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Abstract: In this paper we consider partially linear additive models where the

predictors in the parametric and in the nonparametric parts are contaminated by

measurement errors. We propose an estimator of the parametric part and show

that it achieves
√
n-consistency in a certain range of the smoothness of the mea-

surement errors in the nonparametric part. We also derive the convergence rate of

the parametric estimator in case the smoothness of the measurement errors is off

the range. Furthermore, we suggest an estimator of the additive function in the

nonparametric part that achieves the optimal one-dimensional convergence rate

in nonparametric deconvolution problems. We conducted a simulation study that

confirms our theoretical findings.
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1. Introduction

In this paper, dedicated to the memory of Peter G. Hall, we consider an

errors-in-variables regression model. A typical type of errors-in-variables problem

is to estimate the density of a variable X or the regression function E(Y |X = ·)
for a response Y and a predictor X when X is not observed but X∗ = X + U is

observed with measurement error U that is independent of X. This topic is one

of Peter Hall’s areas in which he made fundamental contributions. Carroll and

Hall (1988) provides the minimax rate of convergence for nonparametric density

estimation. Delaigle, Hall and Meister (2008) studies the problem when the den-

sity of U is unknown but is estimated from repeated contaminated measurements.

Recently, his last paper on the topic, Delaigle and Hall (2016), demonstrates that

one can estimate the density of X using its phase function. Carroll, Delaigle and

Hall (2009) tackles a prediction problem when the measurement error UF on

X for future observations is not identically distributed as U so that the main

task is to estimate E(Y |X + UF = ·) given a random sample of (X∗, Y ). Peter
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also made groundbreaking contributions to the topic when considering Berkson

measurement error, where U is independent of X∗, but not of X. Some of the

main achievements in this area are Delaigle, Hall and Qiu (2006), Carroll, De-

laigle and Hall (2007) and Delaigle, Hall and Müller (2007), among others. For

other contributions of Peter Hall to the topic and for an excellent account of his

achievements, the reader is referred to Delaigle (2016).

The present paper complements Peter Hall’s work in nonparametric errors-

in-variables problems. Specifically, we study the estimation of partially linear

additive models when the predictors in the nonparametric part as well as those

in the parametric part are contaminated by measurement errors. There have been

some earlier works on partially linear models with errors-in-variables. Two works

that are most closely related to the problem we study in this paper are Liang,

Härdle and Carroll (1999) and Zhu and Cui (2003) which consider partially linear

models where the nonparametric component is univariate. Liang, Härdle and

Carroll (1999) treated the case where only the predictors in the parametric part

are contaminated; Zhu and Cui (2003) extended the work to the case where both

predictors in the parametric and in the nonparametric parts are observed with

measurement errors. One can extend the latter work in a straightforward manner

to the case where the predictor in the nonparametric part is multi-dimensional,

but the procedure could then lead to the curse of dimensionality.

In this paper we study the estimation of partially linear models where the

multivariate nonparametric part has an additive structure. In multivariate non-

parametric regression, additive models are known to avoid the curse of dimen-

sionality, see Mammen, Linton and Nielsen (1999), Yu, Park and Mammen (2008)

and Lee, Mammen and Park (2010, 2012), among others. Specifically, we con-

sider the case where we observe a response Y and predictors X = (X1, . . . , Xp)
>

and Z = (Z1, . . . , Zd)
> such that

Y = θ>X +m0 +m1(Z1) + · · ·+md(Zd) + ε, (1.1)

where E(ε|X,Z) = 0. We discuss how to estimate θ and the univariate nonpara-

metric component functions mj when we observe the contaminated predictors

X∗ = X + U, Z∗ = Z + V

instead of X and Z, where U = (U1, . . . , Up)
> and V = (V1, . . . , Vd)

> are vectors

of measurement errors.

In (1.1), we assume that the mj are square integrable and that the predictors

Zj are supported on compact sets, say [0,1]. For identifiability of the additive

component functions mj , we put on the constraints Emj(Zj) = 0, 1 ≤ j ≤ d,
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introducing a constant m0 in the model. The response error ε is independent of

X,Z,U,V, for simplicity of presentation. The measurement error vectors U and

V are independent of each other, U has mean zero and known variance matrix

ΣU, and V has a symmetric density pV. We also assume that the components

Vj and Vk of V are independent for j 6= k, and that (U,V) is independent of

(X,Z).

The parametric component θ is identifiable in the model (1.1) if

D0 ≡ E {X− E(X|Z)} {X− E(X|Z)}>

is invertible. This is true even in a wider model where the nonparametric part

may not be an additive function, but is allowed to be a d-dimensional multivariate

function. This follows simply from the identity

E {X− E(X|Z)} {Y − E(Y |Z)} = D0θ. (1.2)

Thus, θ is identifiable in the smaller model (1.1). In fact, with the additive struc-

ture of the nonparametric function in (1.1), it is identifiable under the weaker con-

dition that E {X− η(Z)} {X− η(Z)}> is invertible, where η = Π (E(X|Z = ·)|H),

the projection of the multivariate function E(X|Z = ·) onto the space of additive

functions, denoted by H. Under (1.1) we have

E {X− η(Z)} {Y − ξ(Z)} = E {X− η(Z)} {X− η(Z)}> θ, (1.3)

where ξ = Π (E(Y |Z = ·)|H). Here E {X− η(Z)} {X− η(Z)}> −D0 is nonneg-

ative definite.

We propose an estimator of θ that basically solves an empirical version of

(1.3). In Section 2 we take a different perspective to motivate our estimator. To

get an empirical version of (1.3) we estimate η and ξ using a kernel smoothing

technique. In particular, we use the smooth backfitting technique of Mammen,

Linton and Nielsen (1999) and the smoothed normalized deconvolution kernel of

Han and Park (2018). To the best of our knowledge, this work is the first to

study kernel estimation as (1.1) based on the observation of the contaminated

predictors X∗ and Z∗. The problem is harder than when only X is contaminated

or the nonparametric part is univariate, the focus of most earlier works.

