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Abstract: Inference and prediction in quantile regression for longitudinal data are

challenging without parametric distributional assumptions. We propose a new semi-

parametric approach that uses copula to account for intra-subject dependence and

approximates the marginal distributions of longitudinal measurements, given co-

variates, through regression of quantiles. The proposed method is flexible, and it

can provide not only efficient estimation of quantile regression coefficients but also

prediction intervals for a new subject given the prior measurements and covariates.

The properties of the proposed estimator and prediction are established theoreti-

cally, and assessed numerically through a simulation study and the analysis of a

nursing home data.
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1. Introduction

In many studies, it is common to observe longitudinal data where the out-

comes are measured at multiple times for each subject. One interest in longitu-

dinal studies is to predict the response based on a set of covariates and its past

trajectory. Traditional projection methods focus on predicting the mean of the

conditional response distribution. However, in some applications, researchers are

interested in predicting tail quantiles, for instance, the low weight in children

growth studies (Abrevaya (2001)), high expenses in insurance studies (Shi and

Frees (2010)), or in modeling the entire conditional distribution, for instance, the

children growth and blood pressure study discussed in Wu and Tian (2013).

Quantile regression provides a convenient tool for studying tail behaviors

of the response conditional on covariates. Since its introduction by Koenker

and Bassett (1978), quantile regression has been extensively studied for cross

sectional data while less developed for longitudinal data. Some researchers con-

sidered marginal quantile regression models for analyzing longitudinal data; see
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for instance, Jung (1996), He, Fu and Fung (2003), Wei and He (2006), Wang

(2009), Mu and Wei (2009), Tang and Leng (2011), and Leng and Zhang (2014).

Marginal models focus on the covariate effects on the marginal distributions of the

repeatedly measured responses and thus cannot be used for modeling their joint

dependence. Considering a quantile regression model with a random intercept,

Koenker (2004) proposed a L1 regularization method to obtain a shrinkage esti-

mator of the random subject effects. Some other researchers proposed Bayesian

approaches for conditional quantile regression models, for instance, Geraci and

Bottai (2007), Yuan and Yin (2010), Wang (2012), Geraci and Bottai (2014), Re-

ich, Bondell and Wang (2010), Kim and Yang (2011). These methods all require

some parametric or semiparametric modeling of the likelihood, and a parametric

distributional assumption on the random effects.

In this paper, we propose a semiparametric copula-based quantile regression

method, where copula functions are employed to accommodate the temporal de-

pendence of longitudinal data. Copulas have been applied to longitudinal data

analysis for generalized linear models (Meester and MacKay (1994); Lambert

and Vandenhende (2002); Sun, Frees and Rosenberg (2008); Song (2000); Bai,

Kang and Song (2014)). For time series data, Bouyé and Salmon (2008) and

Chen, Koenker and Xiao (2009) studied nonlinear quantile autoregressive mod-

els implied by their copula specifications. Noh, Ghouch and Van Keilegom (2015)

proposed a method for semiparametric quantile regression by modeling the joint

distribution of the response and covariates through copulas. In an empirical

study of longitudinal data, Shi and Frees (2010) considered a copula method for

quantile regression by modeling the conditional marginals of the responses with

an asymmetric Laplace (AL) distribution, but the validity of the method was not

discussed. The AL distribution has a close connection with quantile regression

because the maximum likelihood estimator under such a model coincides with the

usual quantile regression estimator for cross sectional data. However, we shall

show that the method based on asymmetric Laplace marginals is restrictive, and

it could have detrimental effects on both quantile estimation and prediction under

model misspecification; see numerical evidences in Sections 3 and 4. We propose

a more flexible and theoretically justifiable approach that approximates the con-

ditional marginals through regression of quantiles and models the dependence of

the repeated measurements with copula functions. Instead of making parametric

assumptions on the marginals, the proposed method only requires the marginal

quantiles of the longitudinal responses to be linear in covariates and thus can be

regarded as a semiparametric method. The proposed method cannot only give
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efficient estimation of coefficients in the marginal quantile regression model, but

also provide prediction intervals of the response of a new subject given the prior

measurements and other covariates.

2. Proposed Method

2.1. Notations and models

Let yij and xij be the response and p-dimensional covariate for the ith subject

measured at the jth time point, i = 1, . . . , n, j = 1, . . . , Ji, where the subjects

are assumed to be independent but repeated responses from the same subject

may be dependent. Without loss of generality, we assume a balanced design with

Ji = J being finite. Throughout we assume that the first element of xij is one

corresponding to the intercept. Let yi = (yi1, . . . , yiJ)T and xi = (xi1, . . . ,xiJ)T .

Suppose {yi,xi, i = 1, . . . , n} is a random sample of {Y = (Y1, . . . , YJ)T ,X}.
Let G(y1, . . . , yJ |x) denote the joint distribution of (Y1, . . . , YJ)T given X =

x with continuous conditional marginal distributions F1(·|x), . . . , FJ(·|x). By

Sklar’s theorem (Sklar (1959)), there exists a copula function C such that G

can be uniquely represented as G(y1, . . . , yJ |x) = C {F1(y1|x), . . . , FJ(yJ |x); x} .
Throughout the paper all analyses are conditional on X = x and we do not

model the X distribution. For model parsimony, we consider a parametric copula

function C and simplify the copula function by dropping the dependence on the

covariates x. That is, we consider the simplified copula model

G(y1, . . . , yJ |x) = C {F1(y1|x), . . . , FJ(yJ |x);θ0} , (2.1)

which assumes that the copula function is independent of covariates except

through the conditional marginals Fj(·|x). There are many ways to construct

a copula function; see for instance Joe (1996). One way is to extract from any

J-dimensional joint distribution F(·). For example, if F(·) is a multivariate nor-

mal distribution NJ(0,Σ), where Σ is the correlation matrix with ones on the

diagonal, then C(u1, . . . , uJ ; Σ) = F{Φ−1(u1), . . . ,Φ−1(uJ); Σ} is the Gaussian

copula with correlation matrix Σ. More discussions can be found in Remark 3.

