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S1 Identifiability2

In Section 3.2, we introduced the notion of identifiability. For Hub Models,

this means for any two sets of parameters {A, ρ} and {A∗, ρ∗}:

P(G = g|A, ρ) = P(G = g|A∗, ρ∗) ∀g =⇒ A = A∗, ρ = ρ∗. (S1.1)

In this section, we provide a simple counterexample to show that Hub3

Models are not identifiable if the adjacency matrix is unconstrained and4

prove Theorem 1.5
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S1.1 Counterexample6

Consider a network of size n = 4 with the parameters defined in Table 1.7

Note that for the asymmetric case, n = 4 is the smallest population size8

where the number of possible groups exceeds the number of parameters to9

estimate. In this example, nodes v1 and v2 both always produce the same10

group while nodes v3 and v4 produce a different group.11

Aij

j
ρi i 1 2 3 4
0.25 1 1 1 1 0
0.25 2 1 1 1 0
0.25 3 0 1 1 1
0.25 4 0 1 1 1

Table 1: Example of a Set of Parameters Which are Not Identifiable

The probability of G has the form:12

P(G = g|A, ρ) =


1
2

g = {1, 1, 1, 0},

1
2

g = {0, 1, 1, 1},

0 otherwise.

There are an infinite number of parameters yielding the same distribu-13

tion, but a simple alternative is as follows. Let ρ∗ = (0.5, 0, 0.5, 0), leave the14

first and third rows of A unchanged but let all other components of A∗ as-15

sume arbitrary values. Obviously, we have P(G = g|A, ρ) = P(G = g|A∗, ρ∗)16
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for all g. This counterexample demonstrates that the model requires an ad-17

ditional condition to be identifiable.18

S1.2 Theorem Proof19

Theorem 1 states that symmetry of the adjacency matrix is a sufficient20

condition for identifiability.21

Theorem 1. Let A and A∗ be symmetric adjacency matrices with Aii =22

A∗ii = 1 for all i, Aij < 1 and A∗ij < 1 for all i 6= j. If P(g|A, ρ) = P(g|A∗, ρ∗)23

for all g, then {A, ρ} = {A∗, ρ∗}.24

Let gx and gy denote the singleton groups which consist only of nodes25

vx and vy, respectively. Further, let gxy denote the group representing the26

pair of vx and vy.27

From (3.1) the probability of the singletons is:

P(gx|A, ρ) = ρx(1− Axy)
∏

j 6={x,y}

(1− Axj) (S1.2)

P(gy|A, ρ) = ρy(1− Axy)
∏

j 6={x,y}

(1− Ayj). (S1.3)

In (S1.3) we have taken advantage of the symmetry of A to replace Ayx28

with Axy.29
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Now, we consider the probability of gxy.

P(gxy|A, ρ) = ρxAxy

∏
j 6={x,y}

(1− Axj) + ρyAxy

∏
j 6={x,y}

(1− Ayj)

= Axy

[
ρx

∏
j 6={x,y}

(1− Axj) + ρy
∏

j 6={x,y}

(1− Ayj)
]

= Axy

[P(G = gx|A, ρ)

(1− Axy)
+

P(gy|A, ρ)

(1− Axy)

]
=

Axy

(1− Axy)

[
P(gx|A, ρ) + P(gy|A, ρ)

]
, (S1.4)

which implies that:

Axy =
P(gxy|A, ρ)

P(gx|A, ρ) + P(gy|A, ρ) + P(gxy|A, ρ)
. (S1.5)

Therefore, Axy = A∗xy for all x and y.30

To complete the proof, consider an arbitrary node vx which appears as

a singleton represented by gx:

P(gx|A, ρ) = ρx
∏
j 6=x

(1− Axj). (S1.6)

If Axy = A∗xy for all x and y and P(g|A, ρ) = P(g|A∗, ρ∗) for all g, then:

ρx
∏
j 6=x

(1− Axj) = ρ∗x
∏
j 6=x

(1− Axj) (S1.7)
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and it is easy to see that ρx = ρ∗x for all x.31

�32

Equation (S1.5) suggests a method of moments estimator for the adja-33

cency matrix based on frequencies of doubletons and singletons. However,34

this estimator requires that the probability of doubletons and singletons35

be estimated accurately. In practice, this technique would be very ineffi-36

cient, because small groups appear infrequently in many real-world datasets.37

Thus, we continue to focus on the MLE which presumably uses all available38

information.39

S2 Estimating Equations40

In Section 3.3, we presented estimating equations for Hub Model parameters41

((3.5) and (3.6)). Here we derive those equations.42

We begin by taking the derivative of (3.2) with respect to Axy and Ayx.43

∂Λ(G|A, ρ)

