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Abstract: The sequential monitoring of covariate-adaptive randomized clinical tri-

als is standard in modern clinical studies. However, the validity of this sequential

procedure is not well studied in the literature. Clinical trialists therefore implement

the procedure and perform data analysis based on the theory of the sequential mon-

itoring of fixed designs, leaving many clinical trials open to question. In this paper,

we study the theoretical properties of the sequential procedure and propose some

important adjustments to classical statistical inference. Under different scenarios,

we derive the asymptotic joint distribution of the sequential test statistics. Fur-

ther, we estimate the decreased variability of the estimated treatment effect due

to covariate-adaptive randomization, so that the sequential test statistics can be

adjusted to be an asymptotic Brownian motion and the type I error rate can be

controlled in real trials. Numerical results from simulation and the redesign of a

clinical trial support our theoretical findings, showing that our procedure can con-

trol the type I error rate well, and also demonstrating the advantages of our method

in terms of power and early stopping. Theoretical and numerical results provide

important guidance for future practical clinical trials using covariate-adaptive ran-

domization procedures.
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1. Introduction

Clinical trials are usually complex, involving multiple covariates of interest in

addition to the treatment effects. In particular, with the development of bioin-

formatics, the association between biomarkers and disease has become widely

accepted. In the era of personalized medicine, it is desirable to incorporate co-

variates into clinical trial designs that investigate the heterogeneity of patients’

responses to a treatment (Hu (2012); Hu et al. (2015)). The study results may

be invalid if there is treatment imbalance over the covariates. Covariate-adaptive
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randomization (CAR) procedures, that sequentially assign the next patient based

on previous assignments and covariates, and the current covariate profile, have

been developed to mitigate such imbalances and are extensively used in clinical

trials. Stratified permuted block (SPB) randomization and Pocock and Simon’s

design (1975) are the most popular CAR procedures. Other CAR designs have

been developed by Taves (1974), Wei (1978), Nordle and Brantmark (1977), Sig-

norini et al. (1993), Heritier, Gebski and Pillai (2005), and Hu and Hu (2012).

Clinical trials that use these designs include Iacono et al. (2006), Jakob et al.

(2012), Anderson et al. (2000), Gridelli et al. (2003), Krueger et al. (2007),

Molander et al. (2007), and Ohtori et al. (2012). A detailed discussion of CAR

procedures can be found in Rosenberger and Sverdlov (2008). The theoretical

properties of hypothesis testing based on CAR procedures have recently been de-

veloped by Shao, Yu and Zhong (2010) and Ma, Hu and Zhang (2015). However,

these papers focused on the final test statistic, and not the sequential statistics.

While CAR procedures are popular in clinical trials, interim analysis is also

common because of its ethical, administrative, and economic advantages (Jen-

nison and Turnbull (2000)). Sequential monitoring arose from the sequential

probability ratio test proposed by Wald (1947) for quality control, and its use

in medical research was pioneered by Armitage (1975). Influential papers on se-

quential monitoring in clinical trial designs include Pocock (1977), O’Brien and

Fleming (1979), and Lan and DeMets (1983). Further, Jennison and Turnbull

(1997) discussed a series of group sequential analysis methods incorporating co-

variate information through linear models, general parametric regression models,

and survival models. They did not take into account the problems caused by

covariate adaptive designs and the scenario where not all the design covariates

are used in the analysis. Tsiatis, Rosner and Tritchler (1985) and Gu and Ying

(1995) derived the joint distribution of sequential parameter estimators from pro-

portional hazards models. More details of sequential monitoring can be found

in Jennison and Turnbull (2000). These studies considered the scenarios where

non-adaptive designs are implemented in clinical trials.