Here the matrix Σ is not the standard Pearson correlation matrix but rather

some rank-based correlation measuring the nonlinear dependence of variables;

see Song (2000) for more detailed interpretation of elements in Σ.

The simplified copula assumption in model (2.1) has been commonly used

in the copula literature for modeling multivariate distributions; see for instance

Haff, Aas and Frigessi (2010), Smith et al. (2010). Haff, Aas and Frigessi (2010)

showed that the simplified copula serves as a good approximation even when the
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simplifying assumption is far from being satisfied. Our numerical investigation

in Section 3 also confirmed the satisfying performance of the simplified copula

even under some model misspecification. The framework and idea proposed in

this paper can be extended to more general copula functions; see Section for

some discussion.

Instead of making parametric assumptions on Fj(·|x), we propose to fit a

quantile process by assuming the linear quantile regression model,

Qτ (Yj |xij) = xTijβ0(τ), j = 1, . . . , J, for any 0 < τ < 1, (2.2)

where Qτ (Yj |xij) = inf{y : Fj(y|xij) ≥ τ} is the τth (marginal) quantile of Yj
given the covariate xij . Model (2.2) was also considered in Jung (1996), He, Fu

and Fung (2003), Mu and Wei (2009), Tang and Leng (2011), and so on, for

analyzing clustered or longitudinal data. The conventional estimator of β0(τ)

that completely ignores the intra-subject correlation can be obtained as

β̃(τ) = argmin
b∈Rp

n∑
i=1

J∑
j=1

ρτ (yij − xTijb), (2.3)

where ρτ (s) = s{τ − I(s < 0)}, and I(·) is the indicator function. Even though

β̃(τ) is a consistent estimator of β0(τ), its efficiency may be lost by ignoring the

intra-subject correlation. In addition, sometimes we are interested in predicting

the conditional quantiles of the response for a new subject, say at time J . It

would be beneficial to take into account not only the covariate information but

also the responses observed in the past time points, and such prediction is not

feasible without modeling the joint distribution G(y1, . . . , yJ |x). We propose to

employ copula functions to accommodate temporal dependence, which can help

not only the efficiency for estimating β0(τ) but also the prediction.

2.2. Three-step estimation

We can link the density function of Fj(·|xij), denoted by f(·|xij), with model

(2.2) by the equation

f(y|xij) = lim
δ→0

δ

xTij{β0(uy + δ)− β0(uy)}
, (2.4)

where uy = {υ ∈ (0, 1) : xTijβ0(υ) = y}. Here we write f(y|xij) as f{y|xij ;β(τ)}
to reflect its dependence on the quantile process β(τ). The log likelihood function

(conditional on {xij}) can thus be written as

l{β(τ),θ} =

n∑
i=1

J∑
j=1

log(f{yij |xij ;β(τ)}) +

n∑
i=1

log(c(ui1, . . . , uiJ ;θ)), (2.5)
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where c(·;θ) is the density associated with the copula C(·;θ), and uij = {υ ∈
(0, 1) : xTijβ(υ) = yij} = P (Yj ≤ yij |xij) = Fj(yij |xij).

We can estimate (β0(τ),θ0) by maximizing the log likelihood function l{β(τ),

θ}. However, direct maximization is challenging since l{β(τ),θ} involves the en-

tire quantile process β(τ) and does not have an explicit form. Alternatively,

we propose a three-step estimation procedure. In the first step, we obtain the

consistent but not necessarily efficient estimator β̃(τ) of the coefficient process

β0(τ) by ignoring the intra-subject correlation. In the second step, we estimate

uij by ũij = {υ : xTijβ̃(υ) = yij} and then estimate θ0 by maximizing the cop-

ula likelihood. Finally, we obtain an efficient estimator of β0(τ) by taking into

account the intra-subject correlation based on the estimated copula function. In

this procedure β0(τ) is estimated at each quantile level τ separately, and the

resulting estimator of (β0(τ),θ0) is not the maximum likelihood estimator. The

details of the procedure are as follows.

Step 1. Let 0 < τ1 < · · · < τκn
< 1 be a grid of quantile levels, where τk =

k/(κn + 1). For k = 1, . . . , κn, obtain β̃(τk) = argminb∈Rp

∑n
i=1

∑J
j=1 ρτk(yij −

xTijb). Define ũij = (1− α̃ij)τk + α̃ijτk+1, α̃ij = {yij − xTijβ̃(τk)}/xTij{β̃(τk+1)−
β̃(τk)}, where xTijβ̃(τk) ≤ yij < xTijβ̃(τk+1). In our implementation, we choose

κn = [4 + 3n0.4], where [v] denotes the integer part of v.

Step 2. Estimate θ0 by θ̂, the maximizer of the pseudo-copula log-likelihood,

θ̂ = argmax
θ

∑n
i=1 log {c(ũi1, . . . , ũiJ ;θ)} .