∂Axy

=
∂L(G|A, ρ)

∂Axy

− λxy = 0 if x < y, (S2.1)

∂Λ(G|A, ρ)

∂Ayx

=
∂L(G|A, ρ)

∂Ayx

+ λxy = 0 if x > y. (S2.2)
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Therefore,

∂L(G|A, ρ)

∂Axy

= −∂L(G|A, ρ)

∂Ayx

. (S2.3)

We now focus on the derivative of the log likelihood function of (3.2):

∑
t

ρxG
(t)
x

[∏
j 6=y A

G
(t)
j

xj (1− Axj)
1−G(t)

j

]
∂

∂Axy

(
A

G
(t)
y

xy (1− Axy)
1−G(t)

y

)
∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1− Aij)
1−G(t)

j

. (S2.4)

Note that the derivative in the numerator of (S2.4) is equal to 1 if node44

vy is in observation G(t), and −1 if vy is not in the observation. We represent45

this by the function:46

γ(G(t)
y ) =


1 if G

(t)
y = 1,

−1 if G
(t)
y = 0.

Therefore,

∂

∂Axy

L(G|A, ρ) =
∑
t

[
ρxG

(t)
x

∏
j 6=y A

G
(t)
j

xj (1− Axj)
1−G(t)

j

]
γ(G

(t)
y )∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1− Aij)
1−G(t)

j

. (S2.5)

The denominator of (S2.5) is simply the probability of G(t) (see (3.1)).

In addition, the term in brackets can be made equal to P(G(t), Sx = 1) by

multiplying A
G

(t)
y

xy (1 − Axy)
(1−G(t)

y ). To conserve space, we suppress {A, ρ}
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going forward. This gives:

∂

∂Axy

L(G) =
∑
t

γ(G
(t)
y )P(G(t), S

(t)
x = 1)

A
G

(t)
y

xy (1− Axy)(1−G
(t)
y )P(G(t))

. (S2.6)

This equation can be further simplified by observing that P(G(t),S
(t)
x =1)

P(G(t))

is equivalent to P(S
(t)
x = 1|G(t)):

∂

∂Axy

L(G) =
∑
t

γ(G
(t)
y )P(S

(t)
x = 1|G(t))

A
G

(t)
y

xy (1− Axy)(1−G
(t)
y )

. (S2.7)

Plugging (S2.7) into (S2.3), we get:

∑
t

γ(G
(t)
y )P(S

(t)
x = 1|G(t))

A
G

(t)
y

xy (1− Axy)(1−G
(t)
y )

= −
∑
t

γ(G
(t)
x )P(S

(t)
y = 1|G(t))

AG
(t)
x

yx (1− Ayx)(1−G
(t)
x )

. (S2.8)

By applying symmetry and breaking the summations, this becomes:

∑
t:G

(t)
y =1

P(S
(t)
x = 1|G(t))

Axy

−
∑

t:G
(t)
y =0

P(S
(t)
x = 1|G(t))

1− Axy

= −
∑

t:G
(t)
x =1

P(S
(t)
y = 1|G(t))

Axy

+
∑

t:G
(t)
x =0

P(S
(t)
y = 1|G(t))

1− Axy

. (S2.9)

With some simple algebra, it is easy to see that:

Âxy =

∑
tG

(t)
y P(Sx = 1|G(t)) +

∑
tG

(t)
x P(Sy = 1|G(t))∑

t

[
P(Sx = 1|G(t)) + P(Sy = 1|G(t))

] . (S2.10)
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It is worth repeating that (S2.10) is not a closed form solution for Âxy.47

This is because the right hand side of the equation depends on Âxy.48

We next derive the estimating equation for ρ̂. By taking the derivative

of (3.3) with respect to ρx, we get the following:

∂

∂ρx
Λ(G) =

∑
t

G
(t)
x

∏
j A

G
(t)
j

xj (1− Axj)
1−G(t)

j

P(G(t))
− λo

=
∑
t

P(G(t), S
(t)
x = 1)

ρxP(G(t))
− λo

=
1

ρx

∑
t

P(S(t)
x = 1|G(t))− λo. (S2.11)

Solving this equation for zero, we obtain:

ρx =
1

λo

∑
t

P(S(t)
x = 1|G(t)). (S2.12)

Using the constraint on ρ, we get:

ρ̂x =

∑T
t=1 P(S

(t)
x = 1|G(t))

T
. (S2.13)

