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Supplementary Material

We present some further comparisons with the endpoint estimator proposed in Fraga Alves and

Neves (2014) and with the moment estimator for the tail index proposed by Dekkers, Einmahl

and de Haan (1989) in Section S1. All proofs of the theorems in Section 2 are given in Section

S2.

S1 Further comparisons on estimators for endpoint

and tail index

Per the request of an anonymous referee, we carry out the following two

comparison studies: (A) comparison between our new estimator for the end-
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point and the endpoint estimator proposed in Fraga Alves and Neves (2014)

and (B) comparison between our new estimator for the tail index and the

moment estimator in Dekkers, Einmahl and de Haan (1989). Throughout

the referred equation and theorem numbers without a letter are those in

the original paper.

The endpoint estimator in Fraga Alves and Neves (2014) is defined as

θ̂FAN(2k − 1) = Xn,n +
k−1∑
i=0

aki(Xn,n−k −Xn,n−k−i), (S1.1)

where aki = (log 2)−1(log(k+ i+ 1)− log(k+ i)) for 0 ≤ i ≤ k− 1. We will

call it FAN estimator. This estimator was originally proposed to estimate

the endpoint for distributions in the Gumbel max-domain of attraction.

Fraga Alves, Neves and Rosário (2017) have extended the setting to (1.1).

The moment estimator for the tail index γ = −1/α proposed by Dekkers,

Einmahl and de Haan (1989) is given by

γ̂M(k) = M
(1)
n,k + 1− 1

2

(
1−

(M
(1)
n,k)

2

M
(2)
n,k

)−1
, (S1.2)

where M
(j)
n,k = 1

k

∑k
i=1(log(Xn,n−k+i)− log(Xn,n−k))

j for j = 1, 2. A natural

requirement for the moment estimator γ̂M(k) is that all the data involved

in the estimation must be positive, which implies that the endpoint θ must

be positive. Otherwise, one can add a positive constant to all observations

to fulfill this requirement.



S1. FURTHER COMPARISONS ON ESTIMATORS FOR ENDPOINT AND TAIL
INDEX3

For empirical comparison, we will use the same setting as in Section 3.2,

that is, we use both distributions defined in (3.26) and(3.27), choose the

sample size n = 500, and repeat the experiment 1000 times. We calculate

the averages and estimate the mean absolute errors (L1 errors) of the two

aforementioned estimators. The simulation results for distribution (3.27)

are somewhat similar to those for distribution (3.26), and so we will report

simulation results for distribution (3.26) only.

In Figures 1 and 2, we plot the averages of the estimates and their L1

errors for the endpoint based on our new penalized likelihood method (New

Estimator) and Fraga Alves and Neves’s (2014) method (FAN Estimator)

against the sample fraction k. We note that the FAN Estimator θ̂FAN(2k−

1) in (S1.1) employs 2k upper order statistics while the New Estimator

θ̃N(k) = θ̃ given in Theorem 3 is based on k + 1 upper order statistics.

To make a fair comparison, two types of estimators are compared when the

same number of observations are involved in the estimation. More precisely,

we will compare θ̂FAN(k) and θ̃N(k) for k = 2p− 1, p = 3, 4, · · · , 102.

We have repeated our simulation study for distribution (3.26) by se-

lecting various values for (τ1, τ2). We choose (τ1, τ2) = (0.5, 1.0), (1.0, 0.5),

(0.5, 2.0), (1.0, 2.0), (0.5, 3.0), (1.0, 3.0). For distribution (3.26), θ = 0 and

α = τ1τ2. Therefore, our study covers cases of α = 0.5, 1, 1.5, 2 and 3.
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In Figures 3 and 4, we plot the averages of the estimates and their

L1 errors for the index 1/α based on our new penalized likelihood method

(New Estimator) and the moment estimator (Moment Estimator) against

the sample fraction k. Since the moment estimator γ̂M(k) defined in (S1.2)

is used to estimate γ = −1/α, we actually plot the estimated means and L1

errors for α̃−1N given in (2.16) and −γ̂M(k). Since the moment estimator can

only be applied to positive observations, all our samples in the study are

drawn from the population 20 + X, where X is a random variable having

distribution (3.26). The values of (τ1, τ2) selected in this study are the same

as in the simulation for the endpoint. The sample fraction k is taken from

5 to 200 with an increment 5.

In conclusion, we observe from Figures 1 and 2 that the maximum

penalized likelihood estimator for endpoint is very stable against the sample

fraction in terms of the bias and the mean absolute error, and the FAN

estimator can perform better when the upper order statistics employed in

the estimation are relatively dense near the endpoint. Also we observe

from Figures 3 and 4 that the maximum penalized likelihood estimator is

superior to the moment estimator.
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Figure 1: Estimated means (left) and estimated L1 errors (right) for two endpoint esti-

mators: New Estimator as the smallest solution to (2.17) and FAN Estimator defined in

(S1.1). The samples are taken from distribution (3.26), where θ = 0 and α = τ1τ2
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Figure 2: Estimated means (left) and estimated L1 errors (right) for two endpoint esti-

mators: New Estimator as the smallest solution to (2.17) and FAN Estimator defined in

(S1.1). The samples are taken from distribution (3.26), where θ = 0 and α = τ1τ2
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Figure 3: Estimated means (left) and estimated L1 errors (right) for two estimators for

α−1: New Estimator α̃−1
N defined in (2.16) and minus Moment Estimator −γ̂M (k), where

γ̂M (k) is defined in (S1.2). The samples are taken from population 20 +X, where X has

distribution (3.26) and α = τ1τ2
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Figure 4: Estimated means (left) and estimated L1 errors (right) for two estimators for

α−1: New Estimator α̃−1
N defined in (2.16) and minus Moment Estimator −γ̂M (k), where

γ̂M (k) is defined in (S1.2). The samples are taken from population 20 +X, where X has

distribution (3.26) and α = τ1τ2
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S2 Details on data applications

Einmahl and Smeets (2011) tested extreme-value conditions for the two

data sets. They applied the moment estimators for both the tail index

γ = −1/α and the endpoint θ. It is important to decide the sample fraction

or threshold k in the estimation, and this can be done by minimizing the

so-called asymptotic mean squared errors (AMSE). They estimated γ by

identifying some k-regions over which the AMSEs are relative small and

stable and then used the average of all estimates of γ in these regions as

the final estimate for the tail index for each event. Next, they estimated

the endpoint for speed for each event by identifying k-regions and using the

average of estimates for the endpoints over the regions. The two k-regions

for men’s 100 meters and women’s 100 meters are 110− 200 and 80− 210,

respectively.