Despite the widespread popularity of the combination of CAR procedures

with sequential monitoring in trials and the advantages mentioned, there have

been few theoretical investigations of the sequential procedure. The CAR pro-

cedure has two limitations: the complicated correlation structure of the within-

stratum imbalances and the discreteness of the allocation function. Furthermore,

a special situation often arises in clinical trials: only some of the covariates used

in the randomization procedures are included in the data analysis. For example,
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Lai et al. (2006) investigated the influences of music on maternal anxiety in kan-

garoos in a randomized controlled trial. Under similar conditions, female infants

are believed to have a significantly greater chance of surviving than male infants,

hence permuted block randomization stratified on gender was used to allocate the

patients. In the data analysis, a t-test was used to analyze the maternal-anxiety

outcomes. The reasons for not using all the covariates include, but are not lim-

ited to, (i) it is not easy to explain the practical significance of including certain

covariates such as investigation sites in the model; (ii) using too many covariates

will lead to theoretical difficulties; (iii) the correct model specification is usually

unknown. Consequently, theoretical investigation into the sequential monitoring

of CAR procedures has been hindered. More importantly, the clinical trials that

employ this procedure lack theoretical support, and many of these trials could

be open to question.

In this paper, we study clinical trials with the CAR design for randomization

and linear regression models for analysis. We obtain the joint distribution of the

sequential statistics for three scenarios: (1) all the covariates used in the CAR

are included in the data analysis; (2) some of the covariates are included; and (3)

no covariates are included, which is Student’s t-test. We find that for scenario

(1) the joint distribution of the commonly used sequential statistics discussed in

Section 2 is asymptotically Brownian motion, the asymptotic joint distribution

for complete randomization and fixed designs. Clinical trial practitioners often

perform data analysis following the sequential monitoring of CAR procedures,

assuming that the data are from the sequential monitoring of complete random-

ization. This finding, for the first time to our knowledge, justifies and validates

all such clinical trials for this scenario.

We also derive the joint distribution of the sequential statistics for scenarios

(2) and (3), and one can see its difference from standard Brownian motion. As

a result, trials that ignore the difference between CAR procedures and complete

randomization could give misleading conclusions. These results provide guidance

for practical clinical trials. In addition, the asymptotic variances of the sequential

statistics for scenarios (2) and (3) indicate that the CAR design shrinks the

variability of the estimated treatment effect. We propose an approach to estimate

the decreased variance and adjust the sequential statistics, so that the critical

values for Brownian motion can still be used, offering clinical trialists practical

steps to deal with these complex situations.

We perform extensive numerical studies for these scenarios in terms of the

type I error, power, and early stopping. We also redesign a double-blind random-
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ized two-arm clinical trial conducted by Tilley et al. (1995) to study the properties

of the proposed methods. The numerical results support our theoretical findings

and demonstrate the advantages of our methods.

In Section 2, we introduce the notation, describe the framework, and for-

mulate the main theorems. In Section 3, we use generated data to numerically

study the sequential monitoring of CAR procedures. Numerical results from the

redesign of a clinical trial are discussed in Section 4. Concluding remarks are in

Section 5, and the proofs are given in the online supplementary material.

2. Sequential Monitoring of Covariate Adaptive Randomized Clinical

Trials

2.1. Framework

We consider a two-arm randomized sequential experiment, in which n sub-

jects are randomly assigned to one of the treatments by CAR procedures. Let

Ti (i = 1, . . . , n) index the treatment (1 if treatment 1; 0 if treatment 2).

To incorporate the scenario where some randomization covariates are omitted

from the data analysis, we introduce two sets of covariates, (X1, . . . , Xp) and

(Z1, . . . , Zq). We use one dimensional covariates to describe our framework and

theorems. It is easy to generalize our results to multiple dimensional covari-

ates. Let Wi = (WX
i ,W

Z
i ) be the covariate vector of the ith subject, where

WX
i = (Xi1, . . . , Xip) and W Z

i = (Zi1, . . . , Ziq). Here, (X1, . . . , Xp) represent

the covariates used for both randomization and analysis, and (Z1, . . . , Zq) repre-

sent those covariates that are used for randomization, but are not included for

analysis. Assume the ith subject’s response is

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 + · · ·+Xipβp + Zi1γ1 + · · ·+ Ziqγq + εi, (2.1)

where µ1 and µ2 are treatment effects for treatments 1 and 2, (β1, . . . , βp) and

(γ1, . . . , γq) are unknown parameters, and the εi are independent errors with

mean 0 and variance σ2. We assume that all the covariates are independent

and, without loss of generality, E(Xik) = 0, E(Zij) = 0, i = 1, . . . , n, k =

1, . . . , p, j = 1, . . . , q. We also assume that the errors are independent of the

covariates. We write µ = (µ1, µ2)
T , η = (µ1, µ2, β1, . . . , βp)

T , γ = (γ1, . . . , γq)
T ,

T (n) = (T1, . . . , Tn)T , Y (n) = (Y1, . . . , Yn)T , ε(n) = (ε1, . . . , εn)T , and

X(n) =


T1 1− T1 X11 . . . X1p

T2 1− T2 X21 . . . X2p
...

