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Proof of Lemma We prove the case where p = 1 to illustrate. Multi-
variate analogy follows through exactly the same arguments with notations

replaced by their multivariate counterparts. First note that
BIKG, (X)) = [ KOG i)t = 70+ ),

uniformly in i = 1,2, -+, where b;(x) = 1 f( (x)h2 4+ O(h?). Write v;(x) =

K, (Xiz) — E[KjG, (Xi)] and we have E{v(x)}? = B[lf(X)RQ(K) + O(izl)

again uniformly in ¢ = 1,2,--- . Therefore,
B N ) 1 n 9 1 n )
B fulxln) = F12 = = (Do bilx)) + — > Blei(x)}

4
= %{f@) (X)}Qn—4a + éf{X)RQ(K)na—l 4 O(n_4o‘ " na_l)
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where the last equality followed from the following facts

n

> bilx) = S fP) Yo (1L o(1))

= 62—2f(2)(x)n1_2a /:17152%(1 +0(1)) = %nl_h(l +0(1)),
zilE{vf(X)} o c! iilio‘ =c 'ntte /01 t*dt(1+o(1)) = mnlﬂ“(l + o(1)).
Therefore, to minimize the asymptotic MSE, we must have
a=1/5, c=(0.3)°[f(x)Ro(K)/{ P (x)}*]'F°.
The proof is complete. O

Proof of Lemma Write ¢, = 22/ (x) and ¢, = ¢ PRy(K)f(x).

Therefore,
N _ ~ N 1 n 9 N n
> B0l — fP =Y {3t} + >0y B
n=1 n=1 i=1 n=1 i=1
where

n n n n
E b = ¢ E i E E{v;}?* = ¢, E P,
i=1 i=1 i=1 i=1
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We again only prove the case where p = 1. First note that

/n

n 20—l 1+1/n , 1 1 1
e 2y 20 } _ [(1 -
Z 20 [/2 x x /1 x x 1~ +

N N
1 2\ 1—2a o 1 1\ 12a
S (G) e xpan Y—(s) enau

(S0.1)

n=1
As N — oo,
N 1-20 1 71\ 20 1 1
() e[
;” ( m) €13 20 2
whence
N 1 n
b — (— —1) 1+ o(1)),
nzlnz 2:1: oo — 1)1 +o(1))
N n
S Son) = g Vo). (502
: ‘ (1 -2a)%(1 — 4a) ' '
n=1 i=1
Similarly,
n 1 (n+1)/n
Zia/nHa € [/ xadx,/ xo‘dx}

1 1\ l+a 1\ 1+a
- () )
1+« n n

2

n

)]

21 1y 12 A 2 1-2 N 2 1-2
ZnH?a(l—i_ﬁ) 6[/2 r (14 x) dx,/1 r(1+x) da:],

Y 1 N+t 2 N 1-2 1 2 2 2
e[/ :U_l_o‘dx,/ x““daz}e—[Q—“— N+1)-a,1—N—a].
Z n1+2a 9 1 206 (
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and

Zno‘ Yo a™ 1N°‘[ (;) } Zno‘ 1( ) a€(1/2,1),

Zno‘1<1+ >1+a Zn (n+ 1) ¢ [Zno‘_l,Z(nJrl)a_l],
Zn"‘_l/NO‘G[/

1/N

1+1/N 1
xa_ldx,/ xo‘_ldx] —a ' (N — o0).
0

Therefore,

; n=? 2 E{v;}? = a(TZ—l)NQ(l +o(1)). (S0.3)

Combining (80T)-(83), we see that (SOT) will be negligible compared to
the other two, with nyg/N — 0, whence the a which maximizes the sum of
these three terms, also maximizes the sum of (8024) and (8033). Therefore,
in general, the leading term of M SE(N,a,c) is given by

2
Gy —4a Cy Npafl

(I—202(1—4a) "  papa+D

Although the coefficients also vary with «, this does not change the fact that
provided that N is large enough, the a which minimizes the above quantity
is 1/(p +4). As for the optimal value for ¢, note that the ¢ minimizes the

above quantity for any given value of « is given by

<R2(K)f(x)(1 —2a)?(1 — 4a)p>1/(p+4)
pa(pa + 1)[tr{H(x) }? '

