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Abstract: The online updating approach (ONLINE) has been commonly used for

the analysis of big data and online transient data. We consider in this paper how to

improve its efficiency for various ONLINE kernel-based nonparametric estimators.

Our findings include: (i) the optimal choice concerning the bandwidth and how it

differs from that for the classical estimators; (ii) the optimal choice among a general

class of sequential updating schemes; (iii) that the relative efficiencies of ONLINE

Parzen-Rosenblatt density estimation or Nadaraya-Waston (N-W) regression esti-

mation change with the dimension p of covariate in a nonlinear manner, and (iv)

that while the classical local-linear fitting renders the estimators design-adaptive,

their ONLINE counterparts still depend on the design of covariates in its leading

terms of bias, they are still preferred over the ONLINE N-W estimators.
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updating estimation, varying coefficient model.

1. Introduction

The concept of ‘big data’ has become a dominating topic in nearly all aca-

demic disciplines as well as in applied fields. In a broad sense, big data is char-

acterized by its massive scale of volume, complexity, variety, velocity, variability,

and veracity (Hilbert (2015)), and it is for this reason that most classical sta-

tistical methods are not suited for analysis of big data. Various new procedures

have been proposed, which include, among others, subsampling-based approaches

(Kleiner et al. (2014); Liang et al. (2013); and Ma, Mahoney and Yu (2013)), the

divide-and-conquer approach (Lin and Xi (2011); Chen and Xie (2014)), and the

sequential updating approach (Wang et al. (2015), and the references therein).

Most of these works, however, were carried out in a parametric set-up, that often

fails to capture the complexity that is inherent to the data.

Our focus in this paper is on big data, the processing of which in one go ex-

ceeds the capacity of a single computer due to the high volume (amount of data)

https://doi.org/10.5705/ss.202015.0365


186 KONG AND XIA

and high velocity (the arriving speed of data). With small demand on storage

and being capable of real time updating, the sequential updating approach has

been shown to be particularly useful in handling massive data with high velocity.

Hereinafter, we refer to approaches of such nature as ONLINE and, in contrast

to those classical estimation methods (estimators) as OFFLINE, which requires

massive storage space and astronomical computational effort between updates.

Wang et al. (2015) discussed in detail the ONLINE adaptation of estimation in

linear regression models. Similar ideas have been applied to nonparametric set-

tings; see, for example, Aggarwal et al. (2003). For Parzen-Rosenblatt density

estimation, Lambert et al. (1999) proposed an algorithm based on multipole tech-

niques; Cai et al. (2003) proposed a M-kernel approach, with further refinement

made in Heinz and Seeger (2006); Kristan, Leonardis and Skočaj (2011); Kristan,

Skočaj and Leonardis (2010) considered online kernel density estimation based

on Gaussian mixture models. What these algorithms have in common is their

comparable estimation efficiency to their OFFLINE counterparts. These com-

parisons have been based on numerical experiments, and no theoretical properties

have been established.

It is thus the purpose of this paper to provide a systematic study of the adap-

tation of a wide variety of kernel-based nonparametric estimators for the analysis

of big (online) data, and the asymptotic properties of the resulting ONLINE es-

timators. The adaptation is realized via a sequential updating scheme coupled

with index-specific bandwidths. We examine in details the asymptotic efficien-

cies of these ONLINE estimators and how they depend on the tuning parameters,

that in this case, refer to the sequential updating scheme and the index-specific

bandwidths. In particular, as far as the N-W type of nonparametric estimator is

concerned, we prove that the constant of proportionality associated with index-

specific bandwidths should be smaller than that associated with the OFFLINE

N-W estimator; we identify the optimal choice among a very general class of

sequential updating schemes; and we demonstrate that the relative efficiency of

ONLINE N-W estimator changes with the dimension (p) of covariate in a non-

linear manner. It is well known that the local linear estimator is design-adaptive

(Fan and Gijbels (1996)) in that its leading bias term does not depend on the

design density of covariate. We show that the ONLINE adaptation of local lin-

ear estimators is still susceptible to the designs, but to a less extent compared

to the ONLINE N-W estimators. For the same reason, general results do not

exist on the relative efficiencies of ONLINE local linear estimators against their

OFFLINE counterparts.
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The rest of the paper is organized as follows. In Section 2, we introduce

the general principle of ONLINE adaptation in the context of kernel density

estimation. In Sections 3 and 4, we discuss the ONLINE adaptation of estimators

in nonparametric regression, and in the varying coefficient models. Section 5

contains some simulation studies where the numerical performances of various

ONLINE estimators are evaluated and compared with their respective OFFLINE

counterparts.