Step 3. For any 0 < τ < 1, define β̂(τ) as the solution to the estimating equation

Un(b) = n−1
n∑
i=1

xTi Γi(Vi(θ̂))−1ψτ (yi − xTi b) = 0, (2.6)

where ψτ (yi − xTi b) =
(
ψτ (yi1 − xTi1b), . . . , ψτ (yiJ − xTiJb)

)T
with ψτ (u) = τ −

I(u < 0), Vi(θ) = Cov
(
ψτ{yi − xTi β0(τ)}|xi

)
, and Γi = diag {si1, . . . , siJ} with

sij = f{xTijβ0(τ)|xij}.
Alternatively, one could iteratively update θ̂ and β̂(τ) in Steps 2 and 3 until

convergence, but this does not affect the asymptotic efficiency of β̂(τ).

Remark 1. We propose to estimate Fj(·|x) through modeling the conditional

quantile process in model (2.2). Instead of assuming parametric distributions,

this approach requires the conditional quantiles of Yij to be linear in x and thus

can be regarded as a semiparametric likelihood approach, which provides a bal-

ance between model parsimony and flexibility. Such global linearity assumptions

were also employed to facilitate analyses in different contexts; see for instance,
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Portnoy (2003), Wei and Carroll (2009), Wang and Zhou (2010), Feng, Chen and

He (2015).

Remark 2. The estimated quantiles in Step 1 may have a crossing issue in finite

samples: the conditional quantile Qτ (Yj |xij) = xTijβ0(τ) at some upper quantile

may be estimated to be smaller than that at a lower quantile. To avoid this,

we employ the quantile rearrangement procedure proposed in Chernozhukov,

Fernández-Val and Galichon (2010) that constructs monotone quantile estimates

by sorting or monotone rearranging xTijβ̃(τk).

The quantity sij = f{xTijβ0(τ)|xij} measures the dispersion of εij(τ) = yij−
xTijβ0(τ). In our implementation, we estimate sij by using the quotient estimation

method of Hendricks and Koenker (1992), ŝij = 2hn/x
T
ij{β̃(τ + h) − β̃(τ − h)},

where hn is a positive bandwidth such that hn → 0 as n → ∞. We choose

hn = 1.57n−1/3(1.5φ2{Φ−1(τ)}/[2{Φ−1(τ)}2 + 1])1/3 following the rule suggested

in Hall and Sheather (1988), where Φ(·) and φ(·) are the distribution and density

functions of the standard normal distribution.

The matrix Vi(θ) = Cov
(
τ−I(ui1 < τ), . . . , τ−I(uiJ < τ)

)
is the covariance

for the score vector ψτ{yi − xTi β0(τ)}, capturing the intra-subject correlation.

Define λτ (uij , uik) = Cov{τ − I(uij < τ), τ − I(uik < τ)} = P (uij < τ, uik <

τ) − τ2, which equals τ − τ2 for j = k. For a given multivariate copula C(·;θ),

λτ (uij , uik) = Cjk(τ, τ ;θ) − τ2 since uij and uik are uniformly distributed on

(0, 1), where Cjk(τ, τ ;θ) is induced by setting the jth and kth elements of C(·;θ)

to τ and the rest to 1.

Remark 3. Commonly used multivariate copulas include the elliptical and

Archimedean copulas. Elliptical copulas may incorporate a specific correlation

structure, for instance, the exchangeable, autoregressive, Toeplitz, and unstruc-

tured correlation structures, and thus can capture time-dependent intra-subject

correlation, a typical feature of longitudinal data. In contrast, Archimedean

copulas can only capture exchangeable correlation across time and may not be

useful for longitudinal studies with large time dimension. For high dimensional

problems, we can also consider vine copulas that are constructed from a series of

bivariate copulas. More discussions of multivariate copulas and vine copulas can

be found in Joe (1996), Aas et al. (2009), Smith et al. (2010).

2.3. Induced smoothed estimator of regression parameters

The estimating function Un(·) in Step 3 of the three-step estimation in Sec-

tion 2.2 involves an indicator function. This nonsmoothness not only makes
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it difficult to solve the estimating equation but it also challenges the estima-

tion of the asymptotic covariance of β̂(τ), which is often sensitive to the choice

of smoothing parameters involved in estimating the unknown density function

f(·|xij). To bypass these challenges, we consider an induced smoothed estimator.

The induced smoothing method was first proposed by Brown and Wang (2005)

for robust regression, and later extended to quantile regression by Wang, Shao

and Zhu (2009) for cross sectional data, by Fu and Wang (2012) and Leng and

Zhang (2014) for longitudinal data, and by Pang, Lu and Wang (2012) for cen-

sored data. The idea of the induced smoothing is as follows. By the asymptotic

normality of β̂(τ) in Theorem 1, we can regard β̂(τ) as a random perturbation

of β0(τ) by writting β̂(τ) = β0(τ)+n−1/2H1/2Z, where Z ∼ N(0, Ip×p) and H is

defined in the Assumption (A7). We consider the smoothed estimating function

Ũn(b,H) = EZ{Un(b + n−1/2H1/2Z)}

= n−1
n∑
i=1

xTi Γi(Vi(θ̂))−1ψ̃τ (yi − xTi b,H), (2.7)

where ψ̃τ (yi−xTi b,H) = (τ−Φ((xTi1b−yi1)/hi1), . . . , τ−Φ((xTiJb−yiJ)/hiJ))T ,

and hij =
√

xTijHxij/n. When H is known, the induced smoothed estimator

β̂s(τ) can be obtained by solving Ũn(b,H) = 0. In practice, since H is unknown,

we estimate β̂s(τ) and H through the following iterating procedure.