The proof is thus complete by setting o = 1/(p + 4). O
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Proof of Lemma 24 Define

n n

b, = n2a—1 Zi_2a(1 . Qi)Qa v, ! leoz 1 . 0

1=1 i=1
The online estimator with bandwidth h; = ¢(1 — 6;)i~® then has its AMSE

given by

DN + ¢ FO) Ra( K,

which, with ¢ chosen optimally, turns out to be

p Z 4p—p/(4+p) [f(x) RQ(K)]4/(4+p){f(2) ((X)))}2p/(p+4)vi/(4+p) bip/(p+4)'

Therefore, its relative efficiency against the off-line estimator is given by

lim Ui/ (4+p) bip/ (p+4)

This together with the facts that

Zﬂa (1—16 Zz (L+o(1), Y (1 —6i(a) => " (1+0(1)),
i=1 i=1

means that the relative efficiency is identical to that suggested by Lemma

22 O

Proof of Lemma 23 First note that by the definition of wy ,,, we easily

see that

Fn(xlhy, By) = sz\/n X, = X);



Efang Kong AND Yingcun Xia

the AMSE of fx(x|hyfy) is easily seen to be as required. The rest of the
proof then follows from the following two corollaries: Corollary and

Corollary B2, and the fact that if ng, — 0, then for any a > 0,

Zﬁn < aZn_l x alog N,

N
so that n®exp(— >_ B,) — oo, for any a > 0. O

n=1

Corollary S0.1. Depending on the speed at which 3, converges to 0, as

n — 00,

(A) nB, — b for some b > 0: Sy ~ LN—QQ;

(b—2a)

(B) nf, — 0o : Sy oc N72;

N
(C) nB, — 0: Sy x exp [— ( Zlﬁn)(l - 0(1))]
Proof of Corollary What follows from (233) and the definition of

S,, 1s that

Svi1 = (1= Bni1)Sn + (N + 1) By (50.4)

Divide either side by a factor of (N + 1)72%:

(N +1)%

(N + 1)2OCSN+1 =(1- 5N+1)N2&SN N2a

4 fBner. (S0.5)

Take the limits of either side and suppose n?*S,, — s, where s could be 0,

finite, or oo:

s~ s(1— Bys1)(1+ N7 + By,
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from which it can be inferred that s(8yy1 —2aN 1) = By1. Three possible

scenarios depending on the speed at which g, — 0 :

(A) nfB, — oo : in this case s = 1, i.e. S, & n~2%

(B) n3, — bfor some b > 0 in this case s = b/(b—2a), i.e. S, ~ ﬁn_m;

(C) nB, — 0 : in this case Sy o exp [— <n§:1 5n>(1 + 0(1))}.

The proof of case (C) is as follows. First note that S, is decreasing, i.e.
S, > Spy1, which together with (84) means that S, > n~2*. In fact,
S,n%* 1 oo, for if it is bounded, then it must have a limit, say s > 1 which
together with (SO3):

2a

(N + 1)QOCSNH = NMSN(l — BN+ Nl

) + Bt

where since (3, = o(n™!), we approximately have

(0%
N+1’

(N +1)*Sy > N*Sy(1+ ) > N**Sy +

a
N—+1
which could only imply that S,n%** 1 co. Now rewrite (SII4) as

Sn+1— Sn 1
S —BNn+1+ 5N+1m = —Bn+1(1+0(1)). (50.6)

Expressed in the form of differential equations
N

d(logSx) = =By si(1+0(1)) = Sy = Cexp | = (3 8:) (1 +0(1))];
n=1

for some C' > 0; the proof of case (C) is thus complete. 0
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Corollary S0.2. Depending on the rate of 3, converging to 0,

(A) nB, — b: in this case what holds in general is that (8,11 — Bn)/5n =

n~!, so that

_ b2
Sy=———
M7 20+ pa —1)

NP1+ o(1));
(B) nB, — 00, (By — By+1)/Brs1 = 0(Bw): Sn o nP*By;
(C) nBp — 0, (ﬁN - 5N+1)/(/3N+15N) = b for some b > 0: Sn o< NP By

(D) nfB, — 0: Sy o< exp [( - 2%1671)(1 + 0(1)].