2. Nonparametric Density Estimation

Suppose we have IID copies X1, . . . ,Xn of X, a random p-dimensional vector

with probability density function f(·). The Parzen-Rosenblatt estimator of f(·)
is defined as

f̂n(x) = n−1
n∑
i=1

Khn
(Xix), (2.1)

where Xix
def
= Xi − x, K(·) is a kernel density function in Rp, Khn

(u) = K(u/

hn)/hpn and hn(> 0) is the smoothing parameter (bandwidth). As hn is usually

chosen based on the total number of observations n, so whenever n increases

(new observations arrive), the summands in (2.1) have to be re-evaluated with

the new bandwidth. With data streaming or online data, the evaluation of such

classical kernel-based nonparametric estimators thus requires massive computing

power and storage capacity.

To discuss the mean squared error (MSE) of f̂n(x), let R2(K) =
∫
K2(u)du,

and Ip denote the p × p identity matrix; for any u ∈ Rp, u> stands for its

transpose. The following conditions are assumed throughout.

(A1) The kernel function K(·) is symmetric and
∫

uu>K(u)du = Ip.

(A2) The density function f(·) has bounded third order derivatives.

The existence of bounded third order derivatives of f(·) is assumed purely for

convenience; it could certainly be relaxed at the expense of more complicated

technical analysis, but it does not affect the main findings of this paper.

Hereinafter, for a multivariate function, f(·) say, denote by∇f (·), its gradient

vector and by Hf (·), its Hessian (second-order partial derivatives) matrix. For

univariate functions, we revert to the traditional and more convenient notations

f (1)(·) and f (2)(·).

Lemma 1. Suppose (A1) and (A2) hold and that hn → 0, nhn/ log n → ∞.

Then
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E{|f̂n(x)− f(x)|2} = AMSE(fn(x)|hn) + o{h4n + (nhpn)−1},

where

AMSE(f̂n(x)|hn)
def
=

1

4
[tr{Hf (x)}]2h4n +

1

nhpn
f(x)R2(K);

the asymptotically optimal bandwidth that minimizes AMSE(f̂n(x)|hn) is given

by

hn,opt
def
=

[
f(x)R2(K)

tr{Hf (x)}2

]1/(4+p)( p
n

)1/(4+p)

, (2.2)

and, correspondingly,

AMSE(f̂n(x)|hn,opt) =
(p+ 4)

4(ppn4)1/(4+p)
{f(x)R2(K)}4/(4+p)[tr{Hf (x)}]2p/(4+p).

The proofs can be found in, e.g., Wand and Jones (1995).

2.1. ONLINE Parzen-Rosenblatt density estimation

This is implemented as follows. With only X1, the estimate is a simple

Kh̃1
(X1 − x) for some predetermined bandwidth h̃1; once X2 is available, we

update the estimate as

(1− β2)Kh̃1
(X1x) + β2Kh̃2

(X2x),

where β2 ∈ (0, 1) is some pre-specified constant, and h̃2 is yet another bandwidth

chosen independent of X1. In general, suppose f̃n−1(x), n ≥ 2, is the current

estimate after X1, . . . ,Xn−1 have been observed. Once Xn arrives, the estimate

is then updated as a weighted sum of f̃n−1(x) and Kh̃n
(Xnx):

f̃n(x)
def
= (1− βn)f̃n−1(x) + βnKh̃n

(Xnx), (2.3)

where βn ∈ (0, 1) is a pre-specified constant, and the bandwidth h̃n is again

chosen independent of all the preceding observations. To highlight the fact that

different bandwidths are used in each step leading up to f̃n(x), and also its

dependence on the weighting sequence {βi, i = 1, . . . , n}, we rewrite f̃n(x) as

f̃n(x|h̃n, βn), and thus (2.3) is

f̃n(x|h̃n, βn) = (1− βn)f̃n−1(x|h̃n−1, βn−1) + βnKh̃n
(Xnx). (2.4)

This formulation lays the foundation for our ONLINE adaptation of kernel based

estimation. Many well-known estimators in nonparametric or semiparametric

models are formed based on statistics of forms similar to (2.3); more examples

can be found Section 3 and Section 4.

The asymptotic properties of f̃n(x|h̃n, βn) depend on sequences of tuning
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parameters: the sequence of bandwidths {h̃n}, and the sequence of weights {βn}.
In this paper, we mainly focus on the case where βn = n−1, which is optimal in

the sense that the corresponding f̃n(x|h̃n, βn) with βn = n−1 has the smallest

AMSE amongst a general class of weighting series; see Section 2.3. For ease of

exposition, f̃n(x|h̃n, n−1) is simply written as f̃n(x|h̃n),

f̃n(x|h̃n) =
1

n

n∑
i=1

Kh̃i
(Xix). (2.5)

To investigate how the sequence of bandwidths {h̃n} affects the efficiency of the

ONLINE estimator (2.5), we start with the index-specific bandwidths

h̃i = ci−α, i = 1, 2, . . . for some constants c > 0, α > 0.