Step 3.1. Let β̂
(0)
s (τ) = β̃(τ), the estimator obtained by assuming working

independence, and Ĥ(0) = Ip, the p× p identity matrix.

Step 3.2. Given β̂
(k)
s (τ) and H(k) from the kth iteration, update β̂

(k+1)
s (τ)

and H(k+1) by

β̂(k+1)
s (τ) = β̂(k)

s (τ)−

∂Ũn(b, Ĥ(k))

∂b

∣∣∣∣∣
β̂

(k)
s (τ)


−1

Ũn{β̂(k)
s (τ), Ĥ(k)} and

Ĥ(k+1) =

∂Ũn(b, Ĥ(k))

∂b

∣∣∣∣∣
β̂

(k+1)
s (τ)


−1

A{β̂(k+1)
s (τ), Ĥ(k)}

∂Ũn(b, Ĥ(k))

∂b

∣∣∣∣∣
β̂

(k+1)
s (τ)


−1

,

A(b,H)=n−1
n∑
i=1

xTi Γi(Vi(θ̂))−1ψ̃τ (yi−xTi b,H)ψ̃Tτ (yi−xTi b,H){Vi(θ̂)}−1Γixi.

Step 3.3. Repeat Step 3.2 till convergence. Denote the coefficient estimate
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and the covariance estimate at convergence as β̂s(τ) and Ĥ, respectively.

For estimating β0(τ), we can solve the equation Ũn(b,M) = 0 for b with

any known positive definite matrix M such that ‖M‖ = O(1), so Ũn(b,M) can

be viewed as a smoothed estimating function with Gaussian kernel and subject-

specific bandwidth of order n−1/2. By the proof of Theorem 1 in the supplemen-

tary file, this will also lead to an estimator that is asymptotically equivalent to

β̂(τ). However, in our procedure, we also solve for the unknown H iteratively to

obtain a consistent estimator for the asymptotic covariance of n1/2β̂(τ).

2.4. Prediction

The proposed copula regression can provide a predictive distribution of the

response variable Y incorporating the covariates and the prior Y measurements.

The predictive distribution can be used to predict the mean or any quantiles of

the future response, or to construct prediction intervals.

For instance, suppose that for a new subject we have observed x∗1, . . . ,x
∗
J

and y∗1, . . . , y
∗
J−1 at the first J − 1 time points. We would like to predict the

outcome at time J , y∗J . Under model (2.1), F (y∗1, . . . , y
∗
J−1, y

∗
J |x∗1, . . . ,x∗J) =

C
(
u∗1, . . . , u

∗
J−1, u

∗
J ;θ0

)
, where u∗j = Fj(y

∗
j |x∗j ), j = 1, . . . , J. With some standard

calculus derivations, we can show that

F (y∗J |x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1) = h(u∗J |x∗1, . . . ,x∗J , u∗1, . . . , u∗J−1;θ0), where

h(u∗J |x∗1, . . . ,x∗J , u∗1, . . . , u∗J−1;θ0) =
∂J−1C(u∗1, . . . , u

∗
J−1, u

∗
J ;θ0)/∂u

∗
1 · · · ∂u∗J−1

∂J−1C(u∗1, . . . , u
∗
J−1, 1;θ0)/∂u∗1 · · · ∂u∗J−1

.

Under model (2.2), we can estimate u∗j by û∗j = {u : x∗Tj β̂(u) = y∗j }, j =

1, . . . , J , and estimate the predictive distribution by

F̂ (y∗J |x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1) = h(û∗J |x∗1, . . . ,x∗J , û∗1, . . . , û∗J−1; θ̂).

For any τ∗ ∈ (0, 1), the τ∗th conditional quantile of y∗J can thus be estimated by

numerically solving the equation

F̂ (y|x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1) = τ∗. (2.8)

For any 0 < α < 1, the (1 − α) prediction interval can be constructed by the

(α/2)th and the (1− α/2)th conditional quantiles of y∗J .

Remark 4. If the research interest is on the marginal quantiles as in model

(2.2), we can also estimate the intra-subject correlation directly based on the

estimated residuals yij − xTijβ̃(τ), or approximate V−1i by a linear combination

of basis functions and then obtain a more efficient estimator of β(τ) by solving
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weighted estimating equations similar to (2.6); see for instance Wang (2009), Leng

and Zhang (2014). The resulting estimators have similar properties as does our

proposed estimator β̂(τ). The bigger advantage of the copula-based approach is

that it provides a convenient way to model the joint distribution of (Y1, . . . , YJ)T

conditional on covariates, which can be used to obtain more accurate prediction

based on both covariates and responses in the past time points.

2.5. Asymptotic properties

Throughout, let β0(τ) and θ0 denote the true values of β(τ) and θ. Theorem

1 presents the asymptotic normality of β̂(τ) and β̂s(τ), and the consistency of

Ĥ.

Theorem 1. Under models (2.1)-(2.2) and Assumptions (A1)–(A8) in the sup-

plementary file, if κ2a+1
n /n1−2q → 0 and κn → ∞ as n → ∞, we have (i)

n1/2{β̂(τ) − β0(τ)} d→ N(0,H); (ii) n1/2{β̂s(τ) − β0(τ)} d→ N(0,H), and (iii)

Ĥ
p→ H, where H−1 = limn→∞ n

−1∑n
i=1 xTi Γi{Vi(θ0)}−1Γixi.