...
...

. . .
...

Tn 1− Tn Xn1 . . . Xnp

 .
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When studying CAR, we discretize all the continuous covariates, and apply

CAR designs with respect to these discrete covariate variables. Specifically, let

X̃j =

{
Xj if j /∈ C
dj(Xj) if j ∈ C

,

Z̃j =

{
Zj if j /∈ C∗

d∗j (Zj) if j ∈ C∗
,

where C = {l : index of continuous covariates among Xl, l = 1, . . . , p}, C∗ = {l :

index of continuous covariates among Zl, l = 1, . . . , q}, and dj(·) and d∗j (·) are

discrete functions. Write W̃X
i = (X̃i1, . . . , X̃ip) and W̃ Z

i = (Z̃i1, . . . , Z̃iq).

We need some notation to formulate the main theorem. Suppose X̃k has sk
levels and Z̃j has s∗j levels, and let Wi = (xc1i1 , . . . , x

cp
ip , z

c∗1
i1 , . . . , z

c∗q
iq ) represent the

ith subject’s covariate profile if X̃ik is at level xckik and Z̃ij is at level z
c∗j
ij . Let

DIFn be the overall difference in patient numbers between two treatments at

the end of the trial. Let DIFXn (k; ck) be the marginal difference with respect

to the level xckk of covariate X̃k, and DIFZn (j; c∗j ) be the marginal difference

with respect to the level z
c∗j
j of covariate Z̃j . Let DIFn(c1, . . . , cp, c

∗
1, . . . , c

∗
q) be

the difference in patient numbers in the stratum containing the subjects with

covariates (xc1i1 , . . . , x
cp
ip , z

c∗1
i1 , . . . , x

c∗q
iq ).

Let bntc denote the largest integer not greater than nt for t ∈ [0, 1]. We

introduce t, the “information time”, to formulate this problem using the Sko-

rokhod topology. Let T (bntc) = σ(T1, . . . , Tbntc) be the sigma-algebra gener-

ated by the first bntc treatment assignments, and X (bntc) = σ(W̃X
1 , . . . , W̃

X
bntc)

and Z(bntc) = σ(W̃ Z
1 , . . . , W̃

Z
bntc) be the sigma-algebras generated by the first

bntc covariate vectors X̃ and Z̃. Then, after N = bntc patients have been as-

signed, the adaptive randomization selects the next treatment assignment based

on F(N) = T (N)
⊗
X (N + 1)

⊗
Z(N + 1).

To compare the two treatment effects, we consider the hypothesis test:

H0 : µ1 = µ2 versus µ1 6= µ2. (2.2)

A natural statistic including only X to test the above hypothesis at time point

t ∈ (0, 1] is

Zt =
Lη̂(t)√

σ̂(t)2L{X(bntc)TX(bntc)}−1LT
, (2.3)

where L = (1,−1, 0, . . . , 0), η̂(t) = {X(bntc)TX(bntc)}−1X(bntc)TY (bntc),
and σ̂(t)2 = {Y (bntc)−X(bntc)η̂(t)}T {Y (bntc)−X(bntc)η̂(t)}/(bntc− p− 2).
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The sequential statistics (2.3) are the commonly used statistics.

2.2. Asymptotic results

Controlling the type I error rate is the primary challenge when sequentially

monitoring a clinical trial. The key is the asymptotic joint distribution of the

sequential statistics and the subsequent choices of critical values. Numerous

techniques have been proposed for sequentially monitoring the Brownian mo-

tion that follows a complete randomization. However, CAR procedures lead to

considerable difficulties in deriving the joint distributions of the sequential test

statistics: the sequential treatment assignments are not independent of the co-

variate profiles; the observed responses are not independent of previous treatment

assignments and covariates; the observed responses are not independent of each

other.