The difficulty of deconvoluting measurement errors in nonparametric smooth-

ing depends on the smoothness of the measurement error distributions, or the

tail behavior of their characteristic functions, as well as the smoothness of the

object function being estimated. In this paper we consider the so-called ‘ordi-

nary smooth’ case where φVj
(t), the characteristic functions of Vj , decay at the

tails at a rate |t|−β as |t| → ∞ for some β > 0. We show that our estimator
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of θ achieves
√
n-consistency regardless of the dimention d when β < 1/2. In

case β ≥ 1/2 we find that the estimator has the rate Op(n
−1/(1+2β)) up to a

logarithmic factor. An estimator of θ based on (1.2) and multivariate smoothing

for estimating E(Y |Z = ·) and E(X|Z = ·) does not give these rates. Our main

focus is on the estimation of the parametric part, but we also suggest an estima-

tor of the additive function in the nonparametric part and show that it achieves

the optimal one-dimensional convergence rate in nonparametric deconvolution

problems regardless of the dimension d. We conducted a simulation study to

demonstrate the finite sample performance of the proposed estimator and found

that it supports our theoretical findings.

2. Least Favorable Submodel and Smooth Backfitting

Here, we motivate our estimator of θ from the theory of semiparametric

efficient estimation. For this, we briefly review an estimation procedure when

there are no measurement errors in the predictors. The latter, studied by Yu,

Mammen and Park (2011), finds the ‘least favorable’ regular parametric submodel

of (1.1) and estimates the true value of θ in the submodel where the estimation

is hardest in the sense of efficiency. By the standard theory of semiparametric

efficient estimation, this procedure leads to a semiparametric efficient estimator

of the parametric component. For the standard theory of semiparametric efficient

estimation, the reader is referred to Bickel et al. (1993).

We write m(z) = m0+m1(z1)+· · ·+md(zd), where Emj(Zj) = 0, 1 ≤ j ≤ d.

Let H denote the space of all additive square integrable functions g such that

g(z) = g1(z1) + · · ·+ gd(zd). Let (θ0,m0) denote a fixed value of the parameter

(θ,m). Then, a regular parametric submodel of (1.1) at (θ0,m0) may be written

as P0 = {(θ,m( · ,θ)) : θ ∈ Rp,m( · ,θ0) = m0} for a Fréchet differentiable map

θ 7→ m( · ,θ) ∈ H. The least favorable regular parametric submodel is the one

that has the smallest Fisher information. For a map θ 7→ m( · ,θ) with the

Fréchet derivative δ = ∂m( · ,θ)/∂θ
∣∣
θ=θ0 , the score function of `(θ,m( · ,θ)) ≡

log pε(Y − θ>X−m(Z,θ)) at θ = θ0 is given by

d

dθ
`(θ,m( · ,θ))

∣∣
θ=θ0 = −p

′
ε

pε
{Y − θ0>X−m0(Z)} · {X + δ(Z)},

where pε denotes the density of the response error ε. This gives the Fisher

information at θ0 in the submodel with direction δ as

I(δ) = I0 · E{X + δ(Z)}{X + δ(Z)}>,

where I0 =
∫

(p′ε)
2/pε. Thus, the direction δ∗ that minimizes I(δ) among all
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δ = (δ1, . . . , δp)
>, with each δj ∈ H, is given by δ∗ = −η, where

η = Π (E(X|Z = ·)|H) ,

and Π( · |H) denotes the projection operator onto the space H. The projection

η = (η1, . . . , ηp)
> has each ηj belonging to the space of additive functions H.

Now, let (θ0,m0) be the true parameter value that generates i.i.d. copies

(Y i,Xi,Zi) of (Y,X,Z). The most difficult submodel m( · ,θ) of the nonpara-

metric part of (1.1) for estimating θ0 is given by

m∗( · ,θ) = m0 − (θ − θ0)>Π (E(X|Z = ·)|H)

= Π (E(Y |Z = ·)|H)− θ>Π (E(X|Z = ·)|H) .
(2.1)

The second idenity in (2.1) follows from E(Y |Z) = E(X|Z)>θ0 + m0(Z) and

the fact that the projection operator is linear. One can then estimate the true

parameter θ0 in the least favorable submodel where the nonparametric additive

function m in (1.1) is replaced by m∗( · ,θ) in (2.1). Let m̂add
Y and m̂add

Xj
denote

estimators of Π (E(Y |Z = ·)|H) and ηj = Π (E(Xj |Z = ·)|H), respectively. Then,

m̂add
X ≡ (m̂add

X1
, . . . , m̂add

Xp
)> is an estimator of η = Π (E(X|Z = ·)|H). Plugging

in m̂add
Y − θ>m̂add

X as an estimator of the least favorable curve m∗( · ,θ) in the

least squares criterion, one can estimate θ0 by

θ̂ = arg min
θ

n∑
i=1

{
Y i − m̂add

Y (Zi)− θ>
(
Xi − m̂add

X (Zi)
)}2

=

(
n−1

n∑
i=1

X̃iX̃i>

)−1
n−1

n∑
i=1

X̃iỸ i, (2.2)

where X̃i = Xi − m̂add
X (Zi) and Ỹ i = Y i − m̂add

Y (Zi).

Yu, Mammen and Park (2011) studied the estimator θ̂ when m̂add
Y and m̂add

X

are obtained by the smooth backfitting technique. This method was proposed

by Mammen, Linton and Nielsen (1999) for estimating additive models and

found to avoid the curse of dimensionality under weaker conditions than the

ordinary backfitting (Opsomer and Ruppert (1997)) and marginal integration

(Linton and Nielsen (1995)). The idea of smooth backfitting was successfully

implemented for fitting various other structured nonparametric models, see Yu,

Park and Mammen (2008) and Lee, Mammen and Park (2010, 2012), among

others. For a response variable W , and in case E(W |Z) is not an additive

function as in our cases with W = Y and W = Xj , the method estimates

Π
(
E(W |Z = ·)

∣∣H). It gives m̂add
W as an estimator of Π

(
E(W |Z = ·)

∣∣H), where

m̂add
W (z) = m̂W,0 + m̂W,1(z1) + · · ·+ m̂W,d(zd) and the d-tuple (m̂W,j : 1 ≤ j ≤ d)
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solves the system of integral equations

m̂W,j(zj) = m̃W,j(zj)− m̂W,0 −
∑
k 6=j

∫ 1

0
m̂W,k(zk)

p̂jk(zj , zk)

p̂j(zj)
dzk, 1 ≤ j ≤ d,

(2.3)

subject to the constraints
∫ 1
0 m̂W,j(zj)p̂j(zj) dzj = 0, 1 ≤ j ≤ d. In these

equations, m̂W,0 = n−1
∑n

i=1W
i, m̃W,j is a marginal regression estimator of

E(W |Zj = ·), with p̂j and p̂jk estimators of the marginal density pj of Zj and of

the joint density pjk of (Zj , Zk).