Remark 5. Consider the weighted estimation equation UW(b) = n−1
∑n

i=1 xTi
Wiψτ (yi−xTi b) = 0, where Wi are any given J ×J matrices. Since E{ψτ (yi−
xTi β0)|xi} = 0, UW(b) is an unbiased estimating function. Consequently the re-

sulting estimator, denoted by β̂W(τ), is consistent to β0(τ) with asymptotic co-

variance matrix HW = limn→∞∆−1nWΛnW∆−1nW, where ∆nW = n−1
∑n

i=1 xTi Wi

Γixi, and ΛnW = n−1
∑n

i=1 xTi WiVi(θ0)W
T
i xi. We can show that HW − H

is nonnegative definite. Therefore, the estimator β̂(τ), obtained with Wi =

Γi{Vi(θ0)}−1 is optimal within such a class, including the estimator β̃(τ) ob-

tained by assuming working independence. The proof is similar to that of The-

orem 3 in Jung (1996).

Theorem 1 suggests that the induced smoothed estimator β̂s(τ) is asymp-

totically equivalent to the unsmoothed estimator β̂(τ). Since the computation

based on induced smoothing estimation equation is more efficient, we use the

induced smoothing estimator throughout our numerical studies.

With copulas we can specify the joint distribution of responses from the same

subject, and thus obtain the conditional distribution of any measurement given

the others for each subject, as discussed in Section 2.4. Theorem 2 shows that

the conditional distribution can be estimated consistently.

Theorem 2. Under the conditions of Theorem 1, for any y∗J ∈ R, we have
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F̂ (y∗J |x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1)
p−→ F (y∗J |x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1).

Theorem 2 implies that the solution of (2.8), denoted by q̂J(τ∗), converges in

probability to the τ∗th conditional quantile of y∗J given x∗1, . . . ,x
∗
J , y
∗
1, . . . , y

∗
J−1,

denoted by qJ(τ∗), the solution to F (y|x∗1, . . . ,x∗J , y∗1, . . . , y∗J−1) = τ∗. This en-

sures the asymptotic validity of the prediction intervals constructed by q̂J(τ∗).

Remark 6. The consistency of β̂(τ) requires the correct specification of model

(2.2) only at the quantile level τ of interest. The misspecification of the global

marginal linear quantile regression model (2.2) and the copula model (2.1) does

not affect the consistency of β̂(τ), but only its efficiency and the consistency of

the estimated conditional distribution in Theorem 2. However, our numerical

studies in Section 3 suggest that even under copula model misspecification, the

constructed prediction intervals still maintain the coverage probabilities well. In

practice, we can check the adequacy of model (2.2) by applying some goodness-of-

fit test, for instance, the method in He and Zhu (2003). Our experience suggests

that the proposed method performs reasonably well unless the global linearity

assumption is severely violated, in which case more flexible models such as poly-

nomial quantile regression can be considered in Step 1.

3. Simulation Study

The data was generated from the model

yij = −0.5 + 0.5xij1 + xij2 + (1 + γxij1)εij , i = 1, . . . , n = 500, j = 1, . . . , 4,

where xij1 are i.i.d. Bernoulli(1, 0.5), and xij2 are i.i.d. N(0, 1). We considered

Case 1 (heteroscedastic normal error) with γ = 1, εi = (εi1, . . . , εi4)
T ∼ N(0,Σ);

Case 2 (homoscedastic t error) with γ = 0, εi from a multivariate t3 distribution

with covariance Σ; and Case 3 (heteroscedastic lognormal error) with γ = 1, εi
from a multivariate lognormal distribution with mean zero and covariance Σi.

In Cases 1–2, the covariance Σ is common and covariate-independent, and it has

an AR(1) structure in Case 1 and an exchangeable correlation structure in Case

2 with variance 1 and correlation %. In Case 3, we let Σi = (σi,j,j′)
4
j,j′=1 with

σi,j,j′ = %|j−j
′|+(xij1+xij′1)/2 for j 6= j′ and σi,j,j′ = 1 for j = j′. We took % = 0.3,

0.5 and 0.8. The assumed models (2.1) and (2.2) hold in both Cases 1 and 2, but

in Case 3 the copula model (2.1) is misspecified as the true copula parameter θ

is in fact covariate-dependent.

3.1. Quantile coefficient estimation

We compare three different types of estimators of β(τ) = (β0(τ), β1(τ),



QUANTILE REGRESSION FOR LONGITUDINAL DATA 255

β2(τ))T : the estimator β̃(τ) obtained by assuming working independence (WI);

the parametric copula regression estimator assuming asymmetric Laplace marginal

distributions (AL); the estimator proposed by Leng and Zhang (2014) (LZ);

the proposed semiparametric copula-based quantile regression (CQR) estima-

tor β̂s(τ). For all copula-based methods, we considered multivariate Gaussian

copula and t-copula with exchangeable, first-order autoregressive AR(1) and un-

structured correlation structures. To save space, we only report the results from

Gaussian copula as the t-copula gave similar results. For each scenario, the

simulation was repeated 500 times.