Lemma 2. Under (A1) and (A2), we have

AMSE(f̃n(x|h̃n)) =
c4

4(1− 2α)2
[tr{Hf (x)}]2n−4α +

1

(1 + pα)cp
f(x)R2(K)npα−1,

which is minimized at

α =
1

4 + p
, c =

{
p(p+ 2)

2(p+ 4)

}1/(4+p)( R2(K)f(x)

[tr{Hf (x)}]2

)1/(4+p)

,

with minimum

(p+ 4)2

8(p+ 2)

{
p(p+ 2)

2(p+ 4)

}−p/(4+p)
n−4/(4+p){f(x)R2(K)}4/(4+p)[tr{Hf (x)}]2p/(4+p).

From Lemma 1, for OFFLINE Parzen-Rosenblatt estimator with bandwidth

hn = cn−α, the optimal values for α and c are

α =
1

p+ 4
, c =

[
f(x)R2(K)

tr{Hf (x)}2

]1/(4+p)
p1/(4+p). (2.6)

So, while the optimal choices of α are identical for OFFLINE and ONLINE, their

respective optimal choices for the coefficient c do differ, with the ratio given by

optimal h̃n
optimal hn

=

{
p+ 2

2(p+ 4)

}1/(p+1)

, (2.7)

which is always less than 1. A ratio of less than one is expected, for otherwise,

the use of index-specific bandwidths h̃i ∝ i−α will result in too large a bias for

ONLINE, which cannot be compensated for by the accompanying reduction in

the variance.

The relative efficiency of the ONLINE Parzen-Rosenblatt estimator against

its OFFLINE counterpart is



190 KONG AND XIA

Figure 1. Relatively efficiencies of against the OFFLINE Parzen-Rosenblatt estimator
(2.1).

AMSE{f̂n(x)|optimal hn}
AMSE{f̃n(x)|optimal h̃n}

= 24/(4+p)
(
p+ 2

p+ 4

)(2p+4)/(p+4)

. (2.8)

This starts at 0.9432 for p = 1, drops to its lowest level of 0.9186 at p = 4, and

then slowly increases to 1 as p→∞; see Figure 1.

The non-linear pattern in the relative efficiency (2.8) versus dimensionality

is a result of several confounding factors. These include, for example, the use

of a common bandwidth by OFFLINE in contrast to the use of index-specific

bandwidths by ONLINE. Also, that the OFFLINE has smaller bias but larger

variance, yet the exact opposite holds true for ONLINE. For both OFFLINE

and ONLINE, as the dimension increases, the so-called ‘curse of dimensionality’

quickly overtakes the limited amount of improvement achieved with the use of

an optimal bandwidth, so that their performances become increasingly indistin-

guishable from each other (equally bad) with a growing dimension.

2.2. Another performance measurement for ONLINE

Our focus has been the performance of f̃n(x|h̃n) for a given n. Yet, over

the course of which the data stream, the sequence of estimates {f̃n(x|h̃n), n =

1, 2, . . .} is obtained, and any of which when available, could be used as a substi-

tute for the true but unknown f(·) for purposes of statistical inference. It is thus

relevant to examine their collective performance up to the present stage, n = N ,

say. We define the congregated MSE (CMSE) as

CMSE(N,α, c) ≡ 1

N

N∑
n=1

E{|f̃n(x|h̃n)− f(x)|2}, (2.9)
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which is a function of N and constants α and c that specify the sequence of the

index-specific bandwidths {h̃i = ci−α, i = 1, 2, . . .}.

Lemma 3. If (A1) and (A2) hold,

CMSE(N,α, c) =
c4[tr{Hf (x)}]2

4(1− 2α)2(1− 4α)
N−4α +

R2(K)f(x)

cppα(pα+ 1)
Npα−1

+ o(N−4α +Npα−1);

the sum of the first two terms is minimized when

α =
1

4 + p
, c =

{
p(p+ 2)

2(p+ 4)

}1/(4+p)( R2(K)f(x)

[tr{Hf (x)}]2

)1/(4+p)

.

In view of Lemma 2, the sequence of the index-specific bandwidths that

minimizes the MSE of an individual f̃n(x|h̃n), is also the optimal choice for the

congregated MSE (2.9).