First, we compare the performance of our likelihood method with the

moment method. We estimate the speed endpoint and tail index for each

of the two events and plot the estimates based on the likelihood method

and the moment method in Figures 5 and 6, respectively. Note that the

estimates for the endpoints in the moment method in Einmahl and Smeets

(2011) use the same (fixed) estimates for tail index while in our study the

estimates of γ depend on the sample fraction k. Therefore, our plots for
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moment estimates and the endpoints are different from those in Einmahl

and Smeets (2011). We notice that there are similar patterns or trends for

two types of estimation methods. But our likelihood estimators are more

stable than the moment estimators in general.

Second, we decide a single value of sample fraction k for our likelihood

estimates in the k-regions as the moment methods by Einmahl and Smeets

(2011) so that we don’t have to worry about violation of the extreme-value

condition. For men’s 100 meters, we check the k-region 110-200 and find out

that both estimates for the tail index and the endpoint are highly stable

when k changes from 140 to 160. We select k = 160 and the resulting

estimates for γ and θ are −0.18 and 37.96. Based on Theorem ??, the

standard error for the endpoint estimate is 0.6837, and thus a 95% upper

confidence limit is 37.95 + 1.645× 0.6937 = 39.09. From formula t = 36/s,

the estimates for the time endpoint and its 95% lower confidence limit are

9.48 and 9.21, respectively. Similarly, for women’s 100 meters, we find out

that both our estimates for the tail index and the endpoint are highly stable

when k changes from 100 to 200 which is within the k-region 80− 210, and

thus we are able to decide the sample fraction k = 200. The corresponding

estimates are listed in Table 4. The results for the moment method from

Einmahl and Smeets (2011) are also listed in Table 4 for comparison. The
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standard error of the likelihood estimate for the speed endpoint is 0.5606

for women’s 100 meters.
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Figure 5: Our new likelihood estimates and the moment estimates for tail index γ =

−1/α and the endpoint θ for speed (in km/h) for men’s 100 meters.

S3 Proofs of Theorems 1, 2 and 3 in Section 2

S3.1 Some notation and lemmas

Let V1, · · · , Vn be i.i.d. random variables with distribution function 1−1/x

for x ≥ 1 and Vn,1 ≤ · · · ≤ Vn,n denote the order statistics of V1, · · · , Vn.

Since U(V1), · · · , U(Vn) are iid random variables with the distribution F , for
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Figure 6: Our new likelihood estimates and the moment estimates for tail index γ =

−1/α and the endpoint θ for speed (in km/h) for women’s 100 meters.

convenience we assume Xi = U(Vi) for 1 ≤ i ≤ n and hence Xn,i = U(Vn,i)

for 1 ≤ i ≤ n.

Consider another independent sequence of i.i.d. random variables V ∗1 ,

· · · , V ∗k with distribution function 1 − 1/x for x ≥ 1. Denote V ∗k,1 ≤ · · · ≤

V ∗k,k as their order statistics. It is well known that

{Vn,n−k+j/Vn,n−k}kj=1
d
= {V ∗k,j}kj=1, (S3.3)

see Page 71 of de Haan and Ferreira (2006). That is, {Vn,n−k+j/Vn,n−k}kj=1

are distributed the same as the order statistics of a sample of size k from

the distribution function 1 − 1/x for x ≥ 1. In the sequel, we will simply
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denote Vn,n−k+j/Vn,n−k by V ∗k,j for 1 ≤ j ≤ k.

Set Sk(λ) =
∑k

j=1(V
∗
k,j)

λ =
∑k

j=1(V
∗
j )λ for λ > 0 and define for x ∈ R,

Qk =
√
k
(1

k

k∑
j=1

log V ∗k,j − 1
)
,

T
(k)
λ,x =

k−1∑
j=1

(V ∗k,j)
λ

1 + (V ∗k,j/k)λx
for λ > 1/2

and

R
(k)
λ,x =


1
kλ

(
(V ∗
k,k)

λ

1+(V ∗
k,k/k)

λx
+ (1− λ)(T

(k)
λ,x − k−1

1−λ)
)

if λ ∈ (1/2, 1),

1
kλ

(
(V ∗
k,k)

λ

1+(V ∗
k,k/k)

λx
+ (1− λ)T

(k)
λ,x

)
if λ > 1.

Let {Yn} be a sequence of random variables and {an} be a sequence

of positive constants. Assume {An} is a sequence of measurable sets. If

P ({|Yn/an| > ε} ∩ An) → 0 for every ε > 0, then we say Yn/an con-

verges in probability to zero on An and denote it by Yn = op(an) on An.

If limε→∞ lim supn→∞ P ({|Yn/an| > ε} ∩ An) = 0, then we say Yn/an is

bounded on An and denote it by Yn = Op(an) on An.

The following two lemmas are very helpful and easy to prove, and the

details of the proofs are omitted here.

Lemma 1. Yn = op(an) if and only if for every δ ∈ (0, 1) there exists a

sequence of measurable sets {An} with P (An) ≥ δ for all large n such that

Yn = op(an) on An. The same conclusion is true if op(an) is replaced by

Op(an).
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Lemma 2. Let {Yn} and {Zn} be two sequences of random variables such

that Yn − Zn = op(1). If the limiting distribution of Zn exists and is con-

tinuous at x, then limn→∞ P (Yn ≤ x) = limn→∞ P (Zn ≤ x).

The following lemma deals with limits of V ∗k,k, Sk(λ) and Qk.

Lemma 3. (i) V ∗k,k/k
d→ exp(−x−1) (x > 0).

(ii) If λ ∈ (0, 1), then 1
k
Sk(λ)

p→ 1
1−λ .

(iii) If λ ∈ (0, 1/2), then 1√
k

(
Sk(λ)− k

1−λ

)
d→ N(0, λ2

(1−λ)2(1−2λ)).

(iv) If λ = 1/2, then 1√
k log k

(
Sk(1/2)− 2k

)
d→ N(0, 1).

(v) If λ = 1, then Sk(λ)
k log k

p→ 1.

(vi) If λ > 1, then Sk(λ)
kλ

= Op(1).

(vii) Qk
d→ N(0, 1) as k →∞. If λ ∈ (0, 1/2), then ( 1√

k
(Sk(λ)− k

1−λ), Qk)
d→

N(0,Σ1), where

Σ1 =
( λ2(1− λ)−2(1− 2λ)−1 λ(1− λ)−2

λ(1− λ)−2 1

)
;

if λ = 1/2, then 1√
k log k

(Sk(1/2) − 2k) and Qk are asymptotically indepen-

dent.