Table 1 summarizes the relative efficiency of the copula-based and LZ esti-

mators with respect to the WI estimator, and the coverage probabilities of 95%

confidence intervals in Cases 1–3 at τ = 0.25. Results for τ = 0.5 are in the sup-

plementary file. The confidence intervals were constructed based on normality

and the asymptotic variance estimated by the induced smoothing method for the

proposed estimator, and the Hessian matrix for the AL approach. Results show

that the proposed method is quite insensitive to the choice of correlation struc-

tures in the copula function, so here we only report the results based on copula

with an exchangeable correlation structure and leave the rest in the supplement.

Across all scenarios considered, the proposed CQR estimator shows higher

efficiency than the WI estimator, and the efficiency gain is more obvious when

there is a stronger intra-subject dependence. The induced smoothing method

gives reasonable variance estimation; the coverage probabilities of the CQR in-

tervals are close to 95% in all three cases. The CQR method performs well even

under the misspecification of the copula function (Case 2) and of the copula

model (2.1) in Case 3. The AL estimator for β2(τ) appears to have competi-

tive efficiency, but its estimation for the other two coefficients can have very low

efficiency in some scenarios, and the coverage probabilities are in general poor.

A closer examination shows that the AL estimator has large bias that is caused

by the misspecification of the marginal distributions. These results suggest that

inference of copula regression based on parametric marginals can be misleading

under model misspecifications. The LZ estimator performs similarly as CQR,

but the latter tends to be more efficient for estimating β2(τ), especially in Cases

1 and 3 with heteroscedastic errors.

3.2. Prediction

We assessed the performance of the proposed method for predicting the τth

conditional quantile of yn4 conditioning on the covariates and ynj , j = 1, 2, 3.
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Table 1. Relative efficiency (RE) with respect to the working independence estimator
β̃(τ) and coverage probability (CovP) of 95% confidence intervals from different methods
at τ = 0.25 in Cases 1–3.

RE CovP
Case % Method β0(τ) β1(τ) β2(τ) β0(τ) β1(τ) β2(τ)

1 0.30 LZ 1.09 1.06 1.06 0.94 0.94 0.94
AL 0.44 0.86 1.10 0.55 0.56 0.69
CQR 1.04 1.07 1.26 0.94 0.94 0.92

0.50 LZ 1.09 1.12 1.16 0.94 0.94 0.94
AL 0.21 0.54 1.32 0.27 0.41 0.71
CQR 1.08 1.11 1.29 0.95 0.92 0.91

0.80 LZ 1.14 1.40 1.68 0.93 0.93 0.94
AL 0.07 0.17 2.71 0.05 0.03 0.82
CQR 1.18 1.33 1.79 0.94 0.92 0.93

2 0.30 LZ 1.09 1.14 1.08 0.91 0.94 0.94
AL 0.08 1.34 1.50 0.02 0.72 0.78
CQR 1.07 1.11 1.18 0.94 0.93 0.94

0.50 LZ 1.09 1.27 1.23 0.91 0.94 0.93
AL 0.05 2.12 1.91 0.01 0.81 0.81
CQR 1.13 1.31 1.32 0.95 0.93 0.95

0.80 LZ 1.10 2.01 2.21 0.92 0.94 0.94
AL 0.03 5.02 5.16 0.00 0.90 0.90
CQR 1.25 2.01 2.10 0.95 0.94 0.94

3 0.30 LZ 1.05 1.04 1.03 0.92 0.95 0.94
AL 0.77 0.93 1.07 0.87 0.84 0.89
CQR 1.05 1.04 1.26 0.94 0.94 0.93

0.50 LZ 1.07 1.08 1.09 0.94 0.93 0.94
AL 0.52 0.94 1.12 0.78 0.82 0.88
CQR 1.07 1.08 1.26 0.94 0.93 0.92

0.80 LZ 1.07 1.28 1.47 0.92 0.94 0.95
AL 0.28 1.19 1.66 0.47 0.82 0.93
CQR 1.16 1.32 1.68 0.95 0.91 0.93

LZ: the method from Leng and Zhang (2014) based on quadratic inference assum-
ing an exchangeable working correlation structure; AL: copula regression method
assuming asymmetric Laplace marginal distributions; CQR: the proposed copula-
based quantile regression method. Both AL and CQR are based on Gaussian copula
with exchangeable correlation structure.

For comparison, we also included the prediction from copula regression assuming

asymptotic Laplace marginals, and the methods from conventional linear quantile

regression and from Leng and Zhang (2014) that use only covariate information

for prediction. For copula-based methods, we used the Gaussian copula with

an exchangeable correlation structure. For each method, we report the mean

prediction error at τ = 0.25 and 0.5, defined as 1/500
∑500

k=1 ρτ (yn4,k − q̂n4,k(τ)),
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Table 2. The mean prediction error (MPE) at τ = 0.25 and 0.5, and coverage probability
(CovP) and mean length (ML) of 90% prediction intervals in Cases 1–3 with % = 0.5.
Values in the parentheses are standard errors.