Let

Zadjt =
Lη̂(t)

ε̂(t)
√
σ̂(t)2L{X(bntc)TX(bntc)}−1LT

, (2.4)

where ε̂(t)2 is any consistent estimator of∑
j∈C∗ γ2j σ

2
δj + σ2

σ2 +
∑p

j=1 V ar(Zjγ
T
j )

(2.5)

in (S1.9) in the online supplementary material, σ2δj = E[V ar(δj |d∗j (Zj))], and

δj = Zj − E{Zj |d∗j (Zj)}. We will discuss ε̂ later.

Theorem 1. Let Badj
t =

√
tZadjt in the space D[0, 1] with the Skorohod topol-

ogy. If a covariate adaptive design satisfies DIFn = Op(1), DIFXn (k; ck) =

Op(1), k = 1, . . . , p, and DIFZn (j; c∗j ) = Op(1), j = 1, . . . , q, then under H0, Badj
t

is asymptotically a standard Brownian motion in distribution. The sequence of

test statistics {Zadjt1 , . . . , ZadjtK , 0 ≤ t1 ≤ t2 ≤ · · · ≤ tK ≤ 1} has the asymptotic

canonical joint distribution of Jennison and Turnbull (2000):

(i) {Zadjt1 , . . . , ZadjtK } is multivariate normal;

(ii) EZadjti = 0;

(iii) Cov(Zadjti , Zadjtj ) =
√
ti/tj , 0 ≤ ti ≤ tj ≤ 1.

Under H1,

Badj
t −

√
n(µ1 − µ2)t

2
√∑

j∈C∗ γ2j σ
2
δj + σ2

converges to a standard Brownian motion.

Thus, the effect of CAR procedures on the joint distribution of the sequential
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statistics is asymptotically the same as that of complete randomization after

adjustment. Clinical trialists implement this procedure assuming that it is the

same as complete randomization. Here, we can see the gap and even calculate the

difference given the parameter values. To the best of our knowledge, we provide

the first theoretical foundation for this procedure.

Remark 1. (1) The conditions on the overall and marginal differences in pa-

tient numbers between two treatments in the theorem hold for a variety of CAR

procedures such as the stratified permuted block randomization.

(2) The asymptotic variance (2.5) of Zt is always less than 1, so the variability

of the estimated treatment effect has been reduced by the CAR designs.

(3) Because of the reduced variability of the estimated treatment effect, using the

traditional estimator of this variance in the statistics leads to a conservative type

I error rate. Without adjustment, the power is adversely affected, which effec-

tively increases the necessary sample size and is not consistent with the original

aim of sequential monitoring.

2.3. Data analysis with a full dataset and student’s t-test statistic

Here, we discuss data analysis with all the covariates used in the randomiza-

tion, and Student’s t-test without any covariates. Let the ith subject’s response

Yi be

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 + · · ·+Xipβp + εi, (2.6)

with notation as in model (2.1). We implement the CAR and perform data

analysis with all the covariates in model (2.6). To compare the two treatment

effects and to perform hypothesis test (2.2), we use the test statistic (2.3) at time

point t.

Theorem 2. Let Bt =
√
tZt in the space D[0, 1] with the Skorohod topology. If a

covariate adaptive design satisfies DIFn = Op(1) and DIFXn (k; ck) = Op(1), k =

1, . . . , p, then under H0, Bt is asymptotically a standard Brownian motion in

distribution. The sequence of test statistics {Zt1 , . . . , ZtK , 0 ≤ t1 ≤ t2 ≤ · · · ≤
tK ≤ 1} has the asymptotic canonical joint distribution of Jennison and Turn-

bull (2000). Under H1, Badj
t − {

√
n(µ1 − µ2)t} / (2σ) converges to a standard

Brownian motion.

In this scenario, we do not have to adjust the sequential statistic (2.3).

Another scenario is that the CAR is used to sequentially allocate patients

and the data is analyzed with the following model,
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Yi = µ1Ti + µ2(1− Ti) + εi, i = 1, . . . , n, (2.7)

which is equivalent to the Student’s t-test. We assume that the responses are

Yi = µ1Ti + µ2(1− Ti) + Zi1γ1 + · · ·+ Ziqγq + εi, i = 1, . . . , n. (2.8)

Let E = (1,−1) and

Tr(n) =


T1 1− T1
T2 1− T2
...