2.3. Optimum of ONLINE Parzen-Rosenblatt density estimators

We have been focused on the ONLINE Parzen-Rosenblatt estimator (2.4)

with the weighting sequence βn = 1/n, and the index-specific bandwidths taking

the form of h̃i = ci−α for some constants c and α. In this section, we find out

whether such an ONLINE estimator can be improved if the index-specific band-

widths h̃i and the weighting series βn are allowed to take on more general forms.

The ONLINE estimator (2.5) has a larger bias that cannot be fully compensated

by the reduction in its variance. On one hand, due to the use of index-specific

bandwidths h̃i ∝ i−α, the summands Kh̃i
(Xix) have larger biases than their

counterparts using a ‘universal’ bandwidth hn ∝ n−α. That the optimal choice

for coefficient c in h̃i is smaller than the optimal coefficient for the universal hn
(see (2.7)) is not enough to fully correct the inflation in the bias. We investi-

gate whether the situation would improve if the coefficient in the index-specific

bandwidths is allowed to change with i as well. Here (2.4) with βn = n−1,

or its equivalent (2.5), has an equal weight of n−1 assigned to each summand

Kh̃i
(Xix), i = 1, 2, . . . , n, taking no consideration of the fact that these estimates

behave differently. Hence we look at alternative weighting series βn.

Consider a general formulation of index-specific bandwidths with varying

coefficient, such that

h̃i = c(1− θi)i−α for some c > 0, α > 0, and θi ↓ 0, as i→∞. (2.10)

Examples of such θi include θi = 1− exp(−a i−b) or θi = a(log i)−b, for any given

values of a > 0, b > 0.
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Lemma 4. Under the conditions of Lemma 2, the AMSE of f̃n(x|h̃n) of (2.5)

with varying coefficient bandwidths (2.10) is identical to that of f̃n(x|h̃n) with

index-specific bandwidths h̃i = ci−α.

Having varying coefficients in the index-specific bandwidth h̃i thus does not

improve the asymptotic efficiency of the ONLINE estimator.

For alternative weighting we consider that βn ↓ 0, as n → ∞. For any

positive integers n and N such that n < N , let

wN,n := βn

N∏
k=n+1

(1− βk), SN :=

N∑
n=1

wN,nn
−2α, S̃N :=

N∑
n=1

w2
N,nn

pα.

Lemma 5. For ONLINE estimator f̃N (x|h̃N , βN ) (2.3) with weighting series

{βn} and index-specific bandwidths h̃n = cn−α for some constants c > 0 and

α > 0, we have

AMSE{f̃N (x|h̃N , βN )} =
c4

4
[tr{Hf (x)}]2S2

N + c−pf(x)R2(K)S̃N .

If βn ∝ n−1, we have SN ∝ N−2α and S̃N ∝ Npα−1; if nβn → ∞, we have

SN ∝ N−2α and S̃N/N
pα−1 → ∞; if nβn → 0, we have NaSN → ∞ and

NaS̃N →∞, for any a > 0.

Therefore, an admissible weighting series must be such that βn ∝ n−1. We

find that the AMSE of the ONLINE estimator is minimal with nβn → 1.

Lemma 6. If h̃n = cn−α for some constants α > 0 and c > 0, among the

ONLINE estimators of form (2.3) with weighting series βn ∝ n−1, AMSE is

minimized if and only if nβn → 1.

Thus, as far as the minimization of AMSE is concerned, the ONLINE esti-

mator (2.5) with index-specific bandwidths h̃i = ci−α is optimal. In the following

discussions of the ONLINE adaptation of other nonparametric estimators, we use

the weighting series βn = 1/n.

3. Nonparametric Regression

Suppose IID observations (Yi,Xi) are generated according to Yi = m(Xi) +

εi, i = 1, . . . , n, where Xi ∈ Rp with probability density function f(·), E(εi|Xi) =

0, V ar(εi|Xi) = σ2ε , and m(·) is some unknown function m(·). We are interested

in the estimation of m(·) for any given x in the support of f(·).
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3.1. Local constant estimator

The Nadaraya-Watson (local constant) estimate of m(·) is

m̂nw(x|hn) =

∑n
i=1Khn

(Xix)Yi∑n
i=1Khn

(Xix)
, (3.1)

for some bandwidth hn. This is the ratio of two N-W type of estimate we have

seen in Section 1. Its ONLINE version is

m̃nw(x|α, c) =

∑n
i=1Khi

(Xix)Yi∑n
i=1Khi

(Xix)
, (3.2)

again with index-specific bandwidths hi = ci−α, i = 1, 2 . . . , n, for some constants

c > 0, α > 0. The asymptotic properties of the two estimators closely resemble

what we have seen in the previous section. Write R̃2(K) :=
∫

uu>K2(u) du.