Specifically,

m̃W,j(zj) = p̂j(zj)
−1n−1

n∑
i=1

Kh(zj , Z
i
j)W

i,

p̂j(zj) = n−1
n∑
i=1

Khj
(zj , Z

i
j),

p̂jk(zj , zk) = n−1
n∑
i=1

Khj
(zj , Z

i
j)Khk

(zk, Z
i
k).

(2.4)

Here Kh(z, u) is the so-called normalized kernel defined by

Kh(z, u) =
Kh(z − u)∫ 1

0 Kh(t− u) dt
, z, u ∈ [0, 1], (2.5)

where Kh(u) = h−1K(u/h), K is a baseline kernel function and h > 0 is the

bandwidth. The normalized kernel Kh( · , ·) satisfies
∫ 1
0 Kh(z, u) dz = 1 for all

u ∈ [0, 1] and it equals the conventional kernel Kh(z−u) for z ∈ [2h, 1−2h]. For

more details, see Mammen, Linton and Nielsen (1999) and Yu, Park and Mammen

(2008). Yu, Mammen and Park (2011) proved that the estimator θ̂ at (2.2)

achieves
√
n-consistency if pε has finite second moment, and is semiparametric

efficient in case pε is Gaussian.

3. Estimation of the Model

In case only the Xi
j are contaminated and we observe X∗ij = Xi

j + U ij and

Zik, one can simply correct for the ‘attenuation effect’ due to the measurement

errors U ij , in (2.2). Specifically, one can estimate θ0 by

θ̃ =

(
n−1

n∑
i=1

X̃∗iX̃∗i> −ΣU

)−1
n−1

n∑
i=1

X̃∗iỸ i, (3.1)

where X̃∗i = X∗i−m̂add
X∗ (Zi) and ΣU is the covariance matrix of U=(U1, . . . , Up)

>.
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Liang, Härdle and Carroll (1999) studied this type of estimator for the case d = 1.

When d = 1, there is no need for backfitting such as at (2.3). In this case,

one simply puts X̃∗i = X∗i − m̃X∗(Zi) and Ỹ i = Y i − m̃Y (Zi) in (3.1), where

m̃X∗ = (m̃X∗
1
, . . . , m̃X∗

p
)> and m̃W with W = Y or W = X∗j is defined as in (2.4).

When d > 1, and with the smooth backfitting estimation at (2.3) being applied

to W = X∗j for each j, one can prove that the estimator θ̃ at (3.1) satisfies

√
n(θ̃ − θ0)

d→ N

(
0, var(ε−U>θ0) ·

[
E{X− η(Z)}{X− η(Z)}>

]−1)
.

These results may be obtained by adapting the theory developed in Yu, Mam-

men and Park (2011) to the correction for attenuation, and using the fact that

E(X∗|Z) = E(X|Z) so that m̂add
X∗ estimates η consistently and has similar asymp-

totic properties as m̂add
X .

When both Xj and Zk are contaminated by measurement errors Uj and

Vk, respectively, the problem is much more complicated. The difficulty arises

since m̃W,j , p̂j and p̂jk at (2.4) with Zij and Zik replaced by the corresponding

contaminated Z∗ij and Z∗ik have nonnegligible biases as estimators of E(W |Zj =

·), pj and pjk, respectively. For the contaminated Z∗ij and Z∗ik that are close to

points of interest, say zj and zk, respectively, the corresponding unobserved true

predictor values Zij and Zik may be far away from the points zj and zk due to

measurement errors. Thus, Z∗ij and Z∗ik may not have relevant information about

the target functions at zj and zk, respectively.

When d = 1, this difficulty can be resolved by using the deconvolution ker-

nel suggested and studied by Stefanski and Carroll (1990) and Fan and Truong

(1993), among others. The salient feature of the deconvolution kernel, denoted

by KD, is the ‘unbiased scoring’ property that

E{KD
h (z − Z∗)|Z} = Kh(z − Z). (3.2)

The property (3.2) entails that the bias properties of the kernel estimators with

KD
h based on contaminated predictor values Z∗i are the same as those of the

estimators with the conventional kernel weight Kh based on the true predictor

values Zi. Indeed, Zhu and Cui (2003) proved that the use of a deconvolution

kernel, in conjunction with the correction for attenuation as is done in (3.1), gives

a
√
n-consistent estimator of θ0 under suitable conditions.

Han and Park (2018) introduced a special kernel scheme that has both the

properties of normalization and unbiased scoring, and we adopt it here. Let φf
for a function f denote the Fourier transform of f , and φV for a random variable

V the characteristic function of V . Let
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φK(t; z) =

∫ 1

0
eit(z−u)/hKh(z, u) du,

where Kh(z, u) is the normalized kernel defined at (2.5). For z ∈ [2h, 1− 2h] one

can show that φK( · ; z) = φK , the Fourier transform of the baseline kernel K.

The kernel function of Han and Park (2018) is given by

K?
h(z, z∗) =

1

2πh

∫ ∞
−∞

e−it(z−z
∗)/hφK(t; z)φK(t)

φV (t/h)
dt

=
1

2π

∫ ∞
−∞

e−itz
∗ φKh(z,·)∗Kh

(t)

φV (−t)
dt,

(3.3)

where Kh(z, ·) ∗ Kh(u) =
∫∞
−∞Kh(u − t)Kh(z, t) dt. Here Kh(z, ·) ∗ Kh(u) =

Kh ∗Kh(z − u) when z ∈ [2h, 1− 2h].

