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Abstract: We deeply mourn the loss of Peter Hall. Peter was the premier math-

ematical statistician of his era. His work illuminated many aspects of statistical

thought. While his body of work on bootstrap and nonparametric smoothing is

widely known and appreciated, less well known is his work in many other areas. In

this article, we review Peter’s contribution to empirical likelihood (EL). Peter has

done fundamental work on studying the coverage accuracy of confidence regions

constructed with EL.
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1. Introduction

Empirical likelihood (EL) amounts to computing the profile likelihood of a

general multinomial distribution which has its atoms at data points. A version

of this technique dates back at least to Thomas and Grunkemeier (1975), in the

context of estimating survival probabilities. Since introduced in the seminal pa-

pers of Owen (1988, 1990), EL has received broad attention from various areas,

and a rich literature has been developed on approaches constructed based on it.

We quote a part of Peter’s review from Prof. Owen’s website that “It is a unique

practical tool, and it enjoys important, and growing, connections to many areas

of statistics, from the Kaplan-Meier estimator to the bootstrap and beyond.”

EL is nonparametric in the sense that less restrictive distributional assumptions

are required. Also, EL is similar to the bootstrap, another nonparametric area

that Peter has influenced, in many aspects as a nonparametric device for sta-

tistical inferences, including hypothesis testing and confidence set estimation.

Without stringent distributional assumptions, EL is a robust counterpart of the

conventional parametric likelihood yet sharing two of its main merits – Wilks’

phenomenon and Bartlett correction.

https://doi.org/10.5705/ss.202017.0059
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Hall and La Scala (1990) provided a first review of the EL methodology and

algorithms, elaborating on four main advantages of EL over the bootstrap.

(i) Confidence regions constructed by EL are data driven without any explicit

or implicit requirement on their shape. Thus the confidence regions are

oriented by observed data, and tend to be concentrated in places where the

empirical density of the parameter estimator is greatest.

(ii) EL regions are Bartlett correctable, so the order of the coverage error can

be reduced from n−1 to n−2 with a simple correction for the mean EL ratio

statistics, where n is the sample size.

(iii) No estimation of scale or skewness is required when applying EL for sta-

tistical inferences. Indeed, thanks to its self-Studentized property, EL does

not require construction of a pivotal statistic.

(iv) EL regions are range preserving and transformation respecting: the EL

region for the function g(θ) of parameter θ equals the set obtained by

applying g on the EL region for θ.

The monograph of Owen (2001) supplies a comprehensive text on methodological,

theoretical, and computational aspects of EL. Later, Chen and Van Keilegom

(2009) reviewed EL in the framework of regressions covering various parametric,

nonparametric, and semiparametric models. Recently, the monograph of Zhou

(2016) elaborates on EL and survival analysis.

As one of the most prominent researchers in nonparametric statistics, Pe-

ter’s contribution to EL is highly influential, especially as to the theoretical and

technical aspects that are fundamental for studying the properties of EL. For

example, the Edgeworth expansion-based analysis in DiCiccio, Hall and Romano

(1991) pioneered the studies of the Bartlett correctibility of EL. A closer exam-

ination of the details reveals striking similarities between analyses in EL and

the bootstrap, especially when studying the coverage accuracies. Since the early

’90s, the literature studying EL has grown rapidly with applications in numerous

areas. In this article, we review Peter’s contribution to EL in Section 2, and

some discussion of the current challenges and development of EL in Section 3.

Our personal reminiscences are in Section 4.

2. Peter’s Contributions to EL

Peter published six papers on EL in the ’90s, three in The Annals of Statis-

tics, and the others in Biometrika, International Statistical Review, and Journal
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of Computational and Graphical Statistics. The main contributions of Peter’s

these papers are reviewed here.

2.1. Comparison between parametric likelihood and EL

Peter’s first paper on EL was DiCiccio, Hall and Romano (1989) in Biometrika.

They comprehensibly examined the difference between the parametric likelihood

and EL functions, or surfaces in the context that the functional of interest is a

smooth function of some mean vector. They found that, though the two surfaces

need not agree with each other in the first order, they are quite close when data

follow some exponential family model.