Lemma 7. Suppose (A1) and (A2) hold. If m(·) has bounded third order deriva-

tives, then

AMSE{m̂nw(x|hn)} =
1

4

[
tr{Hm(x)}+

2∇m>(x)∇f(x)

f(x)

]2
h4n +

R̃2(K)σ2ε
nhpnf(x)

,

AMSE{m̃nw(x|α, c)} =
c4

4(1− 2α)2

[
tr{Hm(x)}+

2∇m>(x)∇f(x)

f(x)

]2
n−4α

+
npα−1R̃2(K)σ2ε
(1 + pα)cpf(x)

.

Along the line of the derivations used to obtain (2.6) and (2.7), one finds

that the optimal choice for α is still 1/(p + 4); the ratio between the optimal

bandwidths that minimize the AMSE of the N-W type of estimators (m̂nw(x|hn)

and m̃nw(x|α, c)) is identical to that give in (2.7); and the relative efficiency of

m̃nw(x|α, c) against m̂nw(x|hn) is, as given in (2.8),

AMSE{m̂nw(x|optimal hn)}
AMSE{m̃nw(x|optimal h̃n)}

= 24/(4+p)
(
p+ 2

p+ 4

)(2p+4)/(p+4)

. (3.3)

3.2. Local linear estimator

In the case of a smooth enough m(·), its estimation can also be based on

the local linear approximation of m(·). Consider the minimization of
n∑
i=1

Khn
(Xix){Yi − b>Xin(x)}2, (3.4)

with respect to b ∈ Rp+1, where Xin(x) := [1,X>ix/hn]>. The minimizer m̂n(x),

is an estimate of mn(x) = [m(x), hn∇>m(x)]>. The first element of m̂n(x),
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m̂l(x|hn), is referred to as the local linear estimator of m(x). m̂l(x|hn) has the

same asymptotic variance as the local constant estimate m̂nw(x|hn), but its bias

term admits a much simpler form.

Lemma 8. If conditions of Lemma 7 hold,

E{m̂l(x|hn)} = m(x) +
1

2
h2n[tr{Hm(x)}] +O(h4n),

V ar{m̂l(x|hn)} =
(nhpn)−1R̃2(K)σ2ε

f(x)
+ o{(nhpn)−1}.

The bias of m̂l(x|hn) only depends on the Hessian matrix of m(·) while, for

the N-W estimator m̂nw(x|hn), the bias also depends on the first order derivatives

of both f(·) and m(·) and f−1(·). Thus, the local linear estimator is design-

adaptive (Fan and Gijbels (1996)). We look at whether the ONLINE local linear

estimator is also design-adaptive.

The minimizer of (3.4) has the analytic form

m̂n(x) =

{ n∑
i=1

Khn
(Xix)Xin(x)X>in(x)

}−1 n∑
i=1

Khn
(Xix)Xin(x)Yi

def
= {nSn(x)}−1nSn(x, Y ).

For Sn(x) and Sn(x, Y ), we cab take their ONLINE counterparts as

S̃n(x) =
1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃>in(x), S̃n(x, Y ) =

1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)Yi,

with X̃in(x) = [1,X>ix/h̃i]
> and h̃i = ci−α, as before. Let

m̃n(x) = {S̃n(x)}−1S̃n(x, Y ); (3.5)

the ONLINE local linear estimator, m̃l(x|α, c), is thus given by the first element

of m̃n(x).

Lemma 9. If the conditions of Lemma 7 hold,

Bias{m̃l(x|α, c)} =
c2α2n−2α

(1− 2α)(1− α)2
∇>m(x)∇f(x)

f(x)
+

c2n−2α

2(1− 2α)
tr{Hm(x)}

+O(n−3α), (3.6)

Var{m̃l(x|α, c)} =
R̃2(K)σ2ε

f(x)cp(1 + pα)
npα−1{1 + o(1)}.

Comparing the bias term here with that of the ONLINE local constant esti-

mator m̃nw(x|α, c) given in Lemma 7, one sees that m̃l(x|α, c) is still susceptible

to large bias caused by clustering in the design of X, albeit to a less degree, re-

flected in the coefficient being brought down from 1/{2(1−2α)}, in m̃nw(x|α, c),



KERNEL SMOOTHING FOR BIG DATA 195

to α2/{(1−2α)(1−α)2} in m̃l(x|α, c) with α = 1/(p+4). This does not mean that

m̃l(x|α, c) is categorically less efficient than its OFFLINE counterpart m̂l(x|hn),

because the bias of the former is not necessarily larger than the latter: it not only

depends on the inverse of the density function f(·), but also on other quantities

such as first order derivatives of m(·) and f(·).