...

Tn 1− Tn

 .
Via a similar argument to that in Section 2.2, the statistic for testing the hy-

pothesis (2.2) at time point t ∈ (0, 1] is

Zadj2t =
Eµ̂(t)

ε̂(t)
√
σ̂(t)2E(Tr(bntc)TTr(bntc))−1ET

, (2.9)

where µ̂(t) = {Tr(bntc)TTr(bntc)}−1Tr(bntc)TY (bntc), σ̂(t)2 = {Y (bntc) −
Tr(bntc)µ̂(t)}T {Y (bntc) − Tr(bntc)µ̂(t)}/(bntc − 2), and ε̂(t)2 is a consistent

estimator of ∑
j∈C∗ γ2j σ

2
δj + σ2

σ2 +
∑p

j=1 V ar(Zjγ
T
j )
.

Theorem 3. Let Badj2
t =

√
tZadj2t in the space D[0, 1] with the Skorohod topol-

ogy. If a covariate adaptive design satisfies DIFn = Op(1) and DIFZn (j; c∗j ) =

Op(1), j = 1, . . . , q, Badj2
t and Zadj2t have the same properties as Badj

t and Zadjt

in Theorem 1, respectively.

Stratified permuted block randomization and Student’s t-test are the most

popular combination in clinical trials, and this result offers a way to control the

type I error rate when sequentially monitoring this procedure.

2.4. Choice of ε̂ and critical values to control the type I error rate

We discuss how to obtain the consistent estimator (ε̂(t)) based on the data

collected by information time t. In some cases it is preferable to perform data

analysis with sequential statistics using partial covariates, but it is reasonable

to make adjustments to the critical values or, equivalently, to the test statistics,

with all the data available. Different approaches such as bootstraps to obtain ε̂

might be available depending on the specific models, and have diverse desirable

features. We propose a simple approach based on linear models. For each interim

look, we fit model (2.1) with full data to obtain consistent estimators of γ and σ.
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By the Law of Large Numbers, we can also easily obtain consistent estimators

of σδj and V ar(Zj) based on the observed covariates, and the consistency of ε̂

follows fundamental large-sample theory (Lehmann (2004)).

Although CAR procedures sequentially update information and the alloca-

tion probability, the joint distribution of the adjusted sequential test statistics

is still a Brownian motion or the canonical joint distribution of Jennison and

Turnbull (2000). Thus existing techniques could be used when sequentially mon-

itoring a CAR. These techniques include, but are not limited to, Pocock’s test,

O’Brien and Fleming’s test, the tests of Wang and Tsiatis (1987), the tests of

Haybittle (1971) and Peto et al. (1976), the equivalence test, spending functions,

stochastic curtailment, and repeated confidence intervals.

We focus on choosing appropriate critical values to control the type I error

rate, and we exemplify this procedure by using spending functions. In par-

ticular, for the numerical studies in the next section, we assume that sequen-

tial hypothesis tests are performed at time points t1 = 0.2, t2 = 0.5, and

t3 = 1. We also assume that the three sets of boundaries from Proschan,

Lan and Wittes (2006) can be used to control the nominal type I error rate

of 0.05: O’Brien–Fleming-like boundaries (4.877, 2.963, 1.969), linear boundaries

(2.576, 2.377, 2.141), and Pocock-like boundaries (2.438, 2.333, 2.225). More de-

tails can be found in Proschan, Lan and Wittes (2006). In the numerical studies,

we give results only for the O’Brien–Fleming boundary; it is the most popular

one in clinical trials and the other boundaries give similar conclusions.

3. Numerical Studies

In this section, we report on the finite-sample properties of the procedure

and demonstrate our theoretical findings via numerical results. In Tables 1–3

we present our theoretical findings. In Tables 4 and 5 we numerically study the

robustness of our method under two scenarios of model mis-specification. In

Table 6 we study the performance of our method when sparse samples occur at

some levels of covariates that are used for the CAR design.