Proof of Corollary What follows from (223) and the definition

of gn is that
Syi1 = (1= Bn:1)?Sn + (N + 1)*Bris-

Divide either side by a factor of (N + 1)*8y.1 and suppose nfo‘gn/ﬂn — s,

where s again could be 0, finite, or oco:

NGBy
~ (1— DAL
= 5(20n41 + aN~!— —BNﬁ;\fiVH) ~ BN+1;

Proof of cases (A), (B) and (C) thus follows.

For case (D), first note that S, < n® and since £, = o(n"!), we have
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n'=®S, 1 0o, which could be inferred from the following

S S No1
ﬁ = NT]L(l — ﬁN+1)2W + (N +1)B3
S 11—« _
= (14 =) (N,

Therefore, similar to (SI8) we have

SN+1_§N o 2 NﬁZQV+1 _ .
— 5. =20Nn+1+ By + Niagy —2Bn+1(1+0(1));
the proof of case (D) is thus complete. O

Proof of Lemma 28 The derivation of optimal 3, is as follows. First

note that the asymptotically equivalent problem is as follows:

4

¢ 1 9 1
II(li)Il Z{/ w(x)x_g/(p+4)dx} —1—0_1/ w(z)2z P dg (50.7)
wA\.),C 0 0

subject to ¢ > 0, w(.) > 0 and folw(x)da: = 1. Yet we also need to ensure
that w(.) could be realized via the sequential updating procedure associated

with the ONLINE estimator with weighting series {;, i > 1}, i.e.

- 1
, 1— = Zwl(i | — e
/BZ H ( Bk) nw(l/n)a ? 1727 y T
k=i+1
A sufficient and necessary condition is that w(.) meets this requirement: for
any a, b, x € R, w(az)/w(bx) is a function of a and b only. Alternatively,

we have w(azx) = g(a)g(x) for all a, z € R and some function ¢(.). Since

this means w(z) = [g(x'/™)]" for any = > 0 and positive integer n, we know
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immediately that g(1) = 1 and thus w(az) = w(e)w(z) and w(l) = 1.

Furthermore

ow(ax)
da

= 2w (ax) = w(z)w'(a);
with a = 1, this translates into w(x) = aw'(z)z for some constant a, whence
(3<log w(m)) =ar” ! = w(x) = ca”

for some c. In this case, the function to minimize in (804) turns out to be

a,c

Aot ) 1
min [Z(/ x“’2/(p+4)dac> + cl/ x2“+1/(p+4)dx] (a+1)%  (S0.8)
0 0
For any given a > 0, the optimal ¢ = {p(a+ (p+2)/(p+4))/2}/P+); plug
this into (S8) and it equates the following

min (ot 1)p+4
o {a+(p+2)/(p+4)}r+?

which is again minimized when a = 0. U
Proof of Lemma B3 The following results in matrix theory will be used:
suppose a, — 0, A and B are two fixed matrices of the same dimension

and A~! exists, then

(A+a,B) ' =A"~a,A'BA™ + O(d?).
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First, it is easy to establish that

5 cn” @ 0 Vf(x)

+ Op(n=2 4 nle=/2)

YT o
5 cnTo 0 Vfx
.60 = 7 0 = s O | 02 4tz
VT f(x) 0

Secondly, based on the local Taylor expansion of m(.) around x

Y = e+ X1 (x)mi(x) + X Ho () Xin + O(),  mi(x) = [m(x), iV m(x)] ",

2
we have
. 1 & - - 1 & .
Sn(x),Y) = - Z K, (Xi) Xin (%)X, (x)m(x) + - Z Kj (Xiz) Xin(X)e;
=1 i=1
1 . ¥ T —3a
+% Zzl i (sz)X n<X)szHm<X>sz + O(n )
1l — . - 1l & -
==Y K (Xi)Xin(x) X, ()i (%) + = Y K (Xia) Xin ()
=1 =1

Observing that
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we further have