Proof. (i) follows from a direct calculation that for x > 0, P (V ∗k,k/k ≤

x) = (1 − 1
kx

)k for large k such that kx > 1, which has a limit exp(−x−1)

as k → ∞. See, also, de Haan and Ferreira (2006). Parts (ii) to (vii)

follow from the classic theory of probability (see, eg, Loève (1977)) since
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Sk(λ) =
∑k

j=1(V
∗
j )λ is the sum of k i.i.d. random variables for each λ > 0.

Note that the mean E((V ∗1 )λ) = 1
1−λ is finite only if λ ∈ (0, 1) and the

variance V ar((V ∗1 )λ) = λ2

(1−λ)2(1−2λ) is finite if λ ∈ (0, 1/2). Therefore, part

(ii) is a consequence of the classic law of large numbers and part (iii) follows

from the standard central limit theorem. When λ ≥ 1/2, the distribution

of (V ∗1 )λ is in the domain of attraction of a 1/λ-stable law. If λ = 1/2, the

stable law is normal and part (iv) follows from Loève (1977), page 364. IF

λ > 1, Sk(λ)/kλ converges in distribution to a 1/λ-stale law and part (vi)

follows immediately. If λ = 1, (Sk(1)− k log k)/k converges in distribution

to a 1-stable law, which implies part (v). The first part of (vi) follows from

the standard central limit theorem, and the second part follows from the

multivariate central limit theorem since

(
1√
k

(Sk(λ)− k

1− λ
), Qk) =

1√
k

k∑
j=1

(
(V ∗j )λ − 1

1− λ
, log V ∗j − 1

)
and Σ1 is the covariance matrix of (V ∗1 )λ and log V ∗1 . �

Lemma 4. Under condition (2.6) there exists a regularly varying function

A1(t) ∼ A(t) such that

θ0 − U(t) = btγ0
(
− 1

γ0
− 1

γ0 + ρ
A1(t)

)
for all large t

where b = limt→∞ t
−γ0a(t) = cγ0(−γ0), and c is given in (1.1).

Proof. From Theorem 2.3.6 of de Haan and Ferria (2006) there exists a
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function A1(t) ∼ A(t) such that for any ε > 0 and δ > 0

|
U(tx)−U(t)

btγ0
− xγ0−1

γ0

A1(t)
− xγ0+ρ − 1

γ0 + ρ
| ≤ εxγ0+ρ max(xδ, x−δ)

for all t as tx ≥ t0 for some t0 > 0. Since limx→∞ U(x) = θ0, we get the

desired result by selecting δ < −γ0 and letting x→∞. �

In Lemmas 5, 6 and 7 below and their proofs we use eix to denote the

complex number cosx+ i sinx.

Lemma 5. Let x ∈ R and v > 0 be any constants such that 1 + vλx > 0.

(i) Conditional on V ∗k,k = kv,

T̂λ,x :=
1

kλ
(T

(k)
λ,x −

k − 1

1− λ
)

d→ Gλ,v,x if λ ∈ (
1

2
, 1)

and

T̂λ,x :=
1

kλ
T

(k)
λ,x

d→ Gλ,v,x if λ ∈ (1,∞).

(ii) Conditional on V ∗k,k = kv, Qk converges in distribution to the standard

normal, and Qk and T̂λ,x are asymptotically independent for λ ∈ (1
2
, 1) and

λ ∈ (1,∞).

Proof. (i) Conditional on V ∗k,k = kv, the vector (V ∗k,1, · · · , V ∗k,k−1) has the

same joint distribution as that of the order statistics from k− 1 iid random

variables Y1(v), · · · , Yk−1(v) with a distribution function Fk,v given by

Fk,v(y) =
1− y−1

1− (kv)−1
for 1 < y < kv.
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Therefore, for each fixed x ∈ R and v > 0 such that 1 + vλx > 0 we have

that

P (T
(k)
λ,x ≤ s|V ∗k,k = kv) = P (

k−1∑
j=1

Y λ
j (v)

1 + (Yj(v)/k)λx
≤ s) for s ∈ R.

Set Zj = k−λ(
Y λj (v)

1+(Yj(v)/k)λx
− 1

1−λ). Then we have

G
(k)
λ,v,x(s) := P (

1

kλ
(T

(k)
λ,x −

k − 1

1− λ
) ≤ s|V ∗k,k = kv) = P (

k−1∑
j=1

Zj ≤ s).

We can check that

δn(t) := E(eitZj )− 1

=
1

1− (kv)−1

∫ kv

1

(
exp{it( (y/k)λ

1 + (y/k)λx
− k−λ(1− λ)−1)} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it( yλ

1 + yλx
− k−λ(1− λ)−1)} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
} exp{−itk−λ(1− λ)−1} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
}(1− itk−λ(1− λ)−1)− 1

)
y−2dy + o(

1

k
)

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
}(1− itk−λ(1− λ)−1))− 1

)
y−2dy + o(

1

k
)

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
} − 1− it yλ

1 + yλx

)
(1− itk−λ(1− λ)−1)y−2dy

+
1

k(1− (kv)−1)

∫ v

1/k

(
(1 + it

yλ

1 + yλx
)(1− itk−λ(1− λ)−1)− 1

)
y−2dy + o(

1

k
).

Some further manipulations show that

δn(t) =
1

k

∫ v

0

(
exp{it yλ

1 + yλx
} − 1− it yλ

1 + yλx

)
y−2dy

−it
k

( ∫ v

0

y2λ−2x

1 + yλx
dy +

vλ−1

1− λ
)

+ o(
1

k
).

Note that the conditional characteristic function of
∑k−1

j=1 Zj is (1 + δn(t))k.
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Thus

(1 + δn(t))k → fλ,v,x(t).

Similarly, the case for λ > 1 can be verified.

(ii) The proof is standard by showing the convergence of the character-

istic functions E(eit1Qk |V ∗k,k = kv)→ e−t
2
1/2 and

E(eit1Qkeit2T̂λ,x|V ∗k,k = kv)→ e−t
2
1/2fλ,v,x(t2)

for (t1, t2) in a neighborhood of (0, 0). The details are omitted here. �

The following two lemmas consider the limiting distributions of R
(k)
λ,x

and Qk.

Lemma 6. Let λ ∈ (1
2
, 1) or λ ∈ (1,∞).

(i) If x ≥ 0, then

R
(k)
λ,x

d→ Hλ,x;

(ii) If x < 0, then conditional on 1 + (V ∗k,k/k)λx > 0,

R
(k)
λ,x

d→ exp{(−x)1/λ}Hλ,x.