Han and Park (2018) showed that, under (A1) and (A2) in the next section,

K?
h(z, z∗) at (3.3) is well-defined for all z ∈ [0, 1] and z∗ ∈ R, and satisfies∫ 1

0
K?
h(z, z∗) dx = 1 for all z∗ ∈ R,

E
{
K?
h(z, Z∗)

∣∣Z = u
}

= Kh(z, ·) ∗Kh(u) for all z, u ∈ [0, 1],

(3.4)

where Z∗ = Z + V with V independent of Z. The first identity of (3.4) is the

normalization property that is essential for the success of the smooth backfit-

ting method, and the second corresponds to the unbiased scoring property (3.2).

Thus, the bias properties of the smooth backfitting estimator of Π
(
E(W |Z= ·)

∣∣H)
based on Z∗i and the kernel scheme K?

h(z, u) is the same as those based on

the true but unobservable Zi and the kernel Kh(z, ·) ∗ Kh(u). Recall that

Kh(z, ·) ∗Kh(u) = (K ∗K)h(z − u) for z in the interior region [2h, 1− 2h].

Now we set out our estimator of θ0. Let

η̂j(z) = m̂add
X∗

j
(z) = m̂X∗

j ,0 + m̂X∗
j ,1(z1) + · · ·+ m̂X∗

j ,d(zd), (3.5)

where m̂X∗
j ,0 = n−1

∑n
i=1X

∗i
j and (m̂X∗

j ,k : 1 ≤ k ≤ d) solves the system (2.3)

with W i = X∗ij and Khj
(zj , Z

i
j) replaced by K?

hj
(zj , Z

∗i
j ) at (2.4). Put η̂ =

(η̂1, . . . , η̂p)
>. Likewise, let

ξ̂(z) = m̂add
Y (z) = m̂Y,0 + m̂Y,1(z1) + · · ·+ m̂Y,d(zd), (3.6)

with Y i taking the role of X∗ij in the definition of η̂j(z). Here ξ̂ is an estimator

of ξ ≡ Π(E(Y |Z = ·)|H) in the presence of measurement errors. We want to

replace X̃∗i and Ỹ i by X∗i − η̂(Zi) and Y i − ξ̂(Zi), respectively, in (3.1), but

this is infeasible since the Zi are not observed. Replacing them by X∗i − η̂(Z∗i)

and Y i− ξ̂(Z∗i) would lead to an inconsistent estimator due to the mesaurement

errors in Z∗i.
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In the case of no measurement errors, n−1
∑n

i=1 X̃iX̃i> in (2.2) targets D ≡
E{X− η(Z)}{X− η(Z)}>. We have

D = E{X∗ − η(Z)}{X∗ − η(Z)}> −ΣU

=

∫
[0,1]d

E
[
{X∗ − η(z)}{X∗ − η(z)}>

∣∣∣Z = z
]
pZ(z) dz−ΣU.

(3.7)

We can estimate the joint density pZ(z) in (3.7) by p̂Z(z) = n−1
∑n

i=1K
?
g(z,Z∗i),

where K?
g(z,Z∗i) = K?

g1(z1, Z
∗i
1 ) × · · · ×K?

gd(zd, Z
∗i
d ) allowing gj to be different

from the bandwidth hj in the smooth backfitting. Also, we can estimate the

conditional expectation inside the integral on the right side of the second equation

of (3.7) by the Nadaraya-Watson type estimator

p̂Z(z)−1 · n−1
n∑
i=1

{X∗i − η̂(z)}{X∗i − η̂(z)}>K?
g(z,Z∗i). (3.8)

Putting these together with (3.7) we estimate D by

D̂ = n−1
n∑
i=1

∫
[0,1]d
{X∗i − η̂(z)}{X∗i − η̂(z)}>K?

g(z,Z∗i) dz−ΣU. (3.9)

Similarly, we estimate E{X− η(Z)}{Y − ξ(Z)}, the target of n−1
∑n

i=1 X̃iỸ i in

(2.2), by

n−1
n∑
i=1

∫
[0,1]d
{X∗i − η̂(z)}{Y i − ξ̂(z)}K?

g(z,Z∗i) dz. (3.10)

This gives our proposed estimator of θ0 as

θ̂ = D̂−1 n−1
n∑
i=1

∫
[0,1]d
{X∗i − η̂(z)}{Y i − ξ̂(z)}K?

g(z,Z∗i) dz. (3.11)

In the case where only the Zij are contaminated so that we observe the true

predictor values Xi
j , we can simply replace X∗i by Xi in the definitions of η̂, D̂

and θ̂ at (3.5), (3.9) and (3.11), respectively, and put ΣU = 0 in (3.9). Here

D̂ and θ̂ involve only two-dimensional integration as
∫ 1
0 K

?
g (zj , u) dzj = 1 for all

u ∈ R, and both η̂ and ξ̂ are sums of univariate functions.

Once we estimate θ0 by θ̂, we can estimate the true nonparametric additive

function m0 = m0
0 + m0

1 + · · · + m0
d by applying the smooth backfitting method

of Han and Park (2018) to Y − θ̂>X∗ as the response variable and Z∗ as the

contaminated predictor vector. Since the rate of convergence of the parametric

estimator θ̂ is faster than the nonparametric rate, the resulting estimators of

m0 and its components m0
j have the same first-order asymptotic properties as

the corresponding oracle smooth backfitting estimators obtained by taking Y −



2362 LEE, HAN AND PARK

θ0>X∗ as the response variable and Z∗ as the contaminated predictor vector.

The asymptotic properties of the oracle estimators can be easily obtained by

adapting the theory developed in Han and Park (2018).

4. Theoretical Properties

For simplicity, we assume hj � h and gj � g. We need some assumptionst.

(A1) There exist some positive constants β, c1 and c2 such that c1(1 + |t|)−β ≤
|φVj

(t)| ≤ c2(1 + |t|)−β, and |tβ+1φ′Vj
(t)| = O(1) as |t| → ∞.

(A2) The baseline kernel function K is supported on [−1, 1] and is bβ+ 1c-times

continuously differentiable. K(`)(−1) = K(`)(1) = 0 for 0 ≤ ` ≤ bβc, where

bβc denotes the largest integer that is less than or equal to β. K(`) the `-th

derivative of K. Also,
∫ 1
0 |t

βφK(t)| dt <∞.

(A3) The joint density p of Z is bounded away from zero and infinity on [0, 1]d

and partially continuously differentiable, and the one- and two-dimensional

marginal densities pj and pjk are also (partially) continuously differentiable.