4. The Varying Coefficient Regression Model

This model has been extensively studied; see, e.g., Fan and Zhang (1999)

and, more recently, Park et al. (2015) and the references therein. Suppose we

have IID observations (Yi,Xi, Ui), i = 1, 2, . . . generated according to

Yi = g1(Ui)xi1 + · · ·+ gq(Ui)xiq + εi,

with Xi = (xi1, . . . , xiq)
>, E(εi|Xi, Ui) = 0, V ar(εi|Xi, Ui) = σ2 and g(·), k =

1, . . . , q, are unknown functions. To include an intercept term, we set xi1 ≡ 1.

Our interest is in the estimation of g(u0) = [g1(u0), . . . , gq(u0)]
> for any given

u0 in the support of f(·), the density function of Ui. For any given u ∈ R, let

ν(u) = E(XiX
>
i |Ui = u) and write ν(u)fU (u) as (ν · f)(u). Suppose both ν(·)

and f(·) have bounded third order derivatives.

4.1. The N-W estimator

Write Ui0 for Ui − u0. Consider the minimization of
n∑
i=1

(Yi −X>i g)2Khn
(Ui0)

with respect to vector g ∈ Rq. The minimum is achieved at

ĝnw(u0|hn) :=

{ n∑
i=1

Khn
(Ui0)XiXi

}−1 n∑
i=1

Khn
(Ui0)XiYi. (4.1)

The ONLINE version of (4.1) is

g̃nw(u0|c) :=

{ n∑
i=1

Kh̃i
(Ui0)XiX

>
i

}−1 n∑
i=1

Kh̃i
(Ui0)XiYi,

where h̃i = ci−1/5, i = 1, 2, . . . , for some constant c > 0. Write

g(1)(u0) = {g(1)1 (u0), . . . , g
(1)
q (u0)}>, g(2)(u0) = {g(2)1 (u0), . . . , g

(2)
q (u0)}>.

Lemma 10. If ν(u0) is positive definite, the gk(·), k = 1, . . . , q, have bounded

third order derivatives, hn ∝ n−1/5, and h̃i = ci−1/5, i ≥ 1,
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ĝnw(u0|hn) = g(u0) + h2nB(u0) + {n(ν · f)(u0)}−1
n∑
i=1

Khn
(Ui0)Xiεi

+op(n
−1/2), (4.2)

g̃nw(u0|c) = g(u0) +
5c2

3
n−2/5B(u0) + {n(ν · f)(u0)}−1

n∑
i=1

Kh̃i
(Ui0)Xiεi

+op(n
−1/2), (4.3)

where B(u0) = {(ν · f)(u0)}−1{(ν · f)(1)(u0)}g(1)(u0) + 1/2g(2)(u0).

For the vector-valued estimate ĝnw(u0), we define its MSE as E‖ĝnw(u0)−
g(u0)‖2, where ‖ · ‖ stands for the Euclidean norm. Based on Lemma 10,

AMSE(ĝnw(u0|hn)) = h4n‖B(u0)‖2 + (nhn)−1σ2tr
[
{(ν · f)(u0)}−1

]
,

AMSE(g̃nw(u0|c)) =
25c4

9
n−4/5‖B(u0)‖2 +

5σ2

6c
n−4/5tr

[
{(ν · f)(u0)}−1

]
.

The relative efficiency of these two estimators, when evaluated for their respective

optimal bandwidths are the same as those given in (2.8) with p = 1. While U

is one dimensional, here general results also hold for when U is p-dimensional,

with the ratio of their respective optimal bandwidths as given in (2.7) and the

relative efficiency of the two estimators given by (2.8),

AMSE{ĝnw(u|optimal hn)}
AMSE{g̃nw(u|optimal h̃n)}

= 24/(4+p)
(
p+ 2

p+ 4

)(2p+4)/(p+4)

. (4.4)

4.2. The local linear estimator

Write Gn(u0) = {g1(u0), hng(1)1 (u0), . . . , gq(u0), hng
(1)
q (u0)}>, so

gk(Ui) = gk(u0) + g
(1)
k (u0)Ui0 +

1

2
g
(2)
k (u0)U

2
i0 +O(|Ui0|3), k = 1, . . . , q.

Take Xn,i(u0) = Xi ⊗ [1, Ui0/hn]>, where ⊗ stands for the Kronecker product.