Proof. Note that

R
(k)
λ,x =

(V ∗k,k/k)λ

1 + (V ∗k,k/k)λx
+ (1− λ)T̂λ,x,

where T̂λ,x is defined in Lemma 5. We have shown in Lemma 5 that for any
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x ∈ R and v > 0 such that 1 + vλx > 0

f
(k)
λ,v,x(t) := E(eitT̂λ,x|V ∗k,k = kv)→ fλ,v,x(t) (S3.4)

where fλ,v,x is the characteristic function of Gλ,v,x. Since f
(k)
λ,v,x(t) is not

defined when kv ∈ (0, 1], for convenience, we set f
(k)
λ,v,x(t) = fλ,v,x(t) when

kv ∈ (0, 1].

Denote `k(v) := v−2(1 − (kv)−1)kI(kv > 1), i.e., the density function

of V ∗k,k. Set `(v) = v−2 exp(−v−1)I(v > 0), which is the density function

of the distribution function exp(1− v−1), v > 0. We can easily verify that∫∞
0
|`k(v)− `(v)|dv → 0 as k →∞. In view of the dominated convergence

theorem and (S3.4) we have

∫ ∞
0

|f (k)
λ,v,x((1− λ)t)− fλ,v,x((1− λ)t)|`(v)dv → 0.

When x > 0, the constraint 1 + vλx > 0 is trivial and thus

E(eitR
(k)
λ,x) = E

(
E(eitR

(k)
λ,x|V ∗k,k/k)

)
=

∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1−λ)t)`k(v)dv,
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from which we have as k →∞

|E(eitR
(k)
λ,x)−

∫ ∞
0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv|

≤ |
∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv

−
∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`(v)dv|

+

∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`(v)dv

−
∫ ∞
0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv|

≤
∫ ∞
0

|`k(v)− `(v)|dv +

∫ ∞
0

|f (k)
λ,v,x((1− λ)t)− fλ,v,x((1− λ)t)|`(v)dv

→ 0.

It is easily seen that
∫∞
0

exp(it( vλ

1+vλ
))fλ,v,x((1−λ)t)`(v)dv is the character-

istic function of the distribution Hλ,x. This proves part (i) of the lemma.

When x < 0, the natural constraint 1 + (V ∗k,k/k)λx > 0 is equivalent to

V ∗k,k/k ∈ (0, ϕx). Therefore, we have

E
(
eitR

(k)
λ,x |1 + (V ∗k,k/k)λx > 0

)
= 1

P (1+(V ∗
k,k/k)

λx>0)

∫ ϕx
0

exp(it( vλ

1+vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv.

From Lemma 3 (i) we get P (1 + (V ∗k,k/k)λx > 0) = P (V ∗k,k/k < ϕx) →

exp(−(−x)1/λ). Similar to the proof for part (i), we have as k →∞∫ ϕx

0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv

→
∫ ϕx

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv.
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Hence, we get

E
(
eitR

(k)
λ,x|1 + (V ∗k,k/k)λx > 0

)
→ exp((−x)1/λ)

∫ ϕx

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv.

The limiting function is the characteristic function of the distribution

exp{(−x)1/λ}Hλ,x(y)

which is the conditional distribution of V λ(1 + V λx) + (1 − λ)Zλ,x given

V < ϕ
1/λ
x , where Zλ,x and V are two random variables such that V has

a distribution exp(−v−1), v > 0, and the conditional distribution of Zλ,x

given V = v is Gλ,v,x defined in Section 2. This completes the proof of the

lemma. �

Lemma 7. Let λ ∈ (1
2
, 1) or λ ∈ (1,∞).

(i) If x ≥ 0, then R
(k)
λ,x and Qk are asymptotically independent.

(ii) If x < 0, then conditional on 1 + (V ∗k,k/k)λx > 0, R
(k)
λ,x and Qk are

asymptotically independent.

Proof. We will sketch the proof for part (i) only. The proof for part (ii) is

similar. From Lemma 5 we have

f
(k)
λ,v,x(t, s) := E(eitT̂λ,x+isQk |V ∗k,k = kv)→ fλ,v,x(t) exp(−s

2

2
),

which is parallel to (S3.4) in the proof of Lemma 6. Note that exp(− s2

2
) is

the characteristic function of the standard normal and is free of v. The rest
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of the proof follows the exactly same lines as those in the proof of Lemma 6.

We then obtain that

|E(eitT̂λ,x+isQk)−
( ∫ ∞

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1−λ)t)`(v)dv

)
exp(−s

2

2
)| → 0

as k →∞, which implies the asymptotic independence in part (i). �

Before proving our theorems, we derive some useful inequalities. It

follows from Lemma 4 that there exists a C > 0 such that for all large t

|θ0 − U(tx)

θ0 − U(t)
− xγ0| ≤ Cxγ0A1(t) for all x ≥ 1.

Write

δ(t, x) = (
θ0 − U(tx)

θ0 − U(t)
− xγ0)/xγ0 .

Then |δ(t, x)| ≤ CA1(t) uniformly in x ≥ 1 for all large t, and

U(tx)− U(t)

θ0 − U(t)
= 1− xγ0(1 + δ(t, x)).

Now for each j, 1 ≤ j ≤ k, plug in t = Vn,n−k and x =
Vn,n−k+j
Vn,n−k

in the above

equation we have

Xn,n−k+j −Xn,n−k

θ0 −Xn,n−k
= 1−

(Vn,n−k+j
Vn,n−k

)γ0(1 + εn,j) = 1− (V ∗k,j)
γ0(1 + εn,j),

(S3.5)

where εn,j = δ(Vn,n−k,
Vn,n−k+j
Vn,n−k

). Since A1(t) is regularly varying with expo-

nent ρ and kVn,n−k/n → 1 in probability, we get A1(Vn,n−k)/A1(n/k) → 1
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in probability, and thus we have

εn := max
1≤j≤k

|εn,j| = Op(A(n/k)).

For every θ > Xn,n, define

τ =
θ −Xn,n−k

θ0 −Xn,n−k
(S3.6)

and thus θ = Xn,n−k + τ(θ0 − Xn,n−k) for τ >
Xn,n−Xn,n−k
θ0−Xn,n−k

. Then we can

write

θ −Xn,n−k+j

θ −Xn,n−k
= 1− Xn,n−k+j −Xn,n−k

θ −Xn,n−k

= 1− Xn,n−k+j −Xn,n−k

τ(θ0 −Xn,n−k)

=
(V ∗k,j)

γ0(1 + (τ − 1)(V ∗k,j)
−γ0 + εn,j)

τ
. (S3.7)

For each given δ ∈ (0, 1) define

An = {1 + (τ − 1)(V ∗k,k)
−γ0 > δ} ∩ {εn < δ/2}

and

Bn = {1 + (τ − 1)(V ∗k,k)
−γ0 > δ} ∩ {(τ − 1)(V ∗k,k)

−γ0 <
1

δ
} ∩ {εn < δ/3}.