For Tables 1–3, suppose 500 patients sequentially enter a clinical trial, and

the responses are

Yi = µ1Ti + µ2(1− Ti) + Zi1γ1 + Zi2γ2 + εi, i = 1, . . . , 500, (3.1)

where (µ1, µ2, γ1, γ2) are unknown parameters, and the εi are independent errors

from the normal distribution N(0, 1). We study complete randomization, the

Pocock–Simon procedure (PS), and the stratified permuted block randomization
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(SPB). The covariate adaptive designs are based on Z1 and Z2. We give numerical

results for a data analysis with the full dataset and model (3.1) (“Full” in the

tables) and a partial dataset and the following model including only Z1 (“Partial”

in the tables):

Yi = µ1Ti + µ2(1− Ti) + Zi1γ1 + εi, i = 1, . . . , 500. (3.2)

We also give results for Student’s t-test without any covariates (“t-test” in the

tables). We do not distinguish X and Z here for space efficiency. For each CAR,

we give results for both the adjusted and unadjusted sequential statistics; PS, PS-

adj, SPB, and SPB-adj represent the four cases. In Tables 1–3, we report results

where Z1 and Z2 are binary covariates with a success rate of 0.5 (“discrete” in the

tables) and where Z1 and Z2 follow the normal distribution N(0, 1) (“continuous”

in the tables). We tried other settings for the covariates and similar results

were obtained. When the CAR procedures are implemented with continuous

covariates, we discretized them as

z̃ =

{
1 if z < z0.4

0 if z ≥ z0.4
,

where z0.4 is the 0.4-quantile of the standard normal distribution. All results are

based on 10,000 replications.

In Table 1, we give the type I error rate assuming that the responses fol-

low model (3.1) with (µ1, µ2, γ1, γ2) = (0.5, 0.5, 1, 1). We found that when all

the covariates were used in the data analysis, the sequential monitoring of all

three randomization procedures without adjustment controlled the type I error

rate well, consistent with Theorem 2. We do not have to adjust the sequential

statistics in this case. The sequential monitoring of complete randomization in

all the cases in this section has no problem in controlling the type I error rate.

We also found that the sequential monitoring of CAR procedures with the pro-

posed adjusted sequential statistics can protect the type I error rate when not all

the covariates are included in the data analysis, whereas the rate is conservative

without adjustments. Data analysis with Student’s t-test is more conservative

than that based on partial covariates. Our theorems allow an explicit calcula-

tion of the gap between the unadjusted rate and the adjusted rate for different

scenarios, and our numerical results are consistent with the theoretically derived

discrepancy.

In Table 2, we give the power assuming that the responses follow model

(3.1) with (µ1, µ2, γ1, γ2) = (0.5, 0.75, 1, 1), and the other settings are the same
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Table 1. Type I error rate for different scenarios.

Full Partial t-test
discrete continuous discrete continuous discrete continuous

CR 0.053 0.051 0.052 0.054 0.055 0.052
PS 0.051 0.052 0.031 0.018 0.017 0.011
SPB 0.051 0.049 0.028 0.019 0.019 0.010
PS-adj NA NA 0.050 0.051 0.053 0.048
SPB-adj NA NA 0.048 0.050 0.051 0.049

Table 2. Power for different scenarios.

Full Partial t-test
discrete continuous discrete continuous discrete continuous

CR 0.795 0.796 0.715 0.507 0.634 0.366
PS 0.802 0.795 0.727 0.500 0.651 0.320
SPB 0.800 0.799 0.725 0.501 0.652 0.318
PS-adj NA NA 0.800 0.665 0.801 0.566
SPB-adj NA NA 0.800 0.663 0.801 0.565

Table 3. Early stopping for different scenarios.

Full Partial t-test
discrete continuous discrete continuous discrete continuous

CR 1,595 1,680 1,262 630 951 382
PS 1,621 1,643 938 293 516 90
SPB 1,599 1,682 892 314 495 104
PS-adj NA NA 1,694 1,083 1,710 771
SPB-adj NA NA 1,680 1,062 1,689 741

as before. The value of µ2 was chosen so that the power is around 0.8 for

the sequential monitoring of complete randomization when the “full” model is

used. We found that the sequential monitoring of CAR procedures produces

similar results to those for the sequential monitoring of complete randomization

in terms of power and early stopping when both covariates are included in the

data analysis. When only one covariate is included in the data analysis, the

sequential monitoring of CAR with adjusted sequential statistics can increase

the power. In Table 3, we study early stopping under the scenarios in Table 2.