Then the local linear estimate of Gn(u0) is obtained via the minimization of the

function
n∑
i=1

(Yi −Xn,i(u0)
>g)2Khn

(Ui0) (4.5)

with respect to g ∈ R2q. It is realized at Ĝn(u0) ≡ Σ−1n Sn, where

Sn = n−1
n∑
i=1

Khn
(Ui0)YiXn,i(u0); Σn = n−1

n∑
i=1

Khn
(Ui0)Xn,i(u0)X

>
n,i(u0).

The local linear estimate of g(u0|hn) is ĝl(u0) := Iq,2qĜn(u0), where Iq,2q =

Iq ⊗ [1, 0].
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Lemma 11. If the conditions in Lemma 10 hold,

ĝl(u0|hn) = g(u0) +
1

2
h2ng

(2)(u0) + {(ν · f)(u0)}−1
1

n

n∑
i=1

Khn
(Ui0)Xiεi+Op(n

−1/2).

(4.6)

Comparing this with the local constant estimator (4.2), we can see that the

two share the same stochastic error term, but the local linear estimator is again

‘design-adaptive’: there is no presence of f−1(·) in its bias term.

For the ONLINE adaptation of ĝl(u0|hn), write X̃n,i(u0) = Xi⊗ [1, Ui0/h̃i]
>,

with h̃i = c i−1/5, i = 1, 2, . . .. The ONLINE version of Ĝn(u0) is given by

G̃n(u0|c) =

{ n∑
i=1

Kh̃i
(Ui0)X̃n,i(u0)X̃

>
n,i(u0)

}−1 n∑
i=1

Kh̃i
(Ui0)X̃n,i(u0)Yi. (4.7)

Let µ4(K) be the fourth moment of K(·).

Lemma 12. If the assumptions of Lemma 10 hold, then

G̃n(u0|c) = g(u0)⊗

[
1

0

]
+

5c

4
g(1)(u0)⊗

[
0

1

]
+

5c2

6
n−2/5g(2)(u0)⊗

[
1

0

]

+
5c2

48
n−2/5

[
{(ν · f)(u0)}−1{(ν · f)(1)(u0)}g(1)(u0)

]
⊗

[
1

0

]
(4.8)

+
5c3

4
n−3/5

[
{(ν · f)(u0)}−1{(ν · f)(1)(u0)}g(2)(u0)

]
⊗

[
0

µ4(K)

]

+
1

n

n∑
i=1

Kh̃i
(Ui0)

[
{(ν · f)(u0)}−1Xi

]
⊗ [1,

Ui0

h̃i
]>εi + op(n

−1/2).

Apparently, for the estimate of the gradient vector to be asymptotically unbi-

ased, it is necessary that c = 4/5. Yet, as far as the functions g(u0) are concerned,

their estimate, g̃(u0) := Iq,2qG̃n(u0), is indeed asymptotically unbiased, with an

asymptotic variance identical to that of g̃nw(u0|c), the ONLINE local constant

estimator. The asymptotic bias of g̃(u0) is two terms:

5c2

48
n−2/5{(ν · f)(u0)}−1{(ν · f)(1)(u0)}g(1)(u0) +

5c2

6
n−2/5g(2)(u0).

Again, the local linear ONLINE estimator is not fully design-adaptive; it only

manages to limit the extent to which its bias is affected by the design density

f(·) of X.
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5. Simulation Study

In this section, we present numerical results regarding the efficiency of some

ONLINE estimators against their OFFLINE counterparts. With this, there is

the fact that the computation in the case of OFFLINE is time consuming, while

that for ONLINE can be realized almost real-time.

The first example concerns the estimation of probability density function

f(x) =
0.7

(2πσ21)p/2
exp

{
−
∑p

i=1(xi − µ1)2

2σ21

}
+

0.3

(2πσ22)p/2
exp

{
−
∑p

i=1(xi − µ2)2

2σ22

}
,

where x = (x1, . . . , xp)
>, µ1 = 1.5, µ2 = −1.5, σ21 = σ22 = p. Random samples of

size n between 103 to 109 were drawn from the distribution. As this (normal)

density function varies greatly from location to location, the problem is more

pronounced if density functions (and their estimators) of different dimensions

(p) are to be compared with each other. To take this fact into account, for any

given estimate f̂(·) we define its standardized mean squared error (MSE) as

sMSE =
1

#S

∑
(s1,...,sp)

{f̂(s1, . . . , sp)− f(s1, . . . , sp)}2∑
(s1,...,sp)∈S{f(s1, . . . , sp)}2

,

where the summation is over all points in Rp with coordinates (s1, . . . , sp), such

that sk ∈ S = {−5 + i/10 : i = 1, . . . , 100}. The empirical relative efficiency of