Define βn,j and ξn,j such that

θ −Xn,n−k

θ −Xn,n−k+j
= τ(V ∗k,j)

−γ0 − (τ − 1)(V ∗k,j)
−2γ0 + βn,j (S3.8)

and

θ −Xn,n−k

θ −Xn,n−k+j
=

τ(V ∗k,j)
−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

(1 + ξn,j). (S3.9)
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Then, from (S3.7) we can show for all large n,

|βn,j| ≤ (τ − 1)2(V ∗k,j)
−2γ0 +

5τ

δ
{(τ − 1)2(V ∗k,j)

−3γ0 + (V ∗k,j)
−γ0εn} (S3.10)

uniformly in 1 ≤ j ≤ k and τ on An and

max
1≤j≤n

|ξn,j| ≤
2

δ
εn uniformly in τ on Bn.

S3.2 Proof of Theorem 1

As we have known, there exists a unique solution to h(θ) = 0 as defined in

(2.3) on {Xn,n > Xn,n−1}. Since F is continuous in a neighborhood of θ and

Xn,n−k → θ almost surely, with probability one, Xn,n = Xn,n−1 can occur

only finitely many times (in n). Set A = {Xn,n > Xn,n−1 ultimately}. Then

P (A) = 1. Set B = {θ̂ > θ + ε infinitely often}. If the statement in the

theorem is false, then P (B) > 0 for some ε > 0, and hence P (A ∩ B) > 0.

We have from (2.5) that infinitely often in A ∩B

1 ≤ α0

k + 1

Xn,n −Xn,n−k

θ̂ −Xn,n

+
|α0 − 1|
k + 1

k−1∑
j=1

Xn,n−k+j −Xn,n−k

θ̂ −Xn,n−k+j

≤ α0

k + 1

Xn,n −Xn,n−k

ε
+
|α0 − 1|
k + 1

k−1∑
j=1

Xn,n−k+j −Xn,n−k

ε

≤ 2α0 + 1

ε
(θ −Xn,n−k)

< 1,

which yields a contradiction. This completes the proof. �
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S3.3 Proof of Theorem 2

Define

h1(τ) = h(Xn,n−k + τ(θ0 −Xn,n−k))

and denote τ̂ as the solution to equation h1(τ) = 0. Then it is readily seen

that

θ̂ = Xn,n−k + τ̂(θ0 −Xn,n−k), (S3.11)

or equivalently,

θ̂ − θ0 = (τ̂ − 1)(θ0 −Xn,n−k). (S3.12)

Since k = kn → ∞, we have under condition (2.6) that P (Xn,n >

Xn,n−k) → 1 as n → ∞. Thus, with probability tending to one, the ML

estimator θ̂ is unique, and hence τ̂ is also the unique solution to h1(τ) = 0.

It follows from Lemma 4 that

(θ0 −Xn,n−k)/(n/k)γ0
p→ b/(−γ0) = cγ0 . (S3.13)

We will aim at the limiting distribution of τ̂ − 1 since the limiting distribu-

tion for θ̂ − θ0 follows immediately from (S3.12) and (S3.13).

It is easy to see that for any sequence {τn}, on {Xn,n > Xn,n−k}, τ̂ ≤ τn

if and only if h1(τn) ≤ 0 and τn >
Xn,n−Xn,n−k
θ0−Xn,n−k

, which implies

P (τ̂ ≤ τn) = P (h1(τn) ≤ 0,
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn) + o(1). (S3.14)
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It follows from Lemma 3 and equation (S3.5) that

k−γ0(
Xn,n −Xn,n−k

θ0 −Xn,n−k
−1) = −(

V ∗k,k
k

)γ0(1+op(1))
d→ 1−exp(−(max(0,−x))

− 1
γ0 ).

(S3.15)

Equations (S3.14) and (S3.15) play very important role in getting the lim-

iting distributions of τ̂ .

We will consider four cases: α0 > 2, α0 = 2, α0 ∈ (0, 2), α0 6= 1, and

α0 = 1.

Case 1: α0 > 2. For x ∈ R define τn = τn(x) = 1 + x√
k
. For any δ > 0, we

have that P (An)→ 1 as n→∞. It follows from (S3.8) and Lemma 3 that

on An

|h1(τn) +
1 + γ0
γ0

(
(Sk(−γ0)−

k

1 + γ0
)− (Sk(−γ0)− Sk(−2γ0))

x√
k

)
|

≤ O(
1

k
)(Sk(−2γ0) + Sk(−3γ0)) +O(1)Sk(−γ0)εn

+Op(1)((V ∗k,k)
−γ0 +

(V ∗k,k)
−3γ0

k
)

≤ Op(kA(n/k) + k−γ0).

We have used the fact that Sn(−3γ0) ≤ (V ∗k,k)
−γ0Sk(−2γ0). Set Yn =

h1(τn)/
√
k and Zn = 1+γ0

−γ0

(
1√
k
(Sk(−γ0)− k

1+γ0
) + (Sk(−γ0)− Sk(−2γ0))

x
k

)
.

It follows that Yn − Zn = op(1) under condition (2.7) and

Zn
d→ N(

−x
1 + 2γ0

,
1

1 + 2γ0
)
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from Lemma 3. Then we obtain from Lemma 2 that

lim
n→∞

P (h1(τn) ≤ 0) = Φ(
x√

1 + 2γ0
).

Since (S3.15) implies P (
Xn,n−Xn,n−k
θ0−Xn,n−k

< τn) → 1, we get from (S3.14) that

P (τ̂ ≤ τn(x))→ Φ( x√
1+2γ0

) for all x ∈ R, that is,

√
k(τ̂ − 1)

d→ N(0, 1 + 2γ0),

which together with (S3.12) and (S3.13) yields (2.11).

Case 2: α0 = 2. We can show (2.12) similarly to Case 1 by setting τn =

τn(x) = 1 + x√
k log k

. The details are omitted here.

Case 3: α0 ∈ (0, 2), α0 6= 1. Set τn = τn(x) = 1 + kγ0x. We consider two

cases: x ≥ 0 and x < 0.