MPE
Case Method τ = 0.25 τ = 0.5 CovP ML

1 QR 0.987 (0.041) 0.599 (0.023) 0.902 4.946 (0.074)
LZ 0.984 (0.041) 0.598 (0.023) 0.904 4.916 (0.074)
AL 0.907 (0.037) 0.559 (0.021) 0.892 4.727 (0.070)
CQR 0.925 (0.038) 0.564 (0.021) 0.908 4.640 (0.071)

2 QR 0.848 (0.039) 0.550 (0.026) 0.888 4.710 (0.013)
LZ 0.844 (0.039) 0.550 (0.026) 0.889 4.658 (0.012)
AL 0.678 (0.034) 0.438 (0.022) 0.857 3.027 (0.030)
CQR 0.708 (0.032) 0.444 (0.022) 0.910 4.594 (0.096)

3 QR 1.275 (0.085) 0.782 (0.050) 0.900 7.516 (0.116)
LZ 1.267 (0.085) 0.775 (0.049) 0.901 7.478 (0.116)
AL 1.181 (0.075) 0.742 (0.042) 0.631 5.210 (0.066)
CQR 1.236 (0.082) 0.782 (0.049) 0.912 7.941 (0.280)

QR: conventional quantile regression method that uses only covariate information
for prediction; LZ: prediction based on the estimator of Leng and Zhang (2014);
AL: the copula regression based on asymmetric Laplace marginals; CQR: the pro-
posed copula-based quantile regression method.

where yn4,k is the actual response of the nth subject at the fourth time point

from the kth simulation and q̂n4,k(τ) is the predicted τth conditional quantile of

yn4,k. In addition, we consider the coverage probabilities and mean lengths of

90% prediction intervals, constructed by the predicted 5th and 95th percentiles

of yn4,k from different methods.

Table 2 summarizes the prediction results of the four methods in Cases 1–3

with % = 0.5 (results for % = 0.3 and 0.8 are provided in the supplementary file).

The proposed CQR method gives more accurate predictions than the QR and

LZ methods in most scenarios, even when the correlation structure, or copula

function, or copula model are misspecified. The prediction intervals from QR,

LZ and CQR have coverage probabilities close to 90%, but the intervals from the

CQR method are in general narrower. On the appearance, the mean prediction

errors from the AL method are comparable to those from the CQR method,

but predictions from the AL method may be misleading, manifested by the low

coverage of the 90% prediction intervals in Cases 2–3.

4. Analysis of the New Jersey Nursing Home Data

To illustrate the proposed method, we analyzed the New Jersey nursing
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fi
Figure 1. Copula probability-probability plots from Gaussian copula and t-copula with
different correlation structures.

home data set from report years 2009 to 2013, available at Centers for Medicare

and Medicaid Services (www.cms.gov). The data set contains the information

from 286 nursing facilities. To quantify the utilization of nursing home care, we

took the annual occupation rate as the ratio of total residents and the number of

certified beds for each facility. We defined the response variable yij as the logistic

transformed occupation rate of the ith facility at year j, where i = 1, . . . , n =

286 and j = 1, . . . , 5. We considered five covariates, including two indicator

variables indicating whether the facility is a non-profit or government-owned

(with private party being the baseline), the reporting year (after subtracting

2008) and the reported total nurse staffing hours per resident per day (TOTHRS).

Our preliminary analysis suggests that the data has temporal correlations above

0.6, so it is important to accommodate such correlation in both estimation and

prediction.

Before carrying out the copula quantile regression analysis, we checked the

adequacy of model (2.2) by applying the lack-of-fit test of He and Zhu (2003) at

19 quantile levels τ = 0.05, 0.1, . . . , 0.95. The minimum p-value was 0.03, sug-

www.cms.gov
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gesting a reasonable fit of model (2.2) after multiple test adjustment. In addition,

we examined the copula probability-probability plots from Gaussian copula and

t-copula with exchangeable, first-order autoregressive or unstructured correlation

structures in Figure 1. In each plot, the x-axis shows the empirical copula proba-

bilities {Cn(ui1, . . . , ui5), i = 1, . . . , n}, where Cn(u1, . . . , u5) = n−1
∑n

i=1 I(ũi1 ≤
u1, . . . , ũi5 ≤ u5), ũij are obtained as in Step 1 of Section 2.2, and the y-axis

shows the corresponding probabilities from the estimated parametric copulas.

The departure of a probability-probability plot from the 45 degree line indicates

that the parametric copula does not agree with the empirical copula and thus

may not be a good choice (Mendes and De Melo (2010)). Figure 1 suggests that

t-copula (degrees of freedom estimated as 11) with unstructured correlation has

better agreement with the empirical copula. Therefore, in the sequel we focus on

t-copula with unstructured correlation.

Table 3 summarizes the estimated covariate effects on the τth conditional

quantiles of yij from different methods at τ = 0.05, 0.5, and 0.95. Results from

the CQR method suggest that, compared to private facilities, non-profit facilities

tend to have higher occupation rate at all three quantiles, while government-

owned ones show no significant difference; the occupation rate tends to be de-

creasing over years and this effect is significant at the median; the total of nurse

staffing hours has a significantly negative effect at the median and the lower

quantile of the occupation rate, but the effect is not significant at τ = 0.95. In

general, the AL method gives estimates with larger standard errors, making it

miss the significance of the Non-profit and TOTHRS variables. Compared to

AL, the CQR gives estimation and significance results that are more in line with

those from QR and LZ, except that the LZ method misses the significance of the

Non-profit effect at τ = 0.95 due to a larger standard error.

To assess the prediction accuracy of the different methods, we carried out a

leave-one-out cross validation. For each i = 1, . . . , n, we left out the data from the

ith subject, obtained the parameter estimation based on the rest of the data and

used the estimation to predict the conditional quantiles of the response of the ith

subject in year 2013 given the covariates and the responses in previous four years.