Let X1, . . . ,Xn be a sample of d-dimensional random vectors with µ0 =

E(Xi) = 0 and Var(Xi) = Id. For any µ ∈ Rd, the EL for µ is defined as

Ln(µ) = sup{
∏n
i=1wi : wi ≥ 0,

∑n
i=1wi = 1,

∑n
i=1wiXi = µ}. Write Xi =

(Xi,1, . . . , Xi,d)
T and take X̄n = n−1

∑n
i=1 Xi = (X̄n,1, . . . , X̄n,d)

T. Denote by

| · |2 the L2-norm of a vector. For any µ = (µ1, . . . , µd)
T such that |µ|2 ≤ Cn−1/2

for some arbitrarily large but fixed constant C, if E(|Xi|62) < ∞, they showed

that the empirical log-likelihood ratio `E(µ) = −2 log{Ln(µ)/Ln(X̄n)} can be

expressed as

`E(µ) = n(X̄n − µ)T(X̄n − µ)

+
2n

3

d∑
j,k,m=1

αjkm(X̄n,j − µj)(X̄n,k − µk)(X̄n,m − µm)

− n
d∑

j,k=1

∆jk(X̄n,j − µj)(X̄n,k − µk) +Rn,1,

where αjkm = E(Xi,jXi,kXi,k), ∆jk = n−1
∑n

i=1Xi,jXi,k − I(j = k), and Rn,1 is

O{n−1(log log n)2} almost surely and O(n−1) in probability. As for the paramet-

ric likelihood function, they considered Xi in the exponential family. Suppose

that an s-dimensional random vector has a density function fλ(y) = exp{λTU(y)

−ψ(λ)}f0(y), where U(·) is an d-dimensional function of s variables, λ is an un-

known r-dimensional parameter, and ψ(λ) = log[
∫

exp{λTU(y)}f0(y)dy]. Put

X = U(Y) with Eλ0
(X) = 0 and Varλ0

(X) = Ir, where λ0 is the true value of

λ. Given λ, let µ = ∇λψ(λ). Then the parametric log-likelihood ratio `P (µ)

can be expressed as

`P (µ) = n(X̄n − µ)T(X̄n − µ)
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+
2n

3

d∑
j,k,m=1

αjkm(X̄n,j − µj)(X̄n,k − µk)(X̄n,m − µm)

− n
d∑

j,k,m=1

αjkm(X̄n,j − µj)(X̄n,k − µk)X̄n,m +Rn,2,

where Rn,2 is O{n−1(log log n)2} almost surely and is O(n−1) in probability.

Indeed,

`E(µ)− `P (µ) = n

r∑
j,k,m=1

αjkm(X̄n,j − µj)(X̄n,k − µk)X̄n,m

− n
r∑

j,k=1

∆jk(X̄n,j − µj)(X̄n,k − µk) +Rn,

where Rn is O{n−1(log log n)2} almost surely and is O(n−1) in probability. This

result implies that `E(µ) and `P (µ) differ in a term of precise order n−1/2. Never-

theless, based on such expressions of `E(µ)− `P (µ) and applying the Edgeworth

expansion, one can show that the distributions of `E(µ) and `P (µ) differ only

up to the order O(n−1), P{`E(µ) ≤ z} − P{`P (µ) ≤ z} = O(n−1) for any given

z > 0. This investigation deepens the understanding of EL, aside from the fact

that `E(µ) is asymptotically χ2 distributed.

2.2. EL is Bartlett-correctable

Peter’s second work on EL should be DiCiccio, Hall and Romano (1991) in

The Annals of Statistics, although he had papers published in The Annals of

Statistics and International Statistical Review before it. This is an influential

paper on the coverage accuracy of the EL ratios. In the context that the func-

tional of interest is a smooth function of vector means, their results substantially

strengthen the EL as a tool for constructing confidence regions.

Let X1, . . . ,Xn denote a sample from an unknown d-variate distribution F0

having mean µ0 = E(Xi) and nonsingular covariance matrix Σ0 = Var(Xi).

The parameter of interest is θ0 = K(µ0) for some given q-dimensional function

K(·) = {K1(·), . . . ,Kq(·)}T with q ≤ d. In such a context, the EL for θ is given

by Ln(θ) = sup{
∏n
i=1wi : wi ≥ 0,

∑n
i=1wi = 1, K(

∑n
i=1wiXi) = θ} and

the empirical log-likelihood function `E(θ) = −2 log[Ln(θ)/Ln{K(X̄n)}]. The

Wilks’ theorem says that `E(θ0)→d χ
2
q , as n→∞. More precisely, P{`E(θ0) ≤

z} = P(χ2
q ≤ z) +O(n−1) for any fixed z > 0. DiCiccio, Hall and Romano (1991)

showed that EL admits the Bartlett correction
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P