Case 3.1: x ≥ 0. It follows from Lemma 3 (i) that for any ε > 0,

there exists a δ > 0 such that P (Bn) > 1 − ε for all large n. We have

from Lemma 5 that T
(k)
−γ0,x = Op(k) if α0 ∈ (1, 2) and T

(k)
−γ0,x = Op(k

−γ0) if

α0 ∈ (0, 1). Therefore, it follows from Lemma 1 and equation (S3.9) that

for α0 ∈ (1, 2)

kγ0h1(τn)

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)

+Op(k
1+γ0)εn

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)

(S3.16)

+Op(k
1+γ0A(n/k)),
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which converges in distribution to H−γ0,x in view of Lemma 5. Since

G−γ0,v,x(y) is continuous in y, it can be verified that H−γ0,x(y) is contin-

uous in y as well. The constraint
Xn,n−Xn,n−k
θ0−Xn,n−k

< τn is fulfilled automatically

since
Xn,n−Xn,n−k
θ0−Xn,n−k

< 1. Therefore, we have from Lemma 2 and (S3.14) that

lim
n→∞

P (τ̂ ≤ τn) = lim
n→∞

P (kγ0h1(τn) ≤ 0) = H−γ0,x(0) = Λ−γ0(x) (S3.17)

when α0 ∈ (1, 2). For α0 ∈ (0, 1) we have

kγ0h1(τn) = kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)T

(k)
−γ0,x

)
+Op(εn)

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)T

(k)
−γ0,x

)
+Op(A(n/k)).

Similarly, by using Lemma 5 we obtain (S3.17) for x ≥ 0.

Case 3.2: x < 0. The proof for x < 0 with α0 ∈ (0, 2) and α0 6= 1 is

a little bit complicated since we have to take into account of the constraint

Xn,n−Xn,n−k
θ0−Xn,n−k

< τn. We only consider the case x < 0 and α0 ∈ (1, 2) since

proof for α0 ∈ (0, 1) is similar.

From (S3.5) with j = k and Lemma 3 (i) we have for y < 0

lim
n→∞

P (
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn(y)) = lim

n→∞
P (kγ0(V ∗k,k)

−γ0 < (−y)−1)

= exp(−(−y)−1/γ0), (S3.18)

which is a continuous distribution function. Moreover, it follows from
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(S3.15) that

lim
n→∞

E|I(
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn(y))−I(kγ0(V ∗k,k)

−γ0 < (−y)−1)| = 0, (S3.19)

where I(A) denotes the indicator function of the event A. For any given

small ε > 0, if δ > 0 is small enough, we have that

E|I(kγ0(V ∗k,k)
−γ0 < (−x)−1)− I(kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)|

= P (kγ0(V ∗k,k)
−γ0 < (−x)−1)− P (kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)

→ exp(−(−x)−1/γ0)− exp(−(−x/(1− δ))−1/γ0)

< ε/2,

which implies that for all large k,

E|I(kγ0(V ∗k,k)
−γ0 < (−x)−1)− I(kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)| < ε.

(S3.20)

Since {(V ∗k,k)−γ0 < (−x/(1− δ))−1} = {1 + (τn(x)− 1)V ∗k,k > δ}, we have

E|I((V ∗k,k)
−γ0 < (−x/(1− δ))−1)− I(Bn)| → 0 as n→∞. (S3.21)

Then it follows from approximation (S3.9) that (S3.16) holds on Bn. Since

δ > 0 can be arbitrarily small, by using (S3.19) with y = x, (S3.20) and
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(S3.21) we can show that

lim
n→∞

P (h1(τn) ≤ 0|Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn)

= lim
n→∞

P (kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)
≤ 0

|1 + (
V ∗k,k
k

)−γ0x > 0)

= exp{(−x)−1/γ0}H−γ0,x(0),

where the last step follows from Lemma 6(ii). Once again we have (S3.17)

by using (S3.14) and (S3.18) with y = x. Hence (2.13) follows from (S3.17)

and (S3.13).

Case 4: α0 = 1. The case α0 = 1 can be verified directly since there is a

close form solutuon θ̂ = Xn,n + (k+ 1)−1(Xn,n−Xn,n−k) as in Remark 1 in

Section 2. Then, it follows from (S3.13) and (S3.15) that

nc(θ̂ − θ0) = k
(Xn,n −Xn,n−k

θ0 −Xn,n−k
− 1
)
(1 +

1

k + 1
)
c(θ0 −Xn,n−k)

(n/k)−1

+
k

k + 1

c(θ0 −Xn,n−k)

(n/k)−1

= k
(Xn,n −Xn,n−k

θ0 −Xn,n−k
− 1)(1 + op(1)) + 1 + op(1)

d→ 1− Z

since the distribution function on the right-hand side of (S3.15) is the same

as that of −Z, where Z is the standard exponential random variable. This

completes the proof of Theorem 2. �
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S3.4 Proof of Theorem 3

Our approach in the proof is first to identify that the estimator θ̃ falls

within a small neighborhood of θ0 and then to use some expansions to get

the asymptotic distributions for both θ̃ and α̃−1. The proof is very lengthy.

We will consider three cases: α0 > 2, α0 = 2, and α0 ∈ (0, 2).

Case 1: α0 > 2. The idea for the proof is somewhat similar to that of

Theorem 6 in Hall (1982). We will split the proof into several steps.

Step 1. Some preparations.

Let {θn} be any sequence of random variables such that

n−γ0(θn − θ0) = op(1). (S3.22)

Define

τn =
θn −Xn,n−k

θ0 −Xn,n−k
.

Then it follows from (S3.13) that

k−γ0(τn − 1) =
n−γ0(θn − θ0)

(n/k)−γ0(θ0 −Xn,n−k)
=
n−γ0

cγ0
(θn − θ0)(1 + op(1)) = op(1).

(S3.23)

Since n−γ0(θ0−Xn,n) converges in distribution to a positive and continuous

random variable, we conclude that P (θn > Xn,n)→ 1.

For any δ ∈ (0, 1), P (An)→ 1 as n→∞. By virtue of (S3.8) we have

θn −Xn,n−k

θn −Xn,n−k+j
= (V ∗k,j)

−γ0
(
1 + (τn − 1)(1− (V ∗k,j)

−γ0) + (V ∗k,j)
γ0βn,j

)
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for 1 ≤ j ≤ k.