0 VTf(X) > et hi/n

0 0
= f(x) ] ] + O0p(n=3 + 0712,
0 LY h/n| |0 0
n . . 0 0 m(x)
3 K (X)X (0K ()
i=1 0 mlL,| | Vm(x)
En 27T m(x)V f(x
= f(x) ’ +| )V {x) + Op(n=3 + n~?),
@ =V 'm(x) 0
. 1™ _ _ 0 o m(x)
S0 3 K (i) X ()X, (9 [
=1 0 mlL,| | Vm(x)
2 2 2 Vimx)VF(x)/f(x
_ 0 N 2 _0204)721 — x)Vf(x)/f(x) n Op(n_3a n n_l/z).
01”_; VvV m(x) “ @ 0
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Therefore,
- N m(X) c2an 2o va(X)vf(X)/f(X)
M (X) = [Sn(x)]_lSn(x, Y)= + 3
%va(X) (1—-2a)(1—a) 0
2p20 dr{Hm,(x)} - -
gl e D K K+ O ),

0 i=1
Proof of Lemma B If U; is near ug, we apply the following local Taylor
expansion concerning function gy(.):

1
9r(U3) = gi(uo) + gi” (uo) Uso + 591(62) (o) Uiy + O([U*),  Uio = Ui — uo.

The proof of (B18) is done similarly to Fan and Zhang (1999).

1 & 1 & 1 &
N K U)X = = S K (Un) X+~ > K, (Uig) XX
- he (Uio) n 2 hn (Uio) Xigi + - he (Uio) i 8(uo)

i=1 i=1

Ly T 1\ 2 T(2)
+5 ; K, (Ui)Uio XX, g'7 (uo) + o ;Khn<Ui0)UioXiXi g (up),

3 K (V) XX = () w0) + 500D ()02 + Oy 0+ (o))

+O0(h;, + (nh)~'12).

Then (BIR) follows by considering the ratio of these two terms. Similarly,
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from its definition in (BZI7), we have

—1
& (o) = g(uo) + [ZK Vo)X X[ |3 K3, (Ui) UioX X g0 (o)
i=1

—1
[2 Z K3 (U)X, XT] K3, (Un) U2 XX g (4f30.9)

=1
n

[ZKM U)X X | ZR:K,M (Uio)Xse: + O(n /%),

=1

For the ‘inverse matrix’,

n

. ZK Ua) XX = (1) o) + (021) P o) 5 - 3~ 2

i=1

(Y 4 0, (! Zh ).

The proof is thus complete when plugging this into (S0C9). O
Proof of Lemma Again with h, = O(n~'/%), we have standard

results such as

S = (v f) (o) @ Lo + ho (v )P (ug) ® In + O(h2)

8 - Engn(uo + YR ZK zO)UZOXn l<u0)X g( )( )

=1
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- 0 1
where I, is the 2 x 2 identity matrix, Iy = . Consequently,

10
A 1 n
gn(UO) = gn(UO) + anﬁ ; Kﬁi(Ui())Xn,i(uO)Ei
L1 )
+En1% ; Ki”(UiO)Xn,z‘(uo)Ui%XiTg(Q) (uo) + O, (n~1/2).
(E=22) thus follows from facts

Lpog2, ' = [(v.f)(uo)] ™' @ [1,0] + O(hy);

(L) o))~ @ [1,0]) Koo = [(v-F) (o) X

The proof is complete. O
Proof of Lemma We will repeatedly refer to he following properties
of Kronecker product: when the order of matrices permit the indicated

operations,
(A B)(C® D)= (AC)® (BD); (A®B)'=A"®B™"; (A®B)'=A"T®B".

Write g, (uo) = (nX,)"H(nS,), ie.

- 1 - - .1 )
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We start with the inverse matrix.

. . 1 .
X (1o)X} i (uo) = (XX ) @ [1, U/ ]

Uzo/ilz
E(%,) = (v.f)(ug) @ Iy + hi(v.f)V (ug) @ I, + O(h2),  (S0.10)

Y

Var[(,)i;] = O(h; ),

(S0.11)

where the O(.) terms are all uniform in ¢ > 1. Therefore,

S = v f)(uo) @Iy + (n.f) M (ug) @ I
l - B 5_C —-1/5 l - 7,2 —2/5 -1 - 71 —2/5
x(n;hzun +O(n;hi+)n +0(n (;hi ))n ,

2= [ )w) oL

=2 ([ D ) H)O wo)][0F)) (o)) © T+ O ),

(S0.12)