(A4) The E(X2
j | Z = ·) are bounded on [0, 1]d.

(A5) The ηj,` for 1 ≤ j ≤ p and 1 ≤ ` ≤ d are twice continuously differentiable

on [0, 1].

(A6) E{X− η(Z)}{X− η(Z)}> is positive definite.

(A7) There exist constants C > 0 such that EeuW ≤ exp(Cu2/2) for all u, for

W = Uj , Xj and ε.

The conditions (A3)–(A5) are typically assumed in kernel smoothing theory

, see Mammen, Linton and Nielsen (1999), Yu, Park and Mammen (2008) and

Lee, Mammen and Park (2012), among others. The condition (A6) is assumed

for identifiability of θ in the model (1.1), see also Yu, Mammen and Park (2011)

, and (A7) is used to get exponential bounds in our applications of empirical

process theory to concentration inequalities. The conditions (A1) and (A2) are

usually assumed in deconvolution problems, see Delaigle, Fan and Carroll (2009).

They enable us to obtain an inequality enveloping K?
h that we use to get bounds

for terms involving K?
h, see Lemma 5.1 in Han and Park (2018).
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Put

τ(h;β) =


1 β < 1/2,√

log h−1 β = 1/2,

h1/2−β β > 1/2,

rn(g, h;β) = n−1/2τ(g;β)2 + n−1/2hg−2β
√

log n+ n−1h−1−2βτ(h;β)2 log n.

Theorem 1. If (A1)–(A7) hold, and if nh3+2βτ(h;β)−2(log n)−1 is bounded away

from zero, then,

θ̂ = θ0 +O(g2) +O(h3) +Op(rn(g, h;β)).

When only the Zij are contaminated, Theorem 1 remains valid for the mod-

ified version of θ̂ that we described after (3.11). We can derive the rates of

convergence of θ̂ from Theorem 1, depending on the smoothness β of the distri-

butions of the measurement errors Vj .

In case β < 1/2,

θ̂ − θ0 = O(g2) +O(h3) +Op

(
n−1/2 + n−1/2hg−2β

√
log n+ n−1h−1−2β log n

)
.

Let h � n−a and g � n−b for a, b > 0. If we choose a and b so that 1/4 ≤
b < a/(2β) and max{1/6, β/2} < a < 1/(3 + 2β), then θ̂ − θ0 = Op(n

−1/2). If

β = 1/2, we get θ̂ − θ0 = Op(n
−1/2 log n) by choosing h � g � n−1/4

√
log n.

The case where β > 1/2 is more involved. We get from Theorem 1 that

θ̂−θ0 = O(g2)+O(h3)+Op

(
n−1/2g1−2β + n−1/2hg−2β

√
log n+ n−1h−4β log n

)
.

The best rate here is Op(n
−1/(1+2β)

√
log n), achieved by choosing h � g �

n−1/(2+4β)(log n)1/4. This size of h satisfies the condition in Theorem 1. To

see that it is the best rate, we let h � n−a and g � n−b up to a factor of size

log n or its power. First consider that b ≤ a. By trading off g2 and n−1/2g1−2β, we

get the optimal order of g, n−1/(2+4β). This gives g2 + n−1/2g1−2β = n−1/(1+2β).

The term of order n−1h−4β can achieve this rate only when a ≤ 1/(2 + 4β). This

implies that the choice a = b = 1/(2 + 4β) gives the best rate n−1/(1+2β) up to a

logarithmic factor among all b ≤ a. If b > a, we can trade off n−1h−4β and h3 to

get the best rate for the sum of the two terms, which gives a = 1/(3+4β) and the

rate n−3/(3+4β). For θ̂ to achieve the latter rate, n−1/2hg−2β must be smaller than

or equal to n−3/(3+4β), but this is impossible for any choice of b > 1/(3+4β). One

can find that trading off other combinations of the four terms g2, h3, n−1/2hg−2β

and n−1h−4β do not lead to a rate for θ̂ − θ0 faster than n−1/(1+2β).

Theorem 2. If the conditions in Theorem 1 hold, and β < 1/2, then θ̂ − θ0 =
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Op(n
−1/2) if h � n−a and g � n−b with max{1/6, β/2} < a < 1/(3 + 2β) and

1/4 ≤ b < a/(2β). If β = 1/2, θ̂ − θ0 = Op(n
−1/2 log n) if h � g � n−1/4

√
log n.

If β > 1/2, θ̂ − θ0 = Op(n
−1/(1+2β)

√
log n) if h � g � n−1/(2+4β)(log n)1/4.

Next, we discuss the rates of convergence of the estimators of the nonpara-

metric component functions m0
j described at the end of Section 3. Let h0 denote

the bandwidth in the smooth backfitting with Y −θ̂∗>X∗ as the response variable

and Z∗ as the contaminated predictor vector. Then, by choosing the bandwidth

size h0 � n−1/(5+2β) we get that, for 1 ≤ j ≤ d,

sup
2h0≤zj≤1−2h0

∣∣m̂j(zj)−m0
j (zj)

∣∣ = Op

(
n−2/(5+2β)

√
log n

)
,

sup
0≤zj≤1

∣∣m̂j(zj)−m0
j (zj)

∣∣ = Op

(
n−1/(5+2β)

)
when β < 1/2. For β > 1/2, it holds that by choosing h0 � n−1/(4+4β),

sup
2h0≤zj≤1−2h0

∣∣m̂j(zj)−m0
j (zj)

∣∣ = Op

(
n−1/(2+2β)

√
log n

)
,

sup
0≤zj≤1

∣∣m̂j(zj)−m0
j (zj)

∣∣ = Op

(
n−1/(4+4β)

)
.

If β = 1/2, we get the rates n−1/3 log n in the interior and n−1/6
√

log n on the

boundary with h0 � n−1/6. These results follow basically from the fact that the

estimation error of θ̂ in Theorem 2 is of smaller order than the nonparametric

rate.