From (S3.10) we have

max
1≤j≤k

(V ∗k,j)
γ0|βn,j| = op(1)

and thus

log
θn −Xn,n−k

θn −Xn,n−k+j
= −γ0 log V ∗k,j + (τn − 1)(1− (V ∗k,j)

−γ0)

+
(
(V ∗k,j)

γ0βn,j + (τn − 1)2(V ∗k,j)
−2γ0

)
Op(1),

where Op(1) terms are uniform in j. Therefore we get that

1

k

k∑
j=1

log
θn −Xn,n−k

θn −Xn,n−k+j

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0))

+Op(1)
1

k

k∑
j=1

(V ∗k,j)
γ0|βn,j|+ (τn − 1)2

Sk(−2γ0)

k
Op(1)

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0)) +Op

(
(τn − 1)2 + A(n/k)

)
,

where the last step follows from Lemma 3 and (S3.10). Hence we conclude

that

1

k

k∑
j=1

log
θn −Xn,n−k

θn −Xn,n−k+j
(S3.24)

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0)) +Op

(
(τn − 1)2 + A(n/k) +

1

k

)
.
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In a similar manner we obtain that

k∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j

= Sk(−γ0) + (τn − 1)(Sn(−γ0)− Sk(−2γ0)) +Op

(
(τn − 1)2k1−γ0 + kA(n/k)

)
.

Since
θn−Xn,n−k
θn−Xn,n = Op(k

−γ0), we have

k−1∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j
=

k∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j
+Op(k

−γ0).

With some tedious calculations we obtain

g(θn) =
(
Sk(−γ0)−

k

1 + γ0

)
(1 + γ0) +

kγ0
1 + γ0

(1

k

k∑
j=1

log V ∗k,j − 1
)

+
γ30

(1 + γ0)2(1 + 2γ0)
k(τn − 1)(1 + op(1)) (S3.25)

+(τn − 1)2Op(k
1−γ0) +Op

(
kA(n/k) + k−γ0

)
.

From Lemma 3 we get

g(θn)√
k

=
γ30

(1 + γ0)2(1 + 2γ0)

√
k(τn − 1)(1 + op(1)) +Op(1). (S3.26)

Step 2. We show n−γ0(θ̃ − θ0)
p→ 0 as n→∞, that is,

P (n−γ0(θ̃ − θ0) > v)→ 0 for all v > 0 (S3.27)

and

P (n−γ0(θ̃ − θ0) < −v)→ 0 for all v > 0. (S3.28)

We will show (S3.27) here. The proof for (S3.28) is tedious and will be

given in Step 4.
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By setting θn = θ0 ± nγ0/ log log k in (S3.26) we have from (S3.23)

that g(θn)/
√
k

p→ ∓∞, which implies that with probability tending to one,

there exists a root θ ∈ (θ0−nγ0/ log log k, θ0+nγ0/ log log k) to the equation

g(θ) = 0. Since θ̃ is defined to be the smallest solution to g(θ) = 0 we have

P (n−γ0(θ̃ − θ0) > v)→ 0 for all v > 0.

Step 3. Proof of (2.20).

Note that (S3.22) holds with θn = θ̃. Then it follows from (S3.25) and

(S3.24) that

√
k(τ̃ − 1)

=
(1 + γ0)

2(1 + 2γ0)

γ30
√
k

((
Sk(−γ0)−

k

1 + γ0

)
(1 + γ0)

+
γ0

1 + γ0

( k∑
j=1

log V ∗k,j − k
))

+ op(1)

and

√
k(α̃−1 − α−10 ) =

−γ0
√
k(τ̃ − 1)

1 + γ0
− γ0√

k

( k∑
j=1

log V ∗k,j − k
)

+ op(1).

Hence (2.20) follows from Lemma 3 (vii), (S3.12) and (S3.13).

Step 4: Proof of (S3.28).

We will expand g(θ) uniformly for Xn,n < θ < θ0 or equivalently for

Xn,n−Xn,n−k
θ0−Xn,n−k

< τ < 1 via (S3.6). From (S3.5), this latter constraint is

equivalent to {−1− εn,n < (τ − 1)(V ∗k,k)
−γ0 < 0} =: Cn.
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Since P (V ∗k,k/V
∗
k,k−1 > x) = 1/x for x > 1, by setting δ1 = (2/(2−ε))−γ0

(> 1) we have P ((V ∗k,k)
−γ0/(V ∗k,k−1)

−γ0 > δ1) = 1− ε/2 for every ε ∈ (0, 1).

Hence, on {(V ∗k,k)−γ0/(V ∗k,k−1)−γ0 > δ1} ∩ {εn < (δ1 − 1)/2},

−δ1 + 1

2δ1
< (τ − 1)(V ∗k,k−1)

−γ0 < 0

holds uniformly for all τ ∈ Cn, that is, 1 + (τ − 1)(V ∗k,k−1)
−γ0 > δ holds

uniformly on τ ∈ Cn, where δ = (δ1 − 1)/(2δ1). Therefore, on Dn =

{(V ∗k,k)−γ0/(V ∗k,k−1)−γ0 > δ1}∩{εn < δ/3}, we have 1+(τ−1)(V ∗k,k−1)
−γ0 > δ,

and thus by redefining Bn as {1 + (τ − 1)(V ∗k,k−1)
−γ0 > δ} ∩ {εn < δ/3} we

have expansion (S3.9) for 1 ≤ j ≤ k − 1 with maxτ∈Cn max1≤j≤k−1 |ξn,j| ≤

2
δ
εn uniformly on Bn. So we have on Dn (⊆ Bn)

g(θ) = Kn + Jk,τ (1 +Op(εn))(1−Wk,τ +Op(εn))− k

= Kn + Jk,τ (1−Wk,τ )− k + Jk,τ (1 +Wk,τ )Op(εn)

uniformly on τ ∈ Cn, where

Jk,τ = 2 +
k−1∑
j=1

τ(V ∗k,j)
−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

, Wk,τ =
1

k

k−1∑
j=1

log
τ(V ∗k,j)

−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

and

Kn =
θ −Xn,n−k

θ −Xn,n

− Jk,τ
k

(log
θ −Xn,n−k

θ −Xn,n

)(1 +Op(εn)).
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Note that for all τ ∈ Cn

Jk,τ = 2 +
k−1∑
j=1

(V ∗k,j)
−γ0 + (1− τ)

k−1∑
j=1

(V ∗k,j)
−2γ0 − (V ∗k,j)

−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

≥
k−1∑
j=1

(V ∗k,j)
−γ0 + (1− τ)

k−1∑
j=1

((V ∗k,j)
−2γ0 − (V ∗k,j)

−γ0)

=
k

1 + γ0
+Op(

√
k) + (1− τ)k

( 1

1 + 2γ0
− 1

1 + γ0
+ op(1)

)
from Lemma 3. Meanwhile, we have

Wk,τ =
−γ0
k

k−1∑
j=1

log V ∗k,j +
1

k

k−1∑
j=1

log(1 + (1− τ)
(V ∗k,j)

−γ0 − 1

1 + (τ − 1)(V ∗k,j)
−γ0

)

≤ −γ0
k

k−1∑
j=1

log V ∗k,j +
1− τ
k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1 + (τ − 1)(V ∗k,j)
−γ0

≤ −γ0
k

k∑
j=1

log V ∗k,j +
1− τ
k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1− (1 + δ/3)V γ0
k,k(V

∗
k,j)
−γ0

.