Next, based on expansion like

q

1
Y= 37 (ge(uo) + g1 (wo)Uio + 597 (wo)UR ) i + O Uio) + =

1
q

k=

S N 1
= X (w0)&i(wo) + 5 > 01” (wo) Uik + O(Uio*) + &
k=0

where recall that g;(ug) = [g1(uo), h (1)(u0),--

gt < gq (o), higd (uo)] T, we

have

1 . N 1 « -
= o Z Uio) X i UO)XL(UO)&(UO)] + " Z Kﬁi(UiO)Xn,i(uo)Ei

i=1

1 n
2—2 Uso ) U2 X i(u0) X g (ug) + O(n™( th )12,
=1

1=1
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Seeing that

gi(uo) = [Lgn® | | | 8(uo),
0 h;
we have
o : 1 1o}
Xoni(10) X, i (u0)&i(uo) = (XiX;)® | L Uio/hi] |1 ] 8(uo)
1 Ui
= (XX/)@ &(uo) (S0.13)

Uio/hi U /hs

. 10| loue |
= (X,X,)® ) g(uo) + (XX, ) ® . g(uo),
U/l 0 0 U2/h

with the first matrix having vectors of zeros as its even-numbered columns,
while the second having vectors of zeros as its odd-numbered columns. For

the first matrix, it follows from the definition of >, that

. n 1 0 1
B0 LS K UXXD @ || sw) =g | [ (50.14)
i=1 UYZ()/hZ 0 0

The dealing of the second matrix is more complicated. First we claim

that its (non-zero) entries of the matrix are all of order o,(n~'/2): for any

17]:17 » 4,

n n

1 _ 1 = _
- > K (Ui)zigwisUsy = Op(n™*/%), - > K, (Uin)ziaiiUjy [hi = Op(n™*P),

=1 =1
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As for their expectations,

- Z E( 20 xzkl’m UzO) V f (1 U() Z h2 _2/5 —|— O( _4/5)’

_ZE< Uio) ik T4 lo/h) (v .f)kj(uo)ﬁ;ﬁi(%n1/5>+O(n3/5).

Therefore,
n 0 U, ¢ 0 0
Sxxhe | =2 ) @
i=1 %/hi 0 1
2 0 1
P ) © | | +opn )
0 0
n 0 U 0 0
zgllZ(XZXD@ B A +0p(n”%)
nz:1 O/BZ 01
P 0 1
o ([0 o)) 00) )
0 0
) 01
2 ([ ) o)) )V )] ) .
0 0
=X e | o) (S05)
0 1
P 0 1
27 (0 ) )] ) )] @
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Since
0 0 0
L1 ® g(ug) =g (ug)® | |, (S0.16)
01 1
0 1
([0 o)) (1) (o) ) @ &(uo)
00
1
= (10-) ()] ™ () (10)8 (o) ) (50.17)
0

combining (SOT3), (S013), (S014), (S01H), (8014 ) and(SO0Td), we have

@n)l% D UK, (Uio) Ko (a0) X () i ()] (S0.18)
1 . 0
—g(u)@ | |+ (w)® | | +o,n )
0 1
5¢2 1
2o ([0) (o) ) (o) Jg V) ) @ ||
0

For the second term in (SO0T3), since it is easy to verify that its variance of

order o(n~%/%), thus we only need to consider its expectation.

- - 1
B (K5, (Vo) U3 X)X &%) (00) ) = B2[(1:82).) ()]
0

0

pa(K)

+h (v ). (uo) @ + O(h).
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Therefore,

n

1 N
o K;, (Uno) U Xon i (u0) X g2 (up)
=1

1 0
g ) o | | + 5763”_3/5[(V-f)(”-g(2)](uO) ® + Op(n™7),
0 pa(K)

and consequently

n

1

(in)_lﬁ ; Ky, (Un)Up X i (u0) X g2 (u) (S0.19)
5¢? L 5¢8 1 N (2 0
= Zn g @ | |+ 2o ([ ) @)l ) g2 (o)) @
0 pa(K)
o 4(K)
B ([ D) ) (1) O ()8 (o)) @ | O + 0,(n~%);

(E=22) thus follows from (SOT3), (SOI8) and (80TY). O



