 / 2}\right) \\
& +\operatorname{Tr}\left(\Sigma^{-1 / 2}\left(\frac{\partial \eta}{\partial \theta}\right) M_{\xi}^{-} M_{\xi}^{i} M_{\xi}^{-} M_{\xi}^{j} M_{\xi}\left(\frac{\partial \eta}{\partial \theta}\right)^{T} \Sigma^{-1 / 2}\right)
\end{aligned}
$$

where $P^{\perp}\left((\partial \eta / \partial \theta)\left(M_{\xi}^{-}\right)^{1 / 2}\right)=I_{n}-\left(M_{\xi}^{-}\right)^{1 / 2}\left(\frac{\partial \eta}{\partial \theta}\right)^{T} \Sigma_{\xi}^{-1}(\eta(\theta))\left(\frac{\partial \eta}{\partial \theta}\right)\left(M_{\xi}^{-}\right)^{1 / 2}$ is projection matrix onto the complement of column space of $\frac{\partial \eta}{\partial \theta}\left(M_{\xi}^{-}\right)^{1 / 2}$.

Let

$$
A_{i}=\Sigma_{\xi}(\theta)^{-1 / 2}\left(\frac{\partial \eta}{\partial \theta}\right) M_{\xi}^{-} M_{\xi}^{i}\left(M_{\xi}^{-}\right)^{1 / 2}
$$

and

$$
A_{i}=\Sigma_{\xi}(\theta)^{-1 / 2}\left(\frac{\partial \eta}{\partial \theta}\right) M_{\xi}^{-} M_{\xi}^{i}\left(M_{\xi}^{-}\right)^{1 / 2} P^{\perp}\left((\partial \eta / \partial \theta)\left(M_{\xi}^{-}\right)^{1 / 2}\right)
$$

respectively, by Proposition 1 in the appendix of Stufken and Yang (2012), it follows that the first part and the second part of the Hessian matrix are nonnegative definite respectively. Thus the conclusion follows.