Table 4 summarizes the mean prediction error at median, the coverage probability

and mean length of 90% prediction intervals formed by the predicted 5th and

95th conditional quantiles from three methods: the methods from conventional

linear quantile regression method and Leng and Zhang (2014) that use only

covariates information for prediction, the copula regression method based on AL

marginals and the proposed copula-based CQR method. The proposed method
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Table 3. Estimated effects of covariates on the τth conditional quantile of the logit
occupation rate from different methods. Values in the parentheses are standard errors.

Variable
τ Method Non-profit Government Year TOTHRS

0.05 QR 0.54 (0.16) 0.13 (0.26) −0.04 (0.03) −0.40 (0.11)
LZ 0.45 (0.13) 0.04 (0.23) −0.03 (0.03) −0.30 (0.09)
AL 0.19 (0.29) 0.20 (0.42) 0.01 (0.03) −0.15 (0.14)
CQR 0.51 (0.19) 0.17 (0.31) −0.06 (0.04) −0.30 (0.11)

0.5 QR 0.30 (0.10) 0.39 (0.28) −0.04 (0.02) −0.17 (0.08)
LZ 0.29 (0.10) 0.42 (0.28) −0.05 (0.02) −0.17 (0.07)
AL 0.39 (0.12) 0.64 (0.37) −0.05 (0.01) −0.12 (0.07)
CQR 0.28 (0.11) 0.44 (0.29) −0.04 (0.02) −0.17 (0.07)

0.95 QR 3.00 (0.84) 0.28 (0.35) −0.11 (0.08) −0.12 (0.22)
LZ 1.42 (0.94) 0.15 (0.31) −0.15 (0.07) −0.49 (0.23)
AL 0.48 (1.13) 0.90 (0.69) −0.10 (0.05) −0.08 (0.21)
CQR 3.00 (0.79) 0.28 (0.40) −0.11 (0.08) −0.12 (0.24)

QR: the conventional quantile regression estimator; LZ: the estimator of Leng
and Zhang (2014) based on quadratic inference assuming an exchangeable work-
ing correlation structure; AL: the copula regression assuming asymmetric Laplace
marginal distributions; CQR: the proposed copula-based quantile regression esti-
mator; TOTHRS: reported total nurse staffing hours per resident per day.

Table 4. Results of the cross validation study of the nursing home data. The values in
the parentheses are standard errors.

MPE (τ = 0.5) CovP ML
QR 0.387 (0.025) 0.892 3.599 (0.048)
LZ 0.377 (0.025) 0.877 3.349 (0.053)
AL 0.115 (0.014) 0.727 1.288 (0.069)
CQR 0.163 (0.023) 0.883 0.869 (0.060)

MPE: the mean prediction error at median; CovP: the coverage probability of
90% prediction intervals; ML: the mean length of 90% prediction intervals; QR:
the standard quantile regression method that uses only covariates information
for prediction; LZ: prediction based on covariates and the quantile coefficient
estimator in Leng and Zhang (2014); AL: the copula regression assuming asym-
metric Laplace distribution; CQR: the proposed copula quantile regression.

shows clear advantage; it gives more accurate median prediction than the QR and

LZ methods, and narrower prediction intervals than all the other three methods

with coverage close to 90%.

5. Discussion

For notational simplicity, we assumed in model (2.2) that β0(τ) was common
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across measurement time j, but the proposed method can be easily modified

to allow time-dependent coefficients, and the estimation efficiency can still be

improved through the proposed three-step procedure as long as some elements

of β0(τ) are common across time. The proposed method can be easily extended

to accommodate unbalanced designs. For instance, suppose that one subject has

measurements obtained at time points 1, . . . , J − 1. Then the assumed copula

model (2.1) for the J − 1 responses becomes P (Y1 < y1, . . . , YJ−1 < yJ−1|x) =

C{F1(y1|x), . . . , FJ−1(yJ−1|x), 1;θ0} and the corresponding density function is

f(y1, . . . , yJ−1|x) = ∂J−1C{u1, . . . , uJ−1, 1;θ0}/∂u1 · · · ∂uJ−1
∏J−1
j=1 fj(yj |x).

In this paper, the dependence of longitudinal measurements is modeled

through copulas to perform prediction and improve the estimation efficiency.

For model parsimony, we considered a simplified copula in model (2.1), which

assumes that the copula function is independent of covariates except through

the conditional marginals Fj(·|x) and that the copula parameter θ is common

across x. For more flexibility, we can extend the proposed idea of semiparamet-

ric marginals to accommodate more general copulas, for instance, copulas with θ

depending on x parametrically or nonparametrically, or nonparametric estima-

tion of covariate-dependent copulas, such as those studied in Tsukahara (2005),

Abegaz, Gijbels and Veraverbeke (2012), Omelka, Gijbels and Veraverbeke (2009)

and Veraverbeke, Omelka and Gijbels (2011) for two-dimensional responses and

univariate x. Research in this direction for longitudinal data deserves further

investigation.

Some applications may involve correlated outcomes of mixed types, includ-

ing both continuous and discrete outcomes, for instance the burn injury study

reported in Fan and Gijbels (1996). The proposed semiparametric method can

be extended to analyze such data by adapting the joint modeling idea in Song, Li

and Yuan (2009). Specifically, we can model the marginal distributions of con-

tinuous outcomes through fitting quantile regression processes, while modeling

the marginals of discrete outcomes through fitting generalized linear models.

Supplementary Materials

Proofs for Theorems 1–2, and some additional simulation results are provided

in the online supplementary material.
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