We report the total number of stops at the first two looks, which means early

stopping, among 10,000 replications. The sequential monitoring of CAR designs

with adjusted sequential statistics stops the trials much earlier than the other

approaches.

We discuss the performance of the proposed method when the model is mis-
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Table 4. Type I error rate (α), power, and early stopping when two covariates are
correlated.

Full Partial t-test
α Power Early α Power Early α Power Early

stopping stopping stopping
CR 0.046 0.799 1,648 0.046 0.726 1,299 0.051 0.570 761
PS 0.052 0.802 1,696 0.033 0.742 1,111 0.011 0.599 358
SPB 0.048 0.791 1,619 0.030 0.738 1,057 0.011 0.592 303
PS-adj NA NA NA 0.058 0.810 1,834 0.052 0.801 1,736
SPB-adj NA NA NA 0.051 0.799 1,726 0.048 0.792 1,632

specified. In Table 4, we consider the case where Z1 is Bernoulli with a success

rate of 0.5 and Z2 is correlated with Z1 as

P (Z2 = 1|Z1 = 1) = 0.8 and P (Z2 = 1|Z1 = 0) = 0.4.

The other settings were the same as before. We report the type I error rate

when (µ1, µ2) = (0.5, 0.5), and (in the same table for space efficiency) the power

and early stopping results when (µ1, µ2) = (0.5, 0.75). We see that our adjusted

sequential statistics work well when the two covariates are correlated, and ad-

justment is not needed when both covariates are included in the data analysis.

Our method can greatly increase the power and stop the trial significantly ear-

lier. Without adjustment, using fewer covariates leads to a lower power, and

adjustment can help us to obtain similar powers for different scenarios.

In Table 5, we consider model mis-specification when there are unobserved

covariates that influence the responses. We took responses as

Yi = µ1Ti + µ2(1− Ti) + Zi1γ1 + Zi2γ2 + Zi3γ3 + εi, i = 1, . . . , 500, (3.3)

where γ3 = 1 and Z3 was Bernoulli distribution with a success rate of 0.6. Other

settings are the same as Tables 1-4. Since Z3 is assumed to be unobservable, the

SPB randomization design and the Pocock and Simon’s design were implemented

with respect to only Z1 and Z2, “Full” in Table 5 means that both Z1 and Z2 were

included in the data analysis, and “Partial” means that only Z1 was included in

the data analysis. Our proposed method is robust under this scenario in terms

of the type I error rate; it increases the power, and it stops the trial much earlier

compared to using the unadjusted statistics.

In Table 6, we investigate the performance of our method when sparse sam-

ples occur at some levels of covariates that are used for the CAR design. We

consider the case where Z1 was Bernoulli with success rate of 0.5, but now Z2

was Bernoulli with success rate of 0.9. Other settings are the same as Table
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Table 5. Type I error rate (α), power, and early stopping when there is one unknown
covariate.

Full Partial t-test
α Power Early α Power Early α Power Early

stopping stopping stopping
CR 0.050 0.702 1,194 0.052 0.625 914 0.051 0.561 729
PS 0.048 0.706 1,182 0.031 0.638 704 0.021 0.568 404
SPB 0.053 0.712 1,230 0.033 0.642 746 0.021 0.572 452
PS-adj NA NA NA 0.050 0.709 1,174 0.051 0.708 1,209
SPB-adj NA NA NA 0.053 0.714 1,231 0.054 0.712 1,240

Table 6. Type I error rate (α), power, and early stopping when sparse samples occur at
certain covariate levels.

Full Partial t-test
α Power Early α Power Early α Power Early

stopping stopping stopping
CR 0.053 0.796 1,588 0.053 0.755 1,365 0.053 0.670 1,018
PS 0.049 0.795 1,650 0.040 0.767 1,337 0.023 0.693 776
SPB 0.051 0.792 1,591 0.042 0.765 1,324 0.024 0.693 739
PS-adj NA NA NA 0.050 0.793 1,646 0.052 0.793 1,670
SPB-adj NA NA NA 0.052 0.792 1,629 0.051 0.791 1,641

4. The advantages of our methods displayed in previous tables remain under

this scenario. The proposed method is robust when there are sparse samples at

certain covariate levels.