Proof of Theorem 1. Write η̂j(z) = η̂j,0 + η̂j,1(z1) + · · ·+ η̂j,d(zd), and recall the

constraints
∫ 1
0 η̂j,`(z`)p̂`(z`) dz` = 0 on η̂j,`, 1 ≤ ` ≤ d. Likewise, write ηj(z) =

ηj,0+ηj,1(z1)+ · · ·+ηj,d(zd) with the constraints
∫ 1
0 ηj,`(z`)p`(z`) dz` = 0, 1 ≤ ` ≤

d. We also write ξ(z) = ξ0+ξ1(z1)+· · ·+ξd(zd) and ξ̂(z) = ξ̂0+ξ̂1(z1)+· · ·+ξ̂d(zd)
with the corresponding constraints on ξ` and ξ̂` for 1 ≤ ` ≤ d. In proceeding,

we take ηj,0 = ξ0 = 0 as well as m0
0 = 0 and ignore η̂j,0 and ξ̂0, for simplicity,

since their estimation errors are of smaller order than those of the nonparametric

estimators η̂j,` and ξ̂`.

Lemma 1. Under the conditions of Theorem 1,

n−1
n∑
i=1

∫
[0,1]d
{Xi

j − ηj(z)}{η̂k,`(z`)− ηk,`(z`)}K?
g (z,Z∗i) dz

= Op

(
g2h+ n−1/2hg−2β

√
log n

)
for all 1 ≤ j, k ≤ p and 1 ≤ ` ≤ d.
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Lemma 2. Under the conditions of Theorem 1,

E
∣∣∣ ∫

[0,1]d
{Xj − ηj(z)}K?

g (z,Z∗) dz
∣∣∣2 = O

(
τ(g;β)2

)
for all 1 ≤ j ≤ p.

Lemma 3. Under the conditions of Theorem 1,

var

(∫
[0,1]d
{Xj − ηj(z)}{Xk − ηk(z)}K?

g (z,Z∗) dz

)
= O

(
τ(g;β)4

)
for all 1 ≤ j, k ≤ d.

Lemma 4. Under the conditions of Theorem 1,

n−1
n∑
i=1

U ij

∫ 1

0
{η̂k,`(z`)− ηk,`(z`)}K?

g (z`, Z
∗i
` ) dz` = Op

(
n−1/2hg−β

√
log n

)
for all 1 ≤ j, k ≤ p and 1 ≤ ` ≤ d.

We turn to the proof of Theorem 1. Let m̂ora(z) = ξ̂(z) − η̂(z)>θ0. This

is an additive function and is an oracle estimator of the true additive func-

tion m0(z) = m0
1(z1) + · · · + m0

d(zd). To see this, write ξ(z) − η(z)>θ0 =

Π
(
E(Y −X>θ0|Z = ·)

∣∣H) (z) = m0(z), and take

δ̂ = n−1
n∑
i=1

∫
[0,1]d
{X∗i − η̂(z)}{Y i − θ0>X∗i − m̂ora(z)}K?

g(z,Z∗i) dz + ΣUθ0.

Then θ̂ = θ0 + D̂−1 · δ̂. We show that D̂ = D + op(1), and analyze the size of δ̂.

We first approximate D̂. Decompose D̂ as D̂ = D̂1 + D̂2 + D̂3 + D̂4, where

D̂1 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η̂(z)}{Xi − η̂(z)}>K?

g (z,Z∗i) dz,

D̂2 = n−1
n∑
i=1

Ui ·
∫
[0,1]d
{Xi − η̂(z)}>K?

g (z,Z∗i) dz,

D̂3 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η̂(z)}K?

g (z,Z∗i) dz ·Ui>,

D̂4 = n−1
n∑
i=1

UiUi> −ΣU.

It is clear that D̂4 = Op(n
−1/2). Using Lemmas 2 and 4, we can show that both

D̂2 and D̂3 are of order Op
(
n−1/2τ(g;β) + n−1/2hg−β

√
log n

)
. We claim

D̂1 = D +O(g2) +O(h3) +Op(rn(g, h;β)). (4.1)
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To prove (4.1), we further decompose D̂1 into four terms as D̂1 = D̂11 +

D̂12 + D̂13 + D̂14, where

D̂11 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η(z)}{Xi − η(z)}>K?

g (z,Z∗i) dz,

D̂12 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η(z)}{η(z)− η̂(z)}>K?

g (z,Z∗i) dz,

D̂13 = n−1
n∑
i=1

∫
[0,1]d
{η(z)− η̂(z)}{Xi − η(z)}>K?

g (z,Z∗i) dz,

D̂14 =

∫
[0,1]d
{η̂(z)− η(z)}{η̂(z)− η(z)}>p̂Z(z) dz.

By Lemma 1, both D̂12 and D̂13 are of order Op
(
g2h+ n−1/2hg−2β

√
log n

)
.

For D̂11, we get the magnitude of its variance from Lemma 3. We compute

E(D̂11). Put K̃h(z, u) = Kh(z, ·) ∗ Kh(u) and K̃h(z,u) = K̃h(z1, u1) × · · · ×
K̃h(zd, ud), with a slight abuse of notation. We observe that

E(D̂11) = D + E

∫
[0,1]d
{η(Z)− η(z)}{η(Z)− η(z)}>K̃g(z,Z) dz. (4.2)

The identity (4.2) follows from the unbiased scoring property of K?
g and

E{X− η(Z)}
∫
[0,1]d
{η(Z)− η(z)}>K̃g(z,Z) dz = 0.

The latter holds since E(Xj |Z = ·) − ηj( · ), the projection of E(Xj |Z = ·) onto

H⊥ in the space of square integrable functions, is orthogonal to∫
{ηk( · )− ηk(z)}K̃g(z, ·) dz =

d∑
`=1

∫
(ηk,`( · )− ηk,`(z`))K̃g(z`, ·) dz` ∈ H.

From the standard theory of kernel smoothing, the second term in (4.2) is of

magnitude g2. This shows

D̂11 = D +O(g2) +Op(n
−1/2τ(g;β)2). (4.3)

Now, consider D̂14. From Theorems 2 and 3 in Han and Park (2018), we get

that, for 1 ≤ ` ≤ d,

sup
u∈[2h,1−2h]

|η̂j,`(u)− ηj,`(u)| = Op

(
h2 + n−1/2h−1/2−βτ(h, β)

√
log n

)
,

sup
u∈[0,1]

|η̂j,`(u)− ηj,`(u)| = Op

(
h+ n−1/2h−1/2−βτ(h, β)

√
log n

)
.