ONLINE against OFFLINE is defined by the ratio of the estimation errors of the

latter against the former. In our calculation, the bandwidths were chosen based

on (2.7), such that

hn = cn−1/(p+4), h̃n = c̃n−1/(p+4) (5.1)

with

c̃ = c

{
p+ 2

2(p+ 4)

}1/(p+1)

and c set as in (2.6), the optimal choice for the OFFLINE estimator. This should

work to the advantage of the OFFLINE estimator. Based on 200 replications, the

average of sMASE of the estimators and relative efficiency are listed in Table 1

and Table 2, respectively. For ease of reading, 10 times of square-root of sMAVE

is reported in the table. The results basically support our conclusions as shown

in Figure 1.

Next, we considered the varying coefficient model

y = g0(U) + g1(U)X + ε,

where U ∼ Uniform(0, 1), X ∼ N(0, 1) and independent of U , g0(u) = sin(2πu),
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Table 1. Average sMSE1/2 × 10 of estimators of density functions and MSE1/2 × 10
for the varying coefficient models based on 200 replications.

sample size
function method 103 104 105 106 107 108 109

f(x), p = 1
OFFLINE 0.7619 0.1225 0.1228 0.0497 0.0203 0.0081 0.0032
ONLINE 0.7788 0.1262 0.1264 0.0513 0.0210 0.0084 0.0033

f(x), p = 2
OFFLINE 1.3695 0.3088 0.3025 0.1482 0.0702 0.0321 0.0153
ONLINE 1.3919 0.3200 0.3141 0.1531 0.0729 0.0333 0.0159

f(x), p = 4
OFFLINE 3.1965 1.1961 1.2123 0.6886 0.4052 0.2334 0.1326
ONLINE 3.2348 1.2296 1.2425 0.7136 0.4230 0.2436 0.1383

f(x), p = 10
OFFLINE 7.9315 5.8123 5.8227 4.7199 3.7517 2.9093 2.2187
ONLINE 7.9702 5.8840 5.9008 4.7928 3.8270 2.9744 2.2729

f(x), p = 20
ONLINE 9.9223 9.7139 0.0097 0.0095 0.0092 0.0088 0.0084

OFFLINE 9.9249 9.7233 0.0097 0.0095 0.0092 0.0089 0.0084

g0(U)
OFFLINE 1.3129 0.4527 0.1557 0.1313 0.0922 0.0512 0.0307
ONLINE 1.3858 0.4711 0.1594 0.1339 0.0946 0.0526 0.0315

g1(U)
OFFLINE 1.1815 0.4752 0.2081 0.0857 0.0431 0.0186 0.0080
ONLINE 1.3612 0.5174 0.2240 0.0903 0.0453 0.0195 0.0084

Table 2. Empirical relative efficiency of ONLINE estimators against OFFLINE estima-
tors.

sample size
function 103 104 105 106 107 108 109

f(x), p = 1 0.9570 0.9426 0.9429 0.9384 0.9384 0.9435 0.9514
f(x), p = 2 0.9681 0.9311 0.9271 0.9370 0.9277 0.9269 0.9269
f(x), p = 4 0.9765 0.9462 0.9519 0.9312 0.9176 0.9178 0.9187
f(x), p = 10 0.9903 0.9758 0.9737 0.9698 0.9610 0.9567 0.9528
f(x), p = 20 0.9995 0.9981 0.9982 0.9970 0.9951 0.9927 0.9903

g0(U) 0.8976 0.9234 0.9532 0.9622 0.9500 0.9478 0.9512
g1(U) 0.7534 0.8437 0.8632 0.9012 0.9043 0.9101 0.9078

and g1(u) = 4(u− 0.5)2. For any estimate ĝk(·), its estimation error is

MSE =
1

11

∑
U=0,0.1,...,1

{gk(U)− ĝk(U)}2, k = 0, 1;

and the empirical relative efficiency of ONLINE against OFFLINE is given by

the ratio of their respective estimator errors. Bandwidths were as specified in the

previous example. Based on 200 replications, the average MSE of the estimators

and the relative efficiency against OFFLINE N-W estimator are tabulated in

Tables 1 and 2. The results are largely in line with our theoretical conclusion.

We also find that when the local linear estimator is used, the ONLINE estimator

can indeed be more efficient in some cases than the OFFLINE.
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Supplementary Materials

Proofs of results in this paper are included in the online supplemental ma-

terials.
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Kristan, M., Leonardis, A. and Skočaj, D. (2011). Multivariate online kernel density estimation

with Gaussian kernels. Pattern Recognition 44, 2630-2642.
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