S3 Data Analysis49

In Section 6, we performed analysis on a dataset from Dream of the Red50

Chamber to show how Hub Models can provide sharper contrast between51
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the relationships with a population. Here we present analysis of two addi-52

tional datasets.53

The first dataset records co-sponsorship of legislation in the Senate of54

the 110th United States Congress. The rules of the Senate require that each55

piece of legislation have a unique sponsor; however, other members may co-56

sponsor the bill (Fowler, 2006a). These rules mean that the data conform57

to the assumption of the Hub Model.58

The second dataset has been extracted from the USDA plant database.59

Unlike the other two datasets, this one does not deal with “social” data, but60

with “spatial” data. Each observation represents a single species of plant61

along with each North American state or territory in which the plant is ob-62

served to grow. For this analysis, states and territories represent nodes. As63

with the Dream of the Red Chamber dataset, we find that the Hub Models64

return meaningful information about underlying structure even when the65

assumption of a single hub node is not valid.66

S3.1 Senate of the 110th United States Congress67

The first dataset records co-sponsorship of legislation in the Senate of the68

110th United States Congress. The rules of the Senate require that each69

piece of legislation have a single, unique sponsor; however, other members70
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may co-sponsor the bill (Fowler, 2006a). These rules mean that the data71

conform to the assumption of the Hub Model.72

The United States Senate is a chamber in the bicameral legislature of73

the United States, and together with the U.S. House of Representatives74

makes up the U.S. Congress. A key function of both chambers of Congress75

is to originate legislation. Each piece of legislation can have only one orig-76

inating sponsor; however, since the mid-1930s, Senators have had an op-77

portunity to express support for a piece of legislation by signing it as a78

co-sponsor (Fowler, 2006a).79

The 110th United States Congress occurred between January 3, 200780

and January 3, 2009. The Democratic Party controlled a majority in both81

chambers for the first time since 1995 with a voting share of 50.5 % of the82

Senate membership.83

The United States Senate consists of 100 members with each state rep-84

resented by 2 Senators at any time. During this session of Congress, there85

were a total of 102 individuals who served in the Senate. One original mem-86

ber died and a second resigned to become a lobbyist. Both members were87

replaced by appointed state representatives.88

Data for legislative co-sponsorship are available in the Library of Congress89

Thomas legislative database. This database includes more than 280,00090
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pieces of legislation proposed in the U.S. House and Senate with over 2.191

million co-sponsorship signatures. Most bills do not pass, and cosponsors92

need not invest time and resources crafting legislation; so co-sponsorship93

is a relatively costless way to signal one’s position on issues important to94

constituents and fellow legislators. For the purposes of this study, we in-95

clude all forms of legislation including all available resolutions, public and96

private bills, and amendments (Fowler, 2006b). During the 110th Congress,97

the Senate initiated 10,327 pieces of legislation.98

It is a trivial task to apply the KHM to this dataset when we treat99

the sponsor as known; therefore, we focus on the case where the sponsor is100

unknown. That is, we intentionally confound sponsors with co-sponsors so101

that the only data that we have is G. We would like to investigate whether102

the HM can provide a meaningful estimate of the latent social structure103

even when the information of hub nodes is missing. The average difference104

between edges estimated by KHM and HM is 0.03, which suggests that the105

HM estimate is very accurate even when we confound the hub nodes.106

In Figure 1, we plot the co-occurrence matrix, half-weight index, and the107

adjacency matrix of the Hub Model using the force directed graph drawing108

technique of Fruchterman-Reingold. Each Senator is represented as a node109

where the color of the node represents the Senator’s official political party.110
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Red nodes represent Republicans while blue nodes represent Democrats.111

First, notice that each estimated adjacency matrix produces a different112

layout because of the different weights estimated for each relationship. For113

the co-occurrence matrix and the half weight index, the estimated adjacency114

matrices do not separate Republican and Democrat Senators while the Hub115

Model produces an adjacency matrix which clusters Senators by political116

party.117

Second, in Figure 1, we plot only the 5% strongest relationships in each118

estimate. Again, the Hub Models provide insight into the individuals in119

the population which have key relationships. In Figure 1c, individuals with120

many strong connections are closer to the center of the layout while in121

Figures 1a and 1b a number of these individuals are actually present at the122

perimeter of the layout. We have not presented all relationships because123

this results in a nearly complete graph.124

(a) Co-occurrence (b) Half Weight Index (c) Hub Model

Figure 1: Comparison of Estimation Techniques for the 110th Senate
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This implies that the HM provides more meaningful information about

the community structure of this dataset than classical measures. This is fur-

ther supported by the normalized cut value corresponding to the Senator’s

official party membership (Shi and Malik, 2000) .