[
`E(θ0)

{
E(nRTR)

q

}−1
≤ z

]
= P(χ2

q ≤ z) +O(n−2),

where R is the q-dimensional vector in Section 4 of DiCiccio, Hall and Romano

(1991) such that `E(θ0) = nRTR +Op(n
−3/2). Moreover, the ratio {E(nRTR)/

q}−1 has a simple expansion, {E(nRTR)/q}−1 = 1− an−1 +O(n−2), where a is

a fixed constant. Replacing a by an estimate â, it holds that

P
[
`E(θ0)(1− ân−1) ≤ z

]
= P(χ2

q ≤ z) +O(n−2),

for any fixed z > 0. The estimator â is specified in Section 2.4 of DiCiccio, Hall

and Romano (1991). This is a remarkable advantage of EL: a simple correction for

the mean of the empirical log-likelihood ratio reduces coverage error from order

n−1 to order n−2. It is known that the bootstrap is not Bartlett-correctable, and

so the coverage accuracy of bootstrap methods cannot be enhanced by a simple

correction. Usually, the bootstrap can only be corrected by resorting to a more

computer-intensive methods such as bootstrap iteration, e.g. Hall (1986) and

Beran (1987). In one of Peter’s latest papers, Chang and Hall (2015) showed

that a single double-bootstrap resampling is enough for achieving bias reduction

in estimating such defined θ0, but not so for converge accuracy improvement of

the confidence regions of θ0. The Bartlett correction of EL has been examined

in more general model settings; see, for example, Chen and Cui (2006, 2007).

2.3. Pseudo-likelihood theory for EL

Hall (1990) studied the confidence regions constructed by EL in a pseudo-

likelihood framework for the same parameter θ0 defined as that in Section 2.2.

Hall (1990) showed that: (i) upon subject to a location parameter, EL draws

second-order correct contours for those of a pseudo-likelihood; (ii) EL regions

may be adjusted for location so as to render them second-order correct; (iii)

location-adjusted EL regions are Bartlett-correctable, in the sense that a single

empirical scale correction applied to location-adjusted EL reduces coverage error

by an order of magnitude. However, the location adjustment alters the form

of the Bartlett correction. Hall (1990) also pointed out the connection and dif-

ference between the EL and bootstrap likelihood (Hall (1987)) for constructing

confidence regions.

Following the Wilks’ theorem, the confidence region for θ0 based on EL is

given by RE = {θ ∈ Rq : `E(θ) ≤ χ2
q,1−α} where χ2

q,1−α is the (1−α)-quantile of

χ2
q distribution. Since X̄n is the maximum likelihood estimator of µ0, then θ̂n =

K(X̄n) states the maximum likelihood estimator of θ0. Let Q̂n be an estimator
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of the asymptotic variance matrix Q of n1/2θ̂n, and put η̂n = Q̂
−1/2
n (θ̂n − θ0).

If the density f of η̂n were known, then the confidence region for θ0 can be

selected as the pseudo-likelihood region {θ ∈ Rq : f{Q̂−1/2n (θ̂n − θ0)} ≥ ν} for

ν satisfying
∫
{y∈Rq:f(y)≥v} f(y)dy = 1 − α. In practice, the form of f is usually

unknown, so that the assumption is often made that f is approximately equal to

the multivariate standard normal density function φ. In this case, the pseudo-

likelihood-based confidence region is RP,1 = {θ ∈ Rq : |Q̂−1/2n (θ̂n−θ0)|2 ≤ δ} for

δ satisfying
∫
{y∈Rq:|y|2≤δ} φ(y)dy = 1−α. This approach fails to take into account

the skewness, kurtosis, and other distributional information of Q̂
−1/2
n (θ̂n−θ) and

produces elliptical confidence regions. Not surprisingly, the contours of RP,1 and

RE do not agree with each other in the first-order. Hall (1990) proved that EL

draws contours that are second-order correct for pseudo-likelihood contours based

on ξ̂n+n−1ψ, instead of η̂n, where ξ̂n = (Q1/2Q̂−1n Q1/2)1/2Q−1/2(θ̂n−θ0) and ψ

is a fixed vector-valued parameter. The exact form of ψ is at (3.15) of Hall (1990).

Here “second-order correct” means that the distance between contours at the

same probability level drawn by the two different methods are n−3/2 apart, and

they agree with each other up to the order n−1. Since ψ is usually nonzero, the

contours based on the ξ̂n of the pseudo-likelihood are not second-order correct.