(4.4)

Here D̂14 involves only one- and two-dimensional integrals because of the ad-
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ditivity of η̂j(z) and ηj(z). From (4.4) we get that the one-dimensional in-

tegrals are of order Op
(
h3 + n−1h−1−2βτ(h, β)2 log n

)
since the length of the

boundary region equals 4h. The two-dimensional integrals have the magnitudes

Op
(
h4 + n−1h−1−2βτ(h, β)2 log n

)
. This gives

D̂14 = Op

(
h3 + n−1h−1−2βτ(h, β)2 log n

)
. (4.5)

This completes the proof of (4.1) and establishes that

D̂ = D +O(g2) +O(h3) +Op(rn(g, h;β)). (4.6)

To analyze the size of δ̂, we decompose it into four terms, δ̂ = δ̂1+δ̂2+δ̂3+δ̂4,

where

δ̂1 = n−1
n∑
i=1

(εi −Ui>θ0) ·
∫
[0,1]d
{Xi − η̂(z)}K?

g (z,Z∗i) dz,

δ̂2 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η̂(z)}{m0(Zi)− m̂ora(z)}K?

g (z,Z∗i) dz,

δ̂3 = n−1
n∑
i=1

Uiεi − n−1
n∑
i=1

(UiUi> −ΣU)θ0,

δ̂4 = n−1
n∑
i=1

Ui ·
∫
[0,1]d
{m0(Zi)− m̂ora(z)}K?

g (z,Z∗i) dz.

For the first term δ̂1, n
−1∑n

i=1(ε
i −Ui>θ0){Xi

j − ηj(Zi)} = Op(n
−1/2), and

n−1
n∑
i=1

(εi −Ui>θ0)

∫ 1

0
{ηj,`(Zi`)− ηj,`(z`)}K?

g (z`, Z
∗i
` ) dz`

= Op(n
−1/2τ(g;β)),

n−1
n∑
i=1

(εi −Ui>θ0)

∫ 1

0
{η̂j,`(z`)− ηj,`(z`)}K?

g (z`, Z
∗i
` ) dz`

= Op(n
−1/2hg−β

√
log n).

(4.7)

The first result of (4.7) follows from the fact that the second moment of the

integral
∫ 1
0 {ηj,`(Z

i
`)− ηj,`(z`)}K?

g (z`, Z
∗i
` ) dz` is of size O(τ(g, β)2), which can be

proved as in the proof of Theorem 3.2 in Han and Park (2018). The second result

is the direct consequence of an application of Lemma 4. Clearly, δ̂3 = Op(n
−1/2).

For the fourth term δ̂4, decomposing m0
j (Z

i
j) − m̂ora

j (zj) as m0
j (Z

i
j) − m0

j (zj)

and m̂ora
j (zj) − m0

j (zj), and using the arguments for deriving (4.7), gives δ̂4 =

Op
(
n−1/2τ(g;β) + n−1/2hg−β

√
log n

)
. Thus, we have
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δ̂1 + δ̂3 + δ̂4 = Op

(
n−1/2τ(g;β) + n−1/2hg−β

√
log n

)
. (4.8)

The analysis of δ̂2 is similar to that of D̂1. We claim

δ̂2 = O(g2) +O(h3) +Op(rn(g, h;β)). (4.9)

This and (4.8) establishes

δ̂ = O(g2) +O(h3) +Op(rn(g, h;β)). (4.10)

To prove (4.9) we decompose δ̂2 further into four terms, δ̂2 = δ̂21 + δ̂22 +

δ̂23 + δ̂24, where

δ̂21 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η(z)}{m0(Zi)−m0(z)}K?

g (z,Z∗i) dz,

δ̂22 = n−1
n∑
i=1

∫
[0,1]d
{Xi − η(z)}{m0(z)− m̂ora(z)}K?

g (z,Z∗i) dz,

δ̂23 = n−1
n∑
i=1

∫
[0,1]d
{η̂(z)− η(z)}{m0(z)−m0(Zi)}K?

g (z,Z∗i) dz,

δ̂24 =

∫
[0,1]d
{η̂(z)− η(z)}{m̂ora(z)−m0(z)}p̂Z(z) dz.

For δ̂21, a version of Lemma 3 gives var(δ̂21) = O(n−1τ(g;β)4). By similar argu-

ments as those leading to (4.2) and from the standard theory of kernel smoothing,

we get

E(δ̂21) = E

∫
[0,1]d
{η(Z)− η(z)}{m0(Z)−m0(z)}K̃g(z,Z) dz = O(g2).

This shows

δ̂21 = O(g2) +Op(n
−1/2τ(g;β)2). (4.11)

Furthermore, a version of Lemma 1 entails

δ̂22 = Op

(
g2h+ n−1/2hg−2β

√
log n

)
= δ̂23. (4.12)

Finally, using similar arguments as those in deriving (4.5) we get

δ̂24 = Op

(
h3 + n−1h−1−2βτ(h, β)2 log n

)
. (4.13)

The results (4.11)–(4.13) establishes (4.9). This completes the proof of Theo-

rem 1.

5. Numerical Properties

We evaluated the finite sample performance of θ̂ defined at (3.11). For this
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we considered a simulation setting similar to the one in Yu, Mammen and Park

(2011) . We generated the responses Y i by

Y i = 3 + θ01X
i
1 + θ02X

i
2 +m1(Z

i
1) +m2(Z

i
2) + εi, (5.1)

where εi ∼ N(0, 1), θ0 = (1.5, 0.8)> and

m1(u) = sin(2π(u− 0.5)), m2(u) = (u− 0.5) + sin(2π(u− 0.5)).

The predictor vectors Zi were N((0.5, 0.5)>,Γ) truncated on [0, 1]2 with Γ =

{(1− ρ) · I + ρ ·11>}/4, ρ = 0.3, 1 = (1, 1)> and I being the identity matrix. We

took Xi
1 = Zi1(1 − 2Zi22 ) + δi with δ being i.i.d. N(0, 1) and Xi

2 ∼ N(0, 1). We

generated the contaminated predictors by

X∗i = Xi + Ui, Z∗i = Zi + Vi,

where Ui ∼ N(0, σ2U · I) with σU = 0.3, and V i
j , j = 1, 2, were independent

measurement errors having a double gamma difference distribution (Augustyniak

and Doray (2012)) with scale parameter 1/7 and smoothness order β = 0.4.