∑
i∈C1,j∈C2

Aij∑
i,j∈C1

Aij

+

∑
i∈C1,j∈C2

Aij∑
i,j∈C2

Aij

. (S3.14)

Equation (S3.14) gives the normalized cut value for two communities C1125

and C2. Lower normalized cut values indicate stronger community differen-126

tiation. For the Senate data, Table 2 presents the values for each inferred127

network. The normalized cut value for HM is lower than the co-occurrence128

matrix and half weight index, which strengthens the visual intuition that129

the estimates from HM provide better distinction between communities.

Normalized Cut Value
Co-Occurrence Matrix 0.837

Half Weight Index 0.823
Hub Model 0.757

Table 2: Normalized Cut Ratios of 110th Senate for Different Inference Techniques

130

S3.2 North American Flora131

The final dataset has been extracted from the USDA plant database. In132

the previous examples, we have worked with datasets which are essentially133
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from the social sciences. However, we believe that Hub Models are useful in134

other situations where observations are the result of nodes coalescing around135

a single node or observations are the result of some resource dispersing136

outward from a single node to multiple nodes.137

As a demonstration of how this kind of data can be used to estimate the138

relationship between different regions, we use a dataset from the University139

of California Irvine Machine Learning Repository which had been extracted140

and encoded from the USDA plants database (Hamalainen and Nykanen,141

2008). 34,781 plant species or geneses are included in the dataset. For each142

plant, the dataset indicates in which of 68 areas the plant is found. These143

areas include all United States states, Canadian provinces and territories,144

along with the Virgin Islands, Puerto Rico, Greenland, and St. Pierre and145

Miquelon (islands off the northeast coast of Canada). For simplicity, we146

will refer to all of these areas as “states”.147

We would expect that contiguous states would tend to have many flora148

in common while states which are far apart would be less likely to share com-149

mon flora. For example, Connecticut and Massachusetts are small states150

which share a common boarder; therefore, we would expect them to appear151

together in the regions of many plants. Conversely, California and Green-152

land are very far apart and at different latitudes; therefore, we would expect153
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a weak relationship.154

Of course, the map of North America is well known and our objective155

here is not to compare the Hub Model to spacial modeling. Instead, we are156

using the regions of North America as a proxy for a system of distribution.157

To demonstrate the ability of the Hub Model to capture the connections158

between states, we split them into 13 different regions. The United States159

is identified by the 9 divisions of the US Census Bureau. The Canadian160

provinces are identified by three regions. The final region includes islands161

in the Atlantic ocean which are not included in any other region.162

(a) Co-Occurrence (b) Half Weight Index (c) Hub Model

Figure 2: Adjacency Matrix Estimates for North American Flora Data

In Figure 2, we apply a force directed graph drawing technique to layout163

the states according to the estimated adjacency matrices of each approach.164

The HM graph is striking in how closely states in the same region are165
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grouped. Southern states are generally on the right side of Figure 2c while166

northern states are generally to the left. Eastern states are generally at the167

bottom of the figure while western states are generally at the top. Atlantic168

islands are on the outer edge of the plot.169

In Figures 2a and 2b, there is almost no distinction between the or-170

ganization of the states. This suggests that even in situations where the171

data does not clearly conform to the Hub Model assumption that valuable172

information about the relationship between nodes can be identified.173
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S4 Discussion174

S4.1 Theoretical Curve175

We gave a simple counterexample in Section S1.1 to demonstrate that with-176

out any constraints, the model is not identifiable. Here we will randomly177

select parameters to explore the issue in general. We randomly generate178

an asymmetric adjacency matrix with n = 4 (see Table 3). The number of179

observed groups is set high (T = 100, 000) to ensure good performance of180

the algorithm. We ran Algorithm 1 100 times, and obtained 100 different181

estimators with the same or similar likelihoods. Figure 3 gives a scatter-182

plot of the one hundred pairs of {Â1,2, Â2,1} indicated by blue circles. This183

plot clearly demonstrates a non-linear relationship between these two values184

where increases in one are associated with decreases in the other.185

Aij

j
ρi i 1 2 3 4
0.5499 1 1.0000 0.7854 0.9063 0.7957
0.3269 2 0.7032 1.0000 0.8324 0.5885
0.1016 3 0.9464 0.8817 1.0000 0.9334
0.0216 4 0.7452 0.8594 0.9478 1.0000

Table 3: True Adjacency Matrix in Identifiability Example
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Figure 3: Nonlinear Relationship of Symmetric Elements for Â