Nevertheless, the contours are readily location-adjustable by re-centering. Let

RA = RE+n−1Q̂
1/2
n ψ̂ where ψ̂ is an estimate of ψ satisfying ψ̂ = ψ+Op(n

−1/2).

Denote by h the density of n1/2ξ̂n and let Ĥ = (Q1/2Q̂−1n Q1/2)1/2Q−1/2. The

likelihood-based confidence region for θ0, founded on the distribution of ξ̂n, is

RP,2 = {θ ∈ Rq : −2 log[(2π)q/2h{n1/2Ĥ(θ̂n−θ)}] ≤ χ2
q,1−α}. Hall (1990) showed

that the boundary of RA is Op(n
−3/2) away from that of RP,2. In addition, Hall

(1990) proved that the location-adjusted confidence region RA is also Bartlett-

correctable in the sense thatRAB = {θ+n−1/2Q̂
1/2
n ψ̂ : `E(θ) ≤ (1+b̂n−1)χ2

q,1−α}
has coverage probability 1− α+O(n−2) for some b̂.

2.4. Smoothed EL confidence intervals for quantiles

Peter’s papers reviewed in Sections 2.1–2.3 investigated the case where the

statistic of interest is a smooth function of means. Chen and Hall (1993) stud-

ied the performance of EL in constructing confidence intervals for quantiles, a

more sophisticated case. As pointed out by Owen (1988), when EL was used to

construct confidence intervals for a population quantile it reproduced precisely

the so-called sign-test or binomial-method interval. A main disadvantage of the

sign-test method is that the coverage error of the confidence intervals is usu-
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ally O(n−1/2) and it is hard to improve. The main contribution of Chen and

Hall (1993) is that, by replacing the standard EL by a smoothed version, the

coverage errors of the corresponding confidence intervals for quantiles reduce to

O(n−1), and that it might be Bartlett-corrected to produce confidence intervals

with coverage errors of only O(n−2).

Let X1, . . . , Xn denote a random sample from some distribution F . For a

given β ∈ (0, 1), assume the βth quantile, θ0 = F−1(β), is uniquely defined,

and interest is in constructing its confidence intervals. Let K(·) denote an mth-

order kernel for some m ≥ 2, and take G(x) =
∫
y<xK(y)dy. Set Gh(x) =

G(x/h) for some bandwidth h > 0. For each θ ∈ (0, 1), define the EL for θ as

Ln(θ) = sup{
∏n
i=1wi : wi ≥ 0,

∑n
i=1wi = 1,

∑n
i=1wiGh(θ − Xi) = β}. The

associated empirical log-likelihood is `E(θ) = −2 log{Ln(θ)} − 2n log n. Chen

and Hall (1993) showed that the Wilks’ theorem still holds for `E(θ0) in the

sense `E(θ0) →d χ
2
1 as n → ∞. The confidence interval for θ0 is I1 = {θ ∈

R : `E(θ) ≤ χ2
1,1−α}. With some regularity conditions and suitable selection

of the bandwidth h, Theorem 3.2 of Chen and Hall (1993) indicates that the

coverage error of I1 is of order n−1. As for the Bartlett correction, take I2 =

{θ ∈ R : `E(θ) ≤ (1 + ĉn−1)χ2
1,1−α}, where ĉ = κ̂−22 κ̂4/2 − κ̂−32 κ̂23/3 with κ̂j =

n−1
∑n

i=1{Gh(θ̂n − Xi) − β}j and θ̂n the usual estimate of θ0. With suitable

selection of the bandwidth h, the coverage error of I2 is of order n−2; see Theorem

4.1 of Chen and Hall (1993) for details.

2.5. EL confidence bands in density estimation

Hall and Owen (1993) was dedicated to constructing confidence bands in

problems of nonparametric density estimation. As they mention, using the boot-

strap to construct confidence bands from a large collection of simulated curve-

estimates has several problems: (i) ambiguity due to many “95% confidence

bands” containing, as envelopes, precisely 95% of the simulated estimates; (ii)

the choice of point-wise confidence band with simultaneous 95% coverage proba-

bility could be practically problematic and/or computationally demanding; and

(iii) resulting bands might not be smooth when connecting resampled curves.

They illustrated how to apply EL in constructing the confidence bands for den-

sity functions so that these problems are avoided.