In our setting, the noise-to-signal ratios (NSR) of X∗j , var(Uj)/var(Xj), are

0.080 and 0.090 for j = 1 and j = 2, respectively. The NSRs for Z∗j are 0.113

and 0.114. These values of the NSR were obtained by a simulation from a large

size sample that were independently generated, because it is difficult to derive

the exact variances of a truncated multivariate normal distribution and of its

transformations.

For the bandwidth h used in the smooth backfitting for η̂j and ξ̂ defined at

(3.5) and (3.6), respectively, we took h = C · n−1/(5+2β) for C = 0.25. The rate

n−1/(5+2β) of the bandwidth is known to be optimal in nonparametric deconvolu-

tion problems, see Han and Park (2018) for example. Our choice of the constant

C = 0.25 was based on a grid search on [0.1, 0.3]. One can make other choices

of the bandwidth and this may give better performance, but we do not focus on

bandwidth selection in this study. For the bandwidth g that is used in (3.9) and

(3.10) we chose g = h3/2. This choice equalizes the bias orders O(h3) and O(g2)

in Theorem 1 that arise in the two types of smoothing with our smoothed and

normalized deconvolution kernel K?
h and K?

g , respectively.

We compared our estimator θ̂ with the estimator studied in Yu, Mammen

and Park (2011) that ignores the measurement errors in Z∗ as well as in X∗.

The latter estimator is defined by (2.2) but with X̃i and Ỹ i being replaced by

X∗i − η̂(Z∗i) and Y i − ξ̂(Z∗i), respectively, where η̂j and ξ̂ are constructed by

using the conventional normalized kernel Kh( · , ·) and the contaminated covariate

observations Z∗ij . We call this estimator θ̂nve. For the bandwidth h in the
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Figure 1. The first three boxplots in each panel are for θ̂j − θ0j and the rest for θ̂nvej − θ0j ,
based on 200 pseudo samples of size n = 200, 400 and 1,000.

estimation of ηj and ξ based on the conventional normalized kernel Kh( · , ·), we

took h = C · n−1/5 and chose C = 0.3 by a grid search. The rate n−1/5 is known

to be optimal in nonparametric univariate function estimation.

We computed θ̂ and θ̂nve from M = 200 pseudo samples of sizes n = 200, 400

and 1,000. Figure 1 depicts the boxplots of the 200 values of the computed θ̂j
and θ̂nvej . We see clearly that our deconvolution-normalization kernel at (3.3)

with the correction for the attenuation effect at (3.9) works quite well since the

ranges and the central parts of the distributions of θ̂j − θ0j shrink toward zero

very quickly as the sample size increases. To the contrary, θ̂nvej exhibit persistent

non-negligible bias.

We also computed the Monte Carlo estimates of the mean squared errors as

MSE(θ̂j) =
1

M

M∑
m=1

(
θ̂
(m)
j − θj

)2
,

where θ̂
(m)
j denote the values of θ̂j computed from the m-th pseudo sample. This

mean squared error is decomposed into the squared bias and the variance as

MSE(θ̂j) = bias2(θ̂j) + var(θ̂j), where

bias2(θ̂j) =

(
M−1

M∑
m=1

θ̂
(m)
j −θ0j

)2

, var(θ̂j) = M−1
M∑
m=1

(
θ̂
(m)
j −M−1

M∑
m=1

θ̂
(m)
j

)2

.

The results are contained in Table 1, where we also give the results for θ̂nve for

comparison. For our estimator θ̂ we find fast reduction in both the bias and the

variance as the sample size increases. The relatively larger bias of θ̂1 appears to
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Table 1. Mean squared errors, squared biases and variances of θ̂j and θ̂nvej . Based on
200 pseudo samples of sizes n = 200, 400 and 1,000.

sample size & criterion
θ̂j θ̂nvej

j = 1 j = 2 j = 1 j = 2
MSE 0.0437 0.0199 0.0753 0.0172

200 Sq. Bias 0.0195 0.0003 0.0618 0.0043
Variance 0.0242 0.0196 0.0135 0.0129

MSE 0.0206 0.0071 0.0728 0.0122
400 Sq. Bias 0.0127 0.0000 0.0676 0.0054

Variance 0.0079 0.0071 0.0052 0.0068
MSE 0.0023 0.0016 0.0713 0.0066

1,000 Sq. Bias 0.0005 0.0000 0.0694 0.0044
Variance 0.0018 0.0016 0.0019 0.0022

come from the dependence of the corresponding predictor X1 on the predictors

Z1 and Z2 in the nonparametric part of the simulation model. For the naive

estimator θ̂nve that ignores the measurement errors, we find that there exist

intrinsic biases which do not vanish even as the sample size increases.

We also examined what happens if one uses our deconvolution profiling pro-

cedure when the covariates are not actually contaminated. For this, we used

(Xi,Zi, Y i) in the construction of θ̂ and θ̂nve. In this case, θ̂nve is an ‘oracle’ es-

timator that utilizes the knowledge of no measurement errors in the observed co-

variates. For θ̂, we took X∗i = Xi, Z∗i = Zi, ΣU = (0.3)2·I in (3.9). For this esti-

mator we also used the deconvolution-normalization kernelsK?
h( · , ·) andK?

g ( · , ·),
in (3.9) and (3.11), constructed as if there were measurement errors V i

j having a

double gamma difference distribution with scale parameter 1/7 and smoothness

order β = 0.4. As expected, the MSE properties of θ̂nve were superior to those

of θ̂ in this case. However, our deconvolution profiling method still worked well

in terms of consistent estimation. We found that MSE(θ̂1) + MSE(θ̂2) = 0.0236

and 0.0154 for n = 400 and n = 1,000, respectively, while they were 0.0050 and

0.0021 for θ̂nve.

Supplementary Materials

Supplement to “Estimation of Errors-in-Variables Partially Linear Additive

Models”. The supplement contains proofs of Lemmas 1 – 4.
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