It follows from Lemma 3 (vii) that

k∑
j=1

log V ∗k,j = k +Op(
√
k).

Following those arguments in the proof of Lemma 5 and considering the

conditional distribution given on V ∗k,k we can show that on Dn

1

k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1− (1 + δ/3)V γ0
k,k(V

∗
k,j)
−γ0

= (
1

1 + γ0
− 1)(1 + op(1)),

which coupled with the above estimates implies that

Jk,r(1−Wk,r)− k ≥
|γ0|3

(1 + γ0)2(1 + 2γ0)
(1− τ)k(1 + op(1)) +Op(k

1/2).
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We also notice that on Dn

Jk,τ = 2 +Op(
k−1∑
j=1

(V ∗k,j)
−γ0) = Op(k)

holds uniformly on τ ∈ Cn, which implies Kn
p→ ∞ uniformly on τ ∈ Cn.

Therefore, we have from the above equations that on Dn

g(θ)√
k
≥ |γ0|3

(1 + γ0)2(1 + 2γ0)
(1− τ)

√
k(1 + op(1)) +Op(1) (S3.29)

holds uniformly for τ ∈ Cn. Since P (Dn) > 1 − ε for all large n and any

given ε > 0, we conclude from Lemma 1 that (S3.29) holds uniformly on

Cn, and thus for every v > 0

min
Xn,n<θ<θ0−nγ0v

g(θ)√
k
≥ Op(1) +

|γ0|3

(1 + γ0)2(1 + 2γ0)

nγ0vk1/2

θ0 −Xn,n−k
(1 + op(1))

= Op(1) +
|γ0|3

(1 + γ0)2(1 + 2γ0)
c−γ0vk1/2+γ0(1 + op(1))

p→ ∞

from (S3.13), which implies (S3.28).

Case 2: α0 = 2. The proof is similar to Case 1, and the details are

omitted here.

Case 3: α0 ∈ (0, 2). A different approach from the case α0 ≥ 2 is needed

in this case. We will approximate the function g defined in (2.17) by the

function h defined in (2.3). Define the lower bound

hL(θ) = h(θ)− an
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and the upper bound

hU(θ) = h(θ) + an,

where {an} is a sequence of constants given by

an =


k1/2(log k)2, if α0 ∈ [1, 2),

k−γ0−1/2(log k)2, if α0 ∈ (0, 1).

Then an/k
−γ0 → 0 as n→∞.

Let θL and θU be the solutions to hL(θ) = 0 and hU(θ) = 0, respectively.

If such solutions are not unique, θL and θU should be interpreted as the

smallest ones.

For α0 ∈ [1, 2), we have an/n→ 0 as n→∞, and both hL and hU are

decreasing functions of θ for θ > Xn,n. Therefore, the solutions to hL(θ) = 0

and hU(θ) = 0 exist and are unique.

We continue to use the notation in the proof of Theorem 2. For α0 ∈

(0, 1), let τn = τn(x) = 1 + kγ0x, and define θn = θn(x) = Xn,n−k +

τn(x)(θ0 − Xn,n−k). Note that h(θn) = h1(τn), where h1 is defined in the

beginning of Section S3.3. It is readily seen that kγ0hU(θn), kγ0hL(θn), and

kγ0h(θn) have the same limiting distribution function. From (S3.17), for

every ε > 0, we can choose an x > 0 such that P (kγ0hL(θn(x)) < 0) >

1 − ε and P (kγ0hU(θn(x)) < 0) > 1 − ε for all large n. This ensures

that P (kγ0hL(θn(xn)) < 0) → 1 and P (kγ0hU(θn(xn)) < 0) → 1 for some



S3. PROOFS OF THEOREMS 1, 2 AND 3 IN SECTION 239

sequence of constants {xn} with limn→∞ xn = ∞. Since h′L(θ) = h′U(θ) =

h′(θ), we conclude, by using the same arguments in Section 2.1, that with

probability tending to one, the solutions to hL(θ) = 0 and hU(θ) = 0 exist

and are unique in the interval (Xn,n, θn(xn)).

From the proof of Theorem 2 we conclude that the limiting distributions

for θL, θU and θ̂ are the same. Note that θL < θU . By using (S3.9) we can

show that

1

k

k∑
j=1

log
θ −Xn,n−k

θ −Xn,n−k+j
=
−γ0
k

k∑
j=1

log V ∗k,j +Op(|τ − 1|) = −γ0 +Op(k
−1/2)

(S3.30)

uniformly on θ ∈ [θL, θU ]. Similarly, from (S3.8) and Lemma 3 we have

k−1∑
j=1

θ −Xn,n−k

θ −Xn,n−k+j
=


Op(k), if α0 ∈ (1, 2);

Op(k log k), if α0 = 1;

Op(k
−γ0), if α0 ∈ (0, 1)

uniformly on θ ∈ [θL, θU ]. It is easily seen that with probability tending to

one,

hL(θ) ≤ g(θ) ≤ hU(θ)

holds uniformly for θ ∈ [θL, θU ]. Therefore, there exists a root to the equa-

tion g(θ) = 0 in the interval [θL, θU ] with probability tending to one, and

we conclude that P (n−γ0(θ̃ − θ̂) > v) → 0 for v > 0. Similar to the proof

of (S3.28) we can show P (n−γ0(θ̃− θ̂) < −v)→ 0 for v > 0. As a result we
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obtain that

n−γ0(θ̃ − θ̂) p→ 0,

which implies that θ̃ and θ̂ have the same limiting distributions.

For α̃−1, using a similar expansion to (S3.30) we have

α̃−1 =
−γ0
k

k∑
j=1

log V ∗k,j + o(k−1/2),

which together with Lemma 7 yields (2.21). The asymptotic independence

of θ̃ and α̃−1 follows from the asymptotic independence of θ̂ and Qk, which

can be verified from Lemma 7 and the proof of Theorem 2. This completes

the proof. �
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Loève, M. (1977). Probability Theory I, 4th Edition. Springer, New York.