Consider a sample X1, . . . , Xn from some population with density function

f0. A kernel density estimate of f0 is given by f̂(x) = (nh)−1
∑n

i=1Kh(x −
Xi), where K(·) is a kernel function and Kh(x) = K(x/h). Suppose we are

interested in bands over the interval [0, 1]. Let Ki(x) = h−1Kh(x − Xi) for
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i = 1, . . . , n and x ∈ [0, 1]. Take µ0(x) = E{Ki(x)} for any x ∈ [0, 1]. For

a function f1 on [0, 1] satisfying min1≤i≤nKi(x) ≤ f1(x) ≤ max1≤i≤nKi(x) for

any x ∈ [0, 1], the empirical log-likelihood is given by `E(f1) = `E(f1)(x) =

−2 log{Ln(f1)/Ln(f̂)} = 2
∑n

i=1 log[1 + λ(x){Ki(x)− f1(x)}], where λ(x) is the

Lagrange multiplier satisfying
∑n

i=1{Ki(x)−f1(x)}[1+λ(x){Ki(x)−f1(x)}]−1 =

0. Similarly, let s(f1)(x) = sgn{f̂(x)− f1(x)}{`E(f1)(x)}1/2. Given the numbers

c, c1, c2 > 0, define the classes F1(c) = {f : `(f)(x) ≤ c for any x ∈ [0, 1]} and

F2(c1, c2) = {f : c1 ≤ s(f)(x) ≤ c2 for any x ∈ [0, 1]}. Hall and Owen (1993)

took these classes, with appropriate values of c, or c1 and c2, as confidence sets

for µ0 over [0, 1]. Hall and Owen (1993) suggested using bootstrap calibration

to determine c, c1, and c2. Thus, one draws a resample X ∗ = {X∗1 , . . . , X∗n}
from the sample X = {X1, . . . , Xn}, using random sampling with replacement.

The bootstrap empirical log likelihood is constructed as `∗E(f1) = `∗E(f1)(x) =

2
∑n

i=1 log[1 + λ∗(x){K∗i (x) − f1(x)}], with K∗i (x) = h−1Kh(x −X∗i ) and λ∗(x)

satisfying
∑n

i=1{K∗i (x)− f1(x)}[1 + λ∗(x){K∗i (x)− f1(x)}]−1 = 0. Analogously,

s∗(f1) = sgn(f̂∗ − f1){`∗E(f1)}1/2 where f̂∗ = (nh)−1
∑n

i=1K
∗
i . Then one can

calculate ĉ, ĉ1 and ĉ2 by ensuring P{`∗E(f̂)(x) ≤ ĉ for any x ∈ [0, 1] |X} = 1− α,

and P{ĉ1 ≤ s∗(f̂)(x) ≤ ĉ2 for any x ∈ [0, 1] |X} = 1 − α. Since f0 = µ0 + bias,

with the standard approach in nonparametric density estimation one can obtain

the estimate, denoted by β̂, for the bias term f0 − µ0. Then F1(ĉ) + β̂ and

F2(ĉ1, ĉ2) + β̂ provide confidence bands for f0.

3. Current Challenges for EL

Peter did fundamental work on investigating the coverage accuracy of con-

fidence regions constructed with EL, deepening the understanding of the prop-

erties of EL, and broadening its scope as an important nonparametric device for

statistical inference. In the current paradigm of problems with increasing di-

mensionality and complexity, EL as a computer-intensive nonparametric device

is facing the challenges of two questions – how do the properties of EL for statis-

tical inferences translate to these new problems, and how can the computational

cost be handled? The same challenges apply to such other nonparametric devices

as the bootstrap.

Coverage accuracy, both theoretically and practically, is crucial. Increas-

ing data dimensionality is a very challenging problem for EL. As pointed out

in Tsao (2004), when the data dimensionality is moderately large but fixed, the

empirical log-likelihood ratio has a non-zero probability to be infinity, so that
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under-coverage occurs especially when the sample size is small. Tsao and Wu

(2013, 2014) proposed extended EL to improve the coverage accuracy, first order

equivalent to the conventional EL, and second order accurate with the Bartlett

correction. Related to the under-coverage and the so-called empty set prob-

lem (no solution exists for the constrained optimization in EL), Chen, Variyath

and Abraham (2008) and Emerson and Owen (2009) proposed adjustments that

added extra data points so that a valid solution always exists.

It is more challenging when considering EL with high-dimensional data in

the sense that the dimensionality of the parameter is allowed to diverge with the

sample size. Hjort, McKeague and Van Keilegom (2009) and Chen, Peng and

Qin (2009) studied the properties of EL, allowing the number of parameters to

diverge at some polynomial rate with the sample size. Their results show that,

asymptotically, the limiting distribution of the empirical log-likelihood ratio can

still be characterized by the χ2 distribution in the sense that, with appropriate

scaling and normalization, the empirical log-likelihood ratio converges in distri-

bution to the standard normal distribution when the number of parameters is

diverging.

Tang and Leng (2010) and Leng and Tang (2012) introduced penalty func-

tions on the magnitudes of the parameters with the purpose of producing sparse

model estimations. Their frameworks also consider that the number of param-

eters is allowed to diverge with the sample size at some polynomial rate of the

sample size. Lahiri and Mukhopadhyay (2012) considered a different formulation

EL with penalization that can accommodate higher dimensional model parame-

ters that can exceed the sample size. Their definition of EL is different and the

penalty is introduced as a deviation function of the parameter defined. Chang,

Chen and Chen (2015) considered the impact of dependence on EL and penalized

EL with diverging numbers of model parameters, and demonstrated the validity

and properties of EL in an extended framework including time series and other

dependent data.

Chang, Tang and Wu (2013, 2016) considered EL as a tool for sure variable

screening in the sense of Fan and Lv (2008) when dealing with high-dimensional

data. By treating variables marginally using EL, they showed that the empirical

log-likelihood ratio evaluated at zeros are informative for detecting contributing

variables in linear models, generalized linear models, and a class of nonparametric

and semiparametric models, including single-index models and varying-coefficient

models.

Shi (2016) studied a formulation of EL with additional constraints from the
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magnitudes of the conditions in EL. The target problem of Shi (2016) is inferences

for a fixed-dimensional model parameter with many moment conditions that may

grow exponentially with sample size. Results there show that EL can accommo-

date high-dimensional moment conditions by relaxing the equality constraints

to inequality constraints. Targeting the estimation of a sparse high-dimensional

model parameter whose size can grow exponentially with the sample size, Chang,

Tang and Wu (2017a) considered a new formulation of penalized EL regulariz-

ing both the magnitudes of the parameter and the Lagrange multiplier induced

by EL. Chang, Tang and Wu (2017b) studied statistical inferences problems,

including confidence set estimation and specification testing in such settings.

Though some progress has been made for EL to meet the current challenges,

more problems remain. For example, there is not yet a counterpart in high-

dimensional cases of EL being self studentized so that the empirical log-likelihood

ratio can be conveniently applied for statistical inferences with good coverage

properties, as established by Peter’ work in conventional cases. Additionally, it

is also important to explore how to efficiently conduct optimizations with high-

dimensional model parameters and moment conditions.

4. Personal Reminisces

We first met Peter when we were PhD students in Statistics. As an experi-

ence shared by many others, and maybe even as a tradition, we were immediately

left with the impression that Peter was a friendly and easy going gentlemen, sup-

portive, helpful, and exemplary to younger generations like ours. In the years

after, we saw that familiar back of the figure with his head down and glasses off,

working with his laptop on a table in the middle of a crowded conference hall,

no difference from when he was in a quiet office on a university campus. We

understood what was behind the production of those prominent works, and also

why our email requests were almost immediately attended, no matter where he

was, no matter the time.

We greatly benefited from Peter’s wisdom. Peter’s contribution to EL has

had direct influence on our work in the area. Peter’s investigations and analyses

always shed light on the idea, direction, and path for solving problems. Peter’s

advice and influence, from our direct contact with him, and from the indirect

transferred from our advisers and colleagues, now becomes our most precious

fortune. Peter, we miss you!

Jinyuan Chang would like to take this opportunity to appreciate the support
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from Peter during his stay at the University of Melbourne. As his last postdoc,

Peter gave Jinyuan a lot of freedom for conducting independent research of his

own interest. Jinyuan was invited to give an on-site interview at London School

of Economics for his faculty position application in the Statistics department in

early February 2015. Due to family issues, Jinyuan thought that he could not

take this position, and declined the interview. He wrote an email to Peter on

this decision on January 10 2015 (Saturday). Peter responded immediately with

“don’t burn any bridges”. Peter even came to office on Sunday (January 11 2015)

and had a chat with Jinyuan in person. At that moment Peter was struggling

against the illness and had not gone to the office for a while. Jinyuan was deeply

touched by this kindness and consideration. Indeed, Peter was always a kind and

warm-hearted person who will be dearly missed and forever remembered.
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