It is possible to derive the theoretical relationship between symmetric186

elements of the adjacency matrix. As in Section S1.2, let gx and gy repre-187

sent the observed groups which contain only node vx and vy respectively.188

Further, let gxy represent the group that is observed to contain only the189

pair vx and vy.190

Under the Hub Models P(G = gx) and P(G = gx) are given by (S1.2)

and (S1.3). In the asymmetric case, the probability of the pair is:

P(G = gxy) = ρxAxy

∏
j 6={x,y}

(1− Axj) + ρyAyx

∏
j 6={x,y}

(1− Ayj). (S4.15)

By simply reordering the terms of Equations S1.2 and S1.3, they can
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be plugged back into Equation S4.15 to give:

P(G = gxy) =
Axy

(1− Axy)
P(G = gx) +

Ayx

(1− Ayx)
P(G = gy) (S4.16)

By some simple algebra, we find the following relationship between the

elements of the adjacency matrix:

Axy =
P(G = gxy)− Ayx

[
P(G = gy) + P(G = gxy)

][
P(G = gx) + P(G = gxy)

]
− Ayx

[
P(G = gx) + P(G = gy) + P(G = gxy)

] .
(S4.17)

Using (S4.17), we can calculate the relationship between A1,2 and A2,1191

from the example above. This is represented in Figure 3 by the solid line.192

Clearly the observed solutions are falling along this theoretical curve.193

S4.2 Self-sparsity194

In Section 6, we introduced a property of the Hub Model estimators which195

we refer to as self-sparsity. When T is small relative to n, the model tends to196

produce a sparse adjacency matrix. Rabbat et al. (2008) observed similar197

behavior in their research. Sparsity in the adjacency matrix is achieved198

without any penalty in the log-likelihood, hence the name.199

To begin, observe that the true probability of co-occurrence is related
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to the parameters by the following equation:

P(vi and vj co-occur) =
n∑

k=1

ρkAkiAkj. (S4.1)

Suppose that there is a pair of nodes, {vi, vj}, for which the probability

of co-occurrence is exactly zero. Equation (S4.1) implies that:

ρkAkiAkj = 0 ∀k.

Hence, for every k, at least one of the following is true: ρk = 0, Aki = 0,200

or Akj = 0. At a minimum, this requires that there be n elements of the201

parameters which are exactly equal to zero for every pair of nodes which202

fails to co-occur.203

Clearly, Oij = 0 implies Aij = 0. However, self-sparsity shows that204

the absence of co-occurrence contains even more information than just the205

relationship between two nodes. Absence of co-occurrence means that no206

member of the population chooses to simultaneously interact with both207

nodes.208

However, the question remains as to why self-sparsity occurs in the209

estimation of the parameters when T is small relative to n. We observe210

that sparsity in Â or ρ̂ is a consequence of the EM-algorithm of HM.211
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First, it is easy to see that zero is an absorbing state for Â and ρ̂212

in the EM-algorithm. If, at the mth iteration, ρ̂
(m)
i = 0, then by (4.1)213

P(Si = 1|G(t)) = 0 for all i, and by (S2.13) ρ̂
(m+1)
i = 0. Therefore, ρ̂i = 0 is214

an absorbing state. For a similar reason, Âij = 0 is also an absorbing state.215

Recall that in the EM-algorithm we set Âij = 0 when it is below a216

certain threshold after estimation is complete. But why the estimate ap-217

proaches zero is not fully understood. This aspect of the model will be218

explored in future work.219

S5 Text Mining Protocol220

In Section 6, we alluded to a text mining protocol for creating grouped221

data from the Chinese novel Dream of the Red Chamber. Here we present222

an overview of this technique.223

We first downloaded a Chinese text version of the novel from the public224

domain and pasted the text into a Microsoft Word document. Then we225

developed a list of character names in Chinese and assigned each character226

a distinguishing letter from the Latin alphabet. For each character name, we227

performed a find-and-replace search for the Chinese characters and replaced228

them with a highlighted version of their distinguishing Latin letter. We also229

performed a find-and-replace for paragraph breaks and represented them230
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with an identifying character. This resulted in text like that shown in231

Figure 4. Then we removed all the text in the Word document which was232

not highlighted to give us Figure 5.233

Figure 4: Example of text from Dream of the Red Chamber after the Chinese names of
characters have been replaced with Latin alphabet code letters.

Figure 5: Result of deleting non-highlighted text from document.

We pasted the remaining text into the first column of an Excel docu-234

ment. This gave us a text string which indicates the individuals mentioned235

in each paragraph. We deleted any rows with no data (these rows represent236

paragraphs in which none of the characters were mentioned). Then in the237

Excel document, we created a column for each individual where the value238

of a cell is 1 if the individual is mentioned in the associated text string and239

0 otherwise.240
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