4. Redesign of Clinical Trial Evaluating Treatment for Rheumatoid

Arthritis

Rheumatoid arthritis is a chronic inflammatory disorder typically affecting

the small joints and causing painful swelling. It eventually results in bone erosion

and joint deformity. Tilley et al. (1995) conducted a clinical trial to assess the

safety and efficacy of minocycline in the treatment of rheumatoid arthritis. This

was a double-blind randomized trial of oral minocycline or a placebo. A total of

219 patients entered the trial; 109 were assigned to the treatment group and 110

to the placebo group.

Here we redesign the clinical trial and focus on the measurement of the

change in hematocrit. Low hematocrit is common in patients with rheumatoid

arthritis. After removing some missing data, we obtained summary statistics and

parameter estimators in a linear model using information for 205 patients (108
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Table 7. Evaluation of power and early stopping for stratified permuted block random-
ization in real-data analysis.

SPB SPB-adj
Sample size Power Early stopping Power Early stopping

Full 0.94 8,178 NA NA
Partial 205 0.935 8,081 0.942 8,196
t-test 0.928 7,911 0.942 8,202
Full 0.681 4,770 NA NA
Partial 100 0.668 4,621 0.686 4,808
t-test 0.650 4,399 0.689 4,880

treatment, 107 control). Two binary covariates were used in the model: Z1 was

the indicator of “oral corticosteroids used at entry” with a success rate of 0.32,

and Z2 was education status with a success rate of 0.46 (Z2 = 0 for high school

graduation or below, Z2 = 1 for at least some college). The fitted model was

ŷi = −1.66 + 1.67Ti + 1.69Z1 + 1.21Z2, (4.1)

with residual N(0, 3.392).

We generated covariate data based on these summary statistics, sequentially

allocated the patients using CAR, and generated responses based on the fit-

ted model (4.1). To provide more information, we used different time points

than in the previous sections to perform the sequential monitoring; t1 = 0.5,

t2 = 0.8, and t3 = 1. The corresponding boundaries to keep the overall type

I error at 0.05 are O’Brien–Fleming-like boundaries (2.963, 2.266, 2.028), linear

boundaries (2.241, 2.252, 2.247), and Pocock-like boundaries (2.157, 2.288, 2.347).

We report results (see Table 7) only for stratified permuted block randomization

and O’Brien–Fleming-like boundaries, since this is the most popular combina-

tion and other settings give similar results. The results are consistent with the

previous numerical studies. CAR procedures work well if all the covariates used

for the randomization are included in the model. Otherwise, our adjustments are

needed to improve the power. In addition, our method with adjusted sequential

statistics can stop the trial earlier, based on the number of stops at the first two

looks. Note that this data has a relatively large variance of error. It is dominant

in the asymptotic variance of the sequential statistics, and the effect of covariate

adaptive design is not quite significant. Even in this special situation, we can

see that our method shows improvement. We also provide results for a sample

size of 100 to show the small-sample performance of our method. Our method

greatly improves the performance in this case.
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5. Discussion

There are important directions for future research. First, we have studied

data analysis for continuous responses with linear regression, so binary responses

with logistic regression are a natural generalization. Other types of responses

and models deserve study and difficulties could be introduced by the nonexis-

tence of a closed form of the parameter estimators. We have made use of the

α-spending function to control the type I error rate. Other methods may provide

diverse advantages; these include optimal spending functions (Anderson (2007))

and beta spending functions. A generalized structure of covariates could be in-

vestigated for other scenarios in clinical trials. Other approaches to adjust the

sequential statistics could be developed. Finally, Hu and Rosenberger (2006) clas-

sified adaptive randomization procedures into four categories: restricted random-

ization, response-adaptive randomization (RAR), CAR, and covariate-adjusted

response-adaptive (CARA) randomization. Zhu and Hu (2010, 2012) studied

sequential monitoring of RAR in clinical trials. The sequential monitoring of

CARA deserves investigation.

Supplementary Materials

The proofs are in the online supplementary